• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 93
  • 68
  • 40
  • 27
  • 26
  • 19
  • 12
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 655
  • 118
  • 76
  • 73
  • 68
  • 63
  • 55
  • 44
  • 44
  • 42
  • 42
  • 42
  • 41
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Self-assembly and gelation properties of novel peptides for biomedical applications

Gao, Jie January 2013 (has links)
The self-assembly peptide hydrogels used as tissue culture scaffolds have drawn great attention in recent years. They have the advantages of natural polymer hydrogels including biocompatibility, biodegradability and the advantages of synthetic materials such as controlled structural properties and mechanical properties. Furthermore, the bioactive ligands which can promote bioactivities and control cell behaviours can be easily introduced to the peptide backbone through peptide synthesis. One particular self-assembly FEFEFKFK peptide was chosen in this project.FEFEFKFK peptide used in this project has been reported to self-assemble in solution, forming hydrogels with a 3D fibrous network structure above a critical gelation concentration. In this project, the self-assembly and gelation properties of FEFEFKFK peptide were further investigated, assessing the effect of pH and ionic strength on the self-assembly and gelation behaviour. The biomimetic nanofibrous hydrogels of FEFEFKFK were also assessed for their ability to support human dermal fibroblast cells. The protocols of gel preparation were developed for both 2 dimensional (2D) and 3 dimensional (3D) cell culture. A short peptide sequence homoarginine-glycine-aspartate (hRGD) has been introduced onto the amide end of the self-assembly peptide instead of bioactive ligand arginine-glycine-aspartate (RGD), creating hydrogels with a fibrous network with functionalised groups at the fibre surface. The functionalised peptide hydrogels enhanced cell adhesion on gel surface, with cell interaction assessed using various imaging and spectroscopic techniques. A preliminary 3D cell culture study also showed potential of these peptide gels to be used for encapsulated human dermal fibroblast cell studies.
32

Nanomechanical characterisation of cells and biocompatible substrates

Donno, Roberto January 2014 (has links)
Atomic Force Microscopy (AFM) is a powerful technique that has evolved from being a purely imaging tool to a one capable of providing multifunctional information, offering exciting new possibilities for nano-biotechnology. The project focuses on the use of the AFM in order to morphologically and mechanically characterise cells and biomaterials demonstrating how versatile this instrument can be. The project is divided in the following parts:Part 1: establishment of AFM protocols for the nano-scale morphological and mechanical characterisation of soft and hard macroscopic substrates and of objects such as adsorbed nanoparticles. In particular, these techniques were tested on:Hyaluronic acid (HA)/poly(ethylene glycol) (PEG)-based hydrogels, which provide an artificial model for the mechanical behaviour of some biological tissues and organs. The elastic modulus, measured via AFM nanoindentation, of these hydrogels increased by decreasing the concentration and the molecular weight (MW) of HA in the hydrogels. We have then verified a clear relation between the mechanical properties of the hydrogels and the proliferation of cells cultured on them. Chitosan nanoparticle (popular carriers for the delivery of negatively charged macromolecular payloads, e.g. nucleic acids) cross-linked with triphosphate (TPP) and then coated with HA. We focussed on the influence of chitosan molecular weight (Mw) on nanoparticle properties. HA was able to penetrate into the more porous nanoparticles (high MW chitosan), whereas it formed a corona around the more cross-linked ones (low MW chitosan). AFM imaging was used to highlight the presence of this corona and also to estimate its apparent thickness to about 20-30 nm (in dry state).Silicone substrates modified with amphiphilic triblock copolymer (Sil-GMMA) layers. Extensive AFM (imaging and nanoindentation) provided evidence that silicone substrates are prevalently coated with Sil-GMMA thin layers that exhibit negligible hydrophobic recovery during drying and change the surface from more to less cell-adhesive. Part 2: AFM mechanical characterisation of fibroblast-to-myofibroblast differentiation process. Fibroblasts were stimulated to differentiate into myofibroblasts by Transforming Grow Factor β1 (TGFβ1) on hard substrate. AFM force maps performed both on fibroblasts (untreated cells) and myofibroblasts (TGFβ1-treated cells) revealed a significant increase in the elastic modulus in treated cells. Part 3: preparation and AFM characterisation of poly(ethylene glycol) diacrylate/acrylate (PEGDA/A) hydrogels. Since the mechanical properties of the substrate plays a pivotal role in fibroblast-to-myofibroblast differentiation process, hydrogels were prepared and characterised at the macro/nanoscale with AFM indentation, providing us with cell-adhesive substrates that cover a wide range of elastic modulus. These substrates are optimal candidates for future investigations to better understand and possibly control the differentiation process.
33

Vliv struktury pěstebních školkařských substrátů na kvalitu produkce

Flaschková, Karolína January 2014 (has links)
The experimental plots Department of Breeding and Propagation of Ornamental Plants Gardening faculties in Lednice, was founded in 2013-year vegetation attempt. Experi-mentally evaluated the influence of substrates on the root system of ornamental plants. The experimental wood-fault was used Berberis thunbergii 'Golden Ring'. Experimental medium was creature-no RKS II substrate and the substrate for broadleaf blended with soil conditioner. The plants were evaluated morphological parameters such as plant height, number of shoots, the average length of shoots, root collar diameter and the volume of the root system.
34

Polymères et hydrogels à mémoire de forme ultrason-répondants

Li, Guo January 2016 (has links)
Résumé : Les polymères à mémoire de forme (PMFs) possèdent la capacité de changer leurs formes en réponse aux changements de conditions environnementales. Généralement, ces matériaux dans une forme permanente peuvent être manipulés et fixés dans une forme temporaire. Cette déformation temporaire reste stable jusqu'à ce qu’un stimulus soit appliqué pour déclencher la reprise de la forme permanente, induit par la libération de l'énergie élastique stockée dans la forme temporaire. Cette capacité de se souvenir des formes différentes dans des conditions différentes a suscité beaucoup d'intérêt de la part des scientifiques et des ingénieurs en raison de l'énorme potentiel des PMFs pour de nombreuses applications telles que les implants médicaux, appareils intelligents et actionneurs. Au cours des dernières années, la recherche et le développement sur les PMFs croissent rapidement. Toutefois, les méthodes de déclenchement pour la reprise de forme sont toujours limitées à l'utilisation d'une poignée de stimuli, y compris le chauffage direct, l'exposition à la lumière, au champ électrique, au champ magnétique, et à un changement de pH ou de l'humidité. Il y a encore un besoin de développer de nouvelles méthodes pour contrôler les PMFs. D'autre part, pour plus d'applications, il est intéressant d’avoir des PMFs combinés avec d'autres propriétés ou fonctionnalités stimuli-sensibles, telles que la conductivité, la perméabilité, la libération de médicaments ou l'auto-guérison. Le thème principal de cette thèse est de développer des PMFs avec un nouveau mécanisme de stimulation, à savoir, l'exposition aux ultrasons, et avec des fonctionnalités supplémentaires. Nous avons utilisé des ultrasons pour déclencher la reprise de forme des polymères, y compris l'usage des ultrasons focalisés de haute intensité (UFHI) pour un PMF amorphe et l'utilisation des ultrasons thérapeutiques pour un hydrogel biocompatible à mémoire de forme. L’utilisation des ultrasons pour contrôler la récupération de forme présente plusieurs avantages par rapport à d'autres stimuli, tels que l'activation à distance, le contrôle spatiotemporelle et, plus important encore, une pénétration profonde dans les tissus biologiques. Pour les PMFs multifonctionnels, nous avons développé des PMFs combinés avec la libération de médicaments ou la propriété d'auto-guérison. Les travaux de recherche accomplis dans cette thèse portent principalement sur deux sujets présentés dans quatre chapitres. La première partie est l'étude sur l’utilisation de l’UFHI pour contrôler la reprise de forme et, simultanément, la libération de médicaments à partir de PMFs solides. La deuxième partie est consacrée au développement de nouveaux hydrogels polymères possédant à la fois la capacité de mémoire de forme et la propriété d'auto-guérison, dont la mémoire de forme peut être déclenchée par un appareil à ultrasons thérapeutique. Dans notre première étude sur les PMFs contrôlés par l’UFHI, nous avons préparé un copolymère statistique composé de méthacrylate de méthyle et d’acrylate de butyle, P(MMA-BA), comme un PMF modèle. Sous l'exposition UFHI, le polymère peut être chauffé à plus de 100 °C en quelques secondes, permettant le controle de la mémoire de forme par les ultrasons. En faisant usage de ce chauffage rapide et localisé induit par l’UFHI, nous avons réalisé le contrôle spatiotemporel sur le processus de récupération de forme, démontrant que les différentes parties déformées peuvent être activées séparément pour entreprendre la récupération de forme, et que le processus de récupération de forme peut être interrompu à tout moment pour obtenir plusieurs formes intermédiaires stables. En outre, nous avons démontré que la libération contrôlée de médicaments peut être réalisée dans le processus de récupération de forme simultanément. En effet, le chauffage sous UFHI augmente la mobilité de chaînes ainsi que le coefficient de diffusion de la matrice polymère, ce qui entraîne la libération du composé chargé dans le PMF. Les caractéristiques intéressantes de l'utilisation de l’UFHI dans le contrôle de la mémoire de forme sont prometteuses pour une large gamme d'applications, notamment dans les domaines biomédicaux. Sur la base du premier projet, afin de mieux comprendre la mémoire de forme contrôlée par l’UFHI ainsi que la relation entre les propriétés des polymères et leurs comportements en réponse a l’UFHI, nous avons utilisé le P(MMA-BA) en tant que polymère modèle et préparé des échantillons en rajustant plusieurs paramètres ou propriétés, y compris l'épaisseur, la composition des deux monomères et la teneur en agent de réticulation. Les résultats indiquent que pour une puissance de sortie ultrasonore donnée, il existe une épaisseur optimale de l'échantillon pour l'effet thermique induit par l’UFHI et par conséquent le taux de récupération de forme. En outre, les résultats révèlent des effets significatifs de la composition de copolymère et de la densité de réticulation sur le comportement en mémoire de forme. Le plus important est qu'il y a une relation directe entre le paramètre viscoélastique de tangente de perte, tan δ, du polymère et l'élévation de la température induite par l’UFHI. Nous avons constaté qu’une valeur plus élevée de tan δ du polymère donne lieu à une élévation de température supérieure qui, à son tour, détermine le comportement de récupération de la forme sous UFHI. La conclusion de cette étude fournit une compréhension importante pour la conception et la préparation des PMFs UFHI-sensibles. Sur un autre front, nous avons développé deux méthodes simples et générales pour préparer l’hydrogel à base du poly(alcool de vinyle) (PVA) possédant à la fois la mémoire de forme et la propriété d'auto-guérison. Il est difficile de préparer un hydrogel à mémoire de forme en raison de la grande quantité d'eau présente dans le matériau. Lorsque le PVA est soumis à un traitement de congélation/décongélation, il peut former un hydrogel physique avec des micro-domaines cristallins jouant le rôle de points de réticulation. Une étude précédente de notre groupe a également trouvé que l’hydrogel physique du PVA a la capacité d'auto-guérison de manière autonome en raison de nombreux ponts-H entre les groupes hydroxyle dans le polymère. Basé sur ces connaissances, nous avons développé deux stratégies pour préparer des hydrogels à mémoire de forme. Dans le premier cas, nous avons mis en évidence qu’en ajoutant une petite quantité de mélamine comme agent de réticulation pour former de multiples liaisons-H avec le PVA, l'hydrogel résultant, étant mécaniquement renforcée, peut être déformé et la déformation peut ensuite être fixée par le traitement de congélation/décongélation. Cela signifie qu’une forme temporaire de l'hydrogel de PVA/mélamine peut être obtenue, et que la reprise de forme peut être déclenchée par chauffage au-dessus de la température de fusion des micro-domaines cristallins du PVA. Nous avons démontré, pour la première fois, que la récupération de forme d'un hydrogel polymère peut être déclenchée à l'aide d'un appareil à ultrasons thérapeutiques en vente dans les pharmacies pour le soulagement de la douleur. Cette réalisation est une étape importante vers des applications des PMFs contrôlés par les ultrasons. Dans la deuxième étude concernant les hydrogels à mémoire de forme, nous avons développé une nouvelle stratégie pour transmettre les propriétés recherchées de mémoire de forme et d'auto-guérison à des hydrogels réticulés chimiquement. Par voie d’interpénétration de deux réseaux, un réseau chimique du poly(éthylène glycol) (PEG) et un réseau physique du PVA, nous montrons que cet hydrogel de double-réseau est non seulement mécaniquement fort, mais aussi doté des propriétés de mémoire de forme et d’auto-guérison découlant du PVA. La forme temporaire, à nouveau, peut être obtenue en soumettant l'hydrogel déformé au traitement de congélation/décongélation. Par ailleurs, profitant de la structure à double-réseau, nous avons fait la première investigation sur l’effet de l’anisotropie sur le comportement d'auto-guérison dans un hydrogel allongé. Les résultats indiquent que l'efficacité d'auto-cicatrisation est différente selon la direction de mesure par rapport à la direction d’étirement de l’hydrogel (direction d'orientation de chaines), et que ce phénomène pourrait être issu de différentes densités des ponts-H le long de différentes directions dans un hydrogel anisotrope. / Abstract : Shape memory polymers (SMPs) have the ability to change their sizes or shapes in response to environmental condition changes. Usually these materials with an original (permanent) shape can be manipulated and fixed into a temporary and dormant shape. This temporary deformation is stable until a stimulus is applied to trigger the shape recovery of the material to go back to its original, stress-free condition, driven by the release of elastic energy stored during the temporary shape processing. The ability to remember different shapes at different conditions has arouse much interest from scientists and engineers because of the great potential of SMPs for applications in medical implants, smart devices, information recorders, actuators, and so on. In recent years there is a rapid development in this research field; versatile SMP systems with various formulations or functionalities have been produced. However, the shape recovery triggering methods are limited to the use of a handful of stimuli, including direct heating in most cases, and also exposure to light, electric field, magnetic field, pH change or moisture. There is still a need to develop novel triggering methods to control SMPs. On the other hand, for the development and utilization of SMPs in a broader application spectrum, producing polymer systems combining the shape memory property and other stimuli-responsive functionalities, such as conductivity, permeability, drug delivery or self-healing, is also of considerable interest. The main topic of this thesis is to develop SMPs with a new stimulation mechanism, namely, ultrasound, and with additional functionalities. We utilized ultrasound to trigger shape recovery of polymers, including the use of high intensity focused ultrasound (HIFU) to trigger an amorphous SMP and the use of therapeutic ultrasound to control a biocompatible shape memory hydrogel. Using ultrasound to control shape recovery has several advantages compared to other stimuli, such as remote activation, spatiotemporal control and, more importantly, deep penetration into biological tissues. For SMPs with additional functionalities, we developed SMP systems combined with drug delivery or self-healing properties. The research work s accomplished in this thesis mainly covers two topics, reported in four chapters. The first part is the investigation of HIFU in triggering the shape recovery and, simultaneously, controlling the drug delivery from polymers in the solid state. The second part is focused on the development of new polymer hydrogels possessing both the shape memory and self-healing functionalities and whose shape memory can be controlled using a therapeutic ultrasound device. In our first study regarding ultrasound-controlled SMPs, we prepared an amorphous random copolymer poly(methyl methacrylate-co- butyl acrylate) (P(MMA-BA)) as a model SMP because both its shape fixity ratio and shape recovery ratio are nearly ~ 100%. Under HIFU exposure the polymers can be heated to above 100 ° C within several seconds while the environmental temperature increases only moderately. This rapid and prominent ultrasound thermal effect makes it possible to control SMPs. By making use of HIFU-induced localized heating, we have realized spatiotemporal control over the shape recovery process, showing that different parts of deformed SMP can be triggered to undergo shape recovery separately, and that the shape recovery process can be halted at will to obtain several intermediate shapes. In addition, we have demonstrated that controlled drug release can be achieved in the shape recovery process simultaneously. Upon increase of the temperature chain mobility as well as the diffusion coefficient of the polymer matrix are both enhanced, resulting in release of loaded compound. The appealing features of using HIFU to trigger polymer shape recovery hold promise for a wide range of applications, especially in biomedical fields. On the basis of the first project, in order to further understand HIFU-controlled shape memory and the relationship between polymer properties and their behaviors under HIFU, we used P(MMA-BA) as a model polymer and adjusted several properties, including thickness, monomer composition and crosslinker content, to investigate the temperature rise and shape recovery behavior of the polymer under HIFU. The results indicate that for a given ultrasound output power, there is an optimal sample thickness for the ultrasound-induced thermal effect and thus the shape recovery ratio. Moreover, the results reveal significant effects of the copolymer composition and the crosslinking density on the shape recovery behavior, showing that there is a close relationship between the viscoelastic parameter loss tangent, tan δ, of the polymer and the HIFU-induced temperature rise. We found that a higher tan δ value of the polymer at the operating temperature gives rise to a greater temperature rise rate that, in turn, determines the shape recovery behavior under HIFU. The finding of this study provides useful guiding rules for the design and preparation of HIFU-responsive SMPs. On another front, we developed two simple and general methods to prepare poly(vinyl alcohol) (PVA) - based s hape memory hydrogels possessing both the shape memory and self-healing properties. It is challenging to prepare shape memory hydrogels because of the large amount of water present in the material. When PVA is subjected to freezing/thawing treatment, it can form a physical hydrogel with cryst allized micro-domains acting as crosslinks; a previous study of our group also found that such PVA hydrogel has the ability to autonomously self-heal due to the extensive H-bonding between hydroxyl groups on PVA chains. On the basis of the above knowledge, we developed two strategies to prepare shape memory PVA hydrogels. In the first case, we show that by adding a small amount of melamine as a small-molecule crosslinker to form multiple H-bonds with PVA, the mechanicall y enhanced hydrogel can be deformed, and the deformation can be subsequently fixed when the deformed hydrogel is treated with freezing/thawing due to the formed network structure. This means that temporary shape of the PVA/melamine hydrogel can be obtained, and that the shape recovery can be triggered by heating the hydrogel above the melting temperature of PVA crystalline micro-domains formed during the freezing/thawing treatment. We went to demonstrate, for the first time, that the shape recovery of a polymer hydrogel can be triggered using a therapeutic x ultrasound device on sale in drugstores for pain relief. This achievement is a significant step forward towards applications of ultrasound-controlled SMPs. In the second study concerning shape memory hydro gels, we further developed a new strategy to impart the shape memory and self-healing functionalities to chemically crosslinked polymer hydrogels. By interpenetrating a poly(ethylene glycol) (PEG) chemical network in the PVA physical network, we show that the shape memory property is enabled in this strong and tough double-network hydrogel, together with partial self-healing capability arising from PVA. The temporary shape again can be obtained using the freezing/thawing treatment on deformed hydrogel; high er shape fixation can be achieved using repeated freezing/thawing cycles as stable crystalline micro-domains of PVA with higher crystallinity are formed in the hydrogel. Moreover, taking advantage of the double-network structure, we made the first investigation on the anisotropic self-healing behavior in a n elongated hydrogel. The results indicate that the self-healing efficiency is different between the directions along or perpendicular to polymer chain orientation direction, and that this phenomenon could be originated from a difference in H-bonding density in the anisotropic hydrogel. / 摘要 : 形状记忆聚合物是刺激响应聚合物中的一类,他们具有响应外界环境刺激而改变自身形状的能力。通常情况下,这些材料的初始形状可以在特定环境下被改变并固定为其他临时形状,这些固定下来的临时形状在通常情况下是稳定的,只有当对其被施加一外界刺激之后,材料响应这一刺激并激活其链段运动能力,在之前编程过程中储存的弹性能的作用下材料最终回复到其最初的形状。这一具有“在不同环境下具有不同形状”能力的材料引起了科研人员们的巨大兴趣,因为这些材料在如智能器件,信息记录,传感器等许多领域都有着巨大的应用前景。近年来形状记忆聚合物领域有着巨大的发展,许多具有不同构成及功能的形状记忆材料被报道。然而,形状记忆材料的回复手段迄今为止只局限于少数几种刺激源,如光,电,磁场,pH,溶剂等。刺激手段的局限性正逐渐成为制约形状记忆在更广阔领域发挥作用的一个问题。另一方面,制备同时具有其他功能的形状记忆聚合物,如同时具有导电性,渗透性,药物释放或自修复等功能的形状记忆聚合物,也是形状记忆研究领域的一个热门方向。本论文的研究主旨是制备同时具有其他功能的新型刺激响应形状记忆聚合物,即超声响应的形状记忆聚合物。我们实现了聚焦超声装置作为刺激源,实现了无定型形状记忆聚合物定时,定位可控的形状记忆回复过程,以及利用理疗超声实现了形状记忆水凝胶的形状回复。与其他刺激手段相比,超声波具有几个方面的优势,例如,可以远程控制形状记忆回复过程,可以实现不同部位分别回复的定位可控形状记忆,形状记忆过程中的可控性,以及在生物组织中高穿透性等,因而这一手段在生物医用领域具有巨大前景。同时,我们同时将其他功能引入到了形状记忆聚合物体系中,包括药物的控制释放,与自修复性能等。本论文中所涉及的研究工作包括两个主题,分别在4章中进行论述。第一个主题是聚焦超声响应的固体形状记忆聚合物的形状记忆与药物释放行为。第二个主题是制备具有超声响应性的同时具有形状记忆与自修复功能的水凝胶。 在第一个关于超声响应形状记忆聚合物的研究工作中,我们制备了聚(甲基丙烯酸甲酯-co-丙烯酸丁酯)无归共聚物作为模型形状记忆聚合物,因为它的形状固定率 与形状回复率均接近100%。在聚焦超声的作用下,所用形状记忆聚合物可以在几十秒内被加热至100 °C以上,同时将材料周围的环境温度保持在一相对稳定的范围内。这一快速且显著的超声热效应使其用于刺激形状记忆聚合物成为可能。通过利用聚焦超声的局部加热效应,我们实现了定时定位可控的形状记忆过程:不同部位的形变可以分别利用超声刺激进行回复;单一形状回复过程也可被任意控制,获得回复过程中的多种临时形状。此外,我们还证明了药物控制释放可以与形状回复过程在在超声刺激下同时实现。聚焦超声的这些特点使其在许多相关领域,尤其是生物医学领域,有着巨大的应用前景。 在第一个项目的基础上我们进一步研究了聚合物在聚焦超声作用下的形状记忆行为,以及聚合物自身性质与其在聚焦超声作用下的升温效应及形状记忆行为的关系。我们使用聚(甲基丙烯酸甲酯-co-丙烯酸丁酯)作为模板聚合物,通过改变聚合物的厚度,聚合单体比例以及交联剂含量等,来研究这些性质对聚合物在聚焦超声下行为的影响。结果表明,在特定功率的超声作用下,聚合物存在着一最佳厚度值来达到最强的热效应以及最佳的形状回复率。此外,聚合物的单体组成以及交联剂含量对其在超声下的行为有显著的影响,且聚合物的粘弹性系数损耗因子(tan δ)与其超声响应行为有着密切联系,损耗因子(tan δ)值的大小决定了聚合物在某一特定温度值时的升温速率以及形状回复速率。这些结果将为设计与制备超声响应形状记忆聚合物提供重要参考。 另一方面,我们使用两种不同的方法制备了同时具有形状记忆与自修复功能的聚乙烯醇形状记忆水凝胶。与固体形状记忆聚合物相比,制备形状记忆水凝胶的难点在于大量水分子存在于水凝胶体系内。聚乙烯醇的水凝胶可以通过冷冻解冻循环工艺使水凝胶内形成微小的结晶相来制备。在我们之前的工作中,我们发现冷冻解冻循环方法制备的聚乙烯醇水凝胶具有优良的自修复性能,在材料形成断裂面之后水凝胶中聚乙烯醇分子链上的羟基可以通过再次形成氢键作用来修复断面。本论文中我们开发了两种不同的方法来制备聚乙烯醇形状记忆水凝胶。在第一种方法中,我们引入了一种小分子交联剂,它可以通过与聚乙烯醇分子链形成多重氢键来形成水凝 胶,同时当这种水凝胶变形后,形变可以通过冷冻解冻循环来固定。通过加热水凝胶使其温度升高至微晶区域融融温度以上,可诱导水凝胶回复至其初始形状。此外,我们还证明了形变后的聚乙烯醇形状记忆水凝胶的形状回复过程可以通过一种在药店中购买的,用于治疗肌肉疼痛的理疗超声器械来刺激实现。这一成果是超声刺激形状记忆聚合物在应用方向的巨大进步。 在另一工作中,我们研究出了一种制备具有形状记忆与自修复性能的化学交联水凝胶的新方法。通过在聚乙烯醇水凝胶中引入一化学交联网络,可形成具有互穿网络结构的水凝胶,并利用这一双网络结构,我们实现了形状记忆行为以及基于聚乙烯醇的自修复性能。形变通过冷冻解冻循环来固定,重复这一循环可形成更加稳定的微晶区域从而获得较高的形状固定率。此外,通过利用水凝胶的双网络结构,我们首次研究了拉伸形变后的水凝胶各向异性的自修复行为,我们发现在沿拉伸方向与垂直方向上具有不同的自修复效率,造成这一结果原因可能与水凝胶基体在这两个方向上氢键密度的不同有关。
35

Cell-compatible multi-functional crosslinker-based hydrogels for tissue engineering

Yu, Lianlian Jr 08 January 2015 (has links)
The thesis showed preliminary evaluation of novel biodegradable and biocompatible agmatine-containing PAA crosslinkers. Hydrogels fabricated by this crosslinker can obtain controllable stiffness and excellent cell adhesion. The PAA contained thermo-sensitive hydrogel reported here is first employed as filler for depressed defects in rats. Results showed that such hydrogel can be injectable and biocompatible, might become a new material in plastic surgery in the clinic. The thesis also demonstrated a novel macro gels with self-healing capability and biocompatibility. The reversible photodimerization and photocleavage reactivity of coumarin has been successfully imparted to the polymer. / February 2015
36

In Situ Cross-Linking of Poly(vinyl alcohol)/Graphene Oxide–Polyethylene Glycol Nanocomposite Hydrogels as Artificial Cartilage Replacement: Intercalation Structure, Unconfined Compressive Behavior, and Biotribological Behaviors

Meng, Y., Coates, Philip D., Twigg, Peter C. 16 January 2018 (has links)
Yes / Poly(vinyl alcohol) (PVA)/graphene oxide (GO) nanocomposite hydrogel as artificial cartilage replacement was prepared via freezing/thawing method by introducing polyethylene glycol (PEG). Efficient grafting of PVA molecules onto GO surface was realized by formation of hydrogen bonding, resulting in exfoliation and uniform distribution of GO in PVA matrix. By introduction of appropriate content of GO, the increased crystalline regions of PVA and the formation of GO centered second network structure led to the increase of the storage modulus and effective cross-linking density. And therefore the mechanical strength and toughness of the composite hydrogel were improved simultaneously: the tensile strength, elongation at break, and compressive modulus showed approximately 200%, 40%, and 100% increase of the neat PVA hydrogel. Besides, for the sample with 1.5 wt % GO content, the maximum force retention and dynamic stiffness were improved remarkably in the process of sinusoidal cyclic compression, and the compressive relaxation stress also increased significantly, indicating the enhancement of the compressive recoverable and antifatigue ability, and resistance to compressive relaxation by formation of high load-bearing, dense, and reinforcing double network structure. Moreover, more than 50% decrease in coefficient of friction was obtained for the composite hydrogel, and the worn surface presented relative smooth and flat features with sharp decreasing furrow depth, confirming the lubrication effect of GO-PEG. This study shows promising potentials in developing new materials for cartilage replacement with simultaneous combination of high mechanical property and excellent lubrication.
37

Biomimetische Materialabscheidung in funktionalisierten Hydrogelmatrices / Biomimetic materials synthesis in functionalized hydrogel matrices

Graßmann, Olaf January 2003 (has links) (PDF)
In Analogie zu natürlichen Proteingerüsten wurden poly-Acrylamid-Hydrogele mit polaren funktionellen Gruppen modifiziert, die in der Biomineralisation eine wichtige Rolle spielen. Durch gezielte Variation der Synthesebedingungen ist es möglich, Art, Gehalt und räumliche Anordnung der ionischen Funktionalitäten in den Copolymernetzwerken einzustellen. Die Hydrogele wurden in einer Doppeldiffusionsanordnung zur Mineralisation von CaCO3 eingesetzt und die Ergebnisse mit Gelatinegel als natürlichem Reaktionsmedium verglichen. Entgegen der ursprünglichen Erwartungen konnten in Gelatinegel keine Hinweise auf molekular-chemische Wechselwirkungen zwischen dem Proteinnetzwerk und den Mineralisationsprodukten nachgewiesen werden. Im Verlauf der Kristallisation wird die organische Matrix lediglich passiv inkorporiert. Allerdings bewirkt die heterogene Verteilung in den hantelähnlichen Kompositpartikeln die Auffächerung der Wachstumsfronten, so daß sich im Verlauf des Kristallwachstums eine Zwillingsstruktur der makroskopischen Produkte ausbildet. Der Netzwerkeffekt der organischen Matrix wird jedoch von dem lokalen chemischen Milieu in dem Gelkörper überlagert. Die Ähnlichkeit der Produkte mit natürlichen Biomineralen weist darauf hin, daß auch Biomineralisationsprozesse lediglich Folge eines unspezifischen chemischen Milieus sein können. Deutliche Analogien zu natürlichen Biomineralisationsprodukten wurden bei der Materialabscheidung in unfunktionalisierten poly-Acrylamid-Hydrogelen beobachtet. Die oktaedrische Form der Mineralisationsprodukte ist untypisch für Calcit und kennzeichnet einen spezifischen Kristallisationsmechanismus. Obwohl die Aggregate aus zahlreichen rhomboedrischen Calcit-Bausteinen zusammengefügt sind, weisen die makroskopischen Produkte eine gestörte einkristalline Struktur auf. Das große Mosaik der Röntgenbeugungsmaxima ist auf die Fehlorientierung kohärent streuender Bereiche zurückzuführen. Basierend auf den Untersuchungsergebnissen wurde ein Aggregationsmodell postuliert: Die simultane orientierte Verwachsung rhomboedrischer Untereinheiten sowie das Flächenwachstum dieser Bausteine führt zu der oktaedrischen Morphologie der Aggregate. Die prinzipielle Analogie der Mineralisationsprodukte mit vielen Biomineralen richtet den Blick auf die Frage, inwieweit alleine die physikalische Struktur extrazellulärer Matrices eine wichtige Rolle bei der Biomineralisation spielt. Die Ergebnisse der Mineralisationsversuche in Sulfonat-funktionalisierten Hydrogelen untermauern den dominanten Effekt der Netzwerkstruktur. Die stark polaren funktionellen Gruppen modifizieren lediglich die Morphologie der Aggregate, führen aber nicht zu einer grundlegenden Veränderung der Nukleation und des Wachstumsmechanismus. Demgegenüber zeigt sich in Carboxylat-funktionalisiertem poly-Acrylamid eine deutlich erhöhte Keimdichte und eine intermediäre Stabilisierung von Vaterit. Dieser spezifische Einfluß der Carboxylatgruppen auf die Keimbildung relativiert das oft für Biomineralisationsvorgänge postulierte ionotrope Nukleationsmodell und unterstreicht die Notwendigkeit einer stereochemischen Verwandtschaft zwischen den organischen Funktionalitäten und der entstehenden Kristallphase. Besonders deutlich wird die Bedeutung der Carboxylatgruppen bei der Mineralisation in Gelmatrices, die mit poly-L-Aspartat versetzt wurden. Die Wirkungsweise des Gelatinegels sowie der Kompartimenteffekt des poly-Acrylamid wird durch die Wechselwirkung des Additivs mit der anorganischen Phase überkompensiert: Im Verlauf der Doppeldiffusion entstehen in den untersuchten Hydrogelen Vaterit-Agglomerate, die permanent stabilisiert sind. Da die Kristallisationsmechanismen der reinen Gelmatrices rhomboedrische Calcit-Keimkristalle voraussetzen, werden die Netzwerkeffekte durch die Bildung sphärischer Vaterit-Partikel außer Kraft gesetzt. Möglicherweise beruht auch die Morphogenese natürlicher Biomineralisationsprodukte auf einem Wechselspiel des physikalischen Netzwerkeffekts einer extrazellulären Matrix und der Wirkungsweise modifikationsselektiver Makromoleküle. In den unterschiedlichen Hydrogelmatrices sind, trotz einheitlicher Versuchsbedingungen, drei grundsätzlich verschiedene Kristallisationsmechanismen des Calcits wirksam: In Gelatinegel kommt es zu lagenweisem Wachstum, die oktaedrischen Produkte aus poly-Acrylamid gehen auf die Aggregation vorgeformter Untereinheiten zurück und in Carboxylat-funktionalisierten Netzwerken entstehen sphärolithische Kristalle. Diese Ergebnisse belegen auf anschauliche Weise eine Wechselwirkung der organischen Matrix mit der anorganischen Phase. In natürlichen Systemen wird dieser Effekt durch komplexe genetische und zelluläre Prozesse gesteuert, die sich in-vitro nicht simulieren lassen. Allerdings weisen die Analogien der Mineralisationsversuche mit natürlichen Biomineralisationsprozessen auf vergleichbare Prinzipien hin. Demzufolge können die Mechanismen der Biomineralisation verhältnismäßig trivial sein, allein die biologische Reproduzierbarkeit der Materialabscheidung setzt ein hohes Maß an genetischer Steuerung voraus. Von einer weiterführenden Untersuchung der Mechanismen, die der Biomineralisation zugrunde liegen, sind wesentliche Impulse für eine biomimetische Materialsynthese zu erwarten. Wie die spezifische Wechselwirkung der Carboxylatgruppen mit der Kristallphase nahelegt, sollten die molekular-chemischen Effekte polarer funktioneller Gruppen im Mittelpunkt des Interesses stehen. Für ein besseres Gesamtverständnis muß daher eine Brücke zwischen der "mesoskopischen" Wirkung gelartiger Medien und entsprechenden Vorgängen auf atomarer Skala geschlagen werden. Die atomaren Mechanismen bei der Kristallisation von CaCO3 in Gegenwart verschiedener Additive werden in einem Partnerprojekt an der Universität Münster untersucht [Set03]. Die Zusammenführung dieser beiden Sichtweisen läßt ein tiefgreifendes Verständnis der allgemeinen Prinzipien der Biomineralisation erwarten. / By analogy to natural protein networks poly-acrylamide hydrogels were modified with polar functional groups, that are relevant for biomineralization processes. The copolymer synthesis is modified in order to adjust the type, content and spatial arrangement of ionic functional groups within the network. CaCO3 particles are grown in these matrices using a counter-diffusion arrangement. The results are compared to the mineralization in a natural reference medium of gelatin hydrogel. Although the microstructural analysis revealed a heterogeneous intergrowth of gelatin and inorganic phases within the particles, the composite growth is rather a consequence of the local chemical environment. The incorporated organic matrix, however, interacts with the crystal faces of a rhombohedral nucleus. For steric reasons, the lamellar assembly of the organic and inorganic material leads to twinning of the macroscopic products in the course of crystal growth. The analogy of the dumbbell-shaped composite particles to some biominerals suggests that biological crystallization may take place under comparable conditions. The crystal aggregates isolated from unfunctionalized poly-acrylamide hydrogel show striking similarities to natural biomineralization products. The octahedral morphology of the aggregates is unexpected for calcite crystals. Although the aggregates consist of independent rhombohedral calcite building blocks, the structure of the macroscopic products corresponds to distorted single crystals. The large mosaic spread of the X-ray diffraction spots is a consequence of the misalignment of coherent scattering domains within the macrocrystal structure. Based on the results a specific aggregate growth model is proposed: The observed octahedral morphology is attributed to the simultaneous oriented attachment of rhombohedral subunits and the layer-by-layer growth of these building blocks. Because of the general analogy of the hydrogel-grown aggregates with many biominerals the question arises, whether the physical structure of extracellular matrices is important for biomineralization as well. Experiments in copolymers containing sulfonate groups confirm the dominant effect of the network structure for the mineralization within hydrogel matrices. The morphology of the aggregates is just slightly altered by the highly polar functional groups. The aggregation-based growth of the products corresponds to the mechanism observed for the mineralization in unfunctionalized poly-acrylamide. On the other hand, the crystallization in matrices containing carboxylate groups is fundamentally different. Within these hydrogels the density of nucleation is increased and vaterite is intermediatly stabilized. This specific influence of the functional groups on the crystallization of CaCO3 extends the commonly proposed ionotropic model of biomineral nucleation. Within the biomimetic model system the mineralization is highly affected by the stereochemical matching of organic functional groups and the inorganic crystal phase. The significance of the carboxylate groups for the mineralization of CaCO3 is emphasized by the experimental results using hydrogels containing poly-L-aspartate. The addition of poly-L-aspartate to the pore solution of either gelatin or poly-acrylamide hydrogel appears to overcompensate the physical properties of the organic matrix, leading to permanently stabilized vaterite agglomerates. Since the crystal growth mechanism in pure hydrogel matrices is based on rhombohedral calcite nuclei, the morphogenetic effect of the physical hydrogel structure is suspended due to formation of spherical vaterite particles. Possibly, the interaction between the network structure of extracellular matrices and the polymorph selective effect of organic macromolecules is relevant for the morphogenesis in biological systems as well. Three fundamentally different mechanisms of crystal growth are observed for the mineralization in the matrices used: Corresponding to classical models of crystallization the products isolated from gelatin hydrogel grow by a layer-by-layer mechanism, assembly of preformed building blocks within unfunctionalized poly-acrylamide leads to octahedral aggregates and within networks containing carboxylate groups spherolitic crystal growth is observed. These results obviously prove extensive interactions between the organic matrix and the inorganic phase. In natural systems these effects are adjusted by complex genetic and cellular processes, that are not accessible for in-vitro methods. However, the analogies of the experiments with biomineralization processes indicate comparable principles. Whereas the biological reproducibility of biomineralization implies a high degree of genetic control, the underlying mechanisms could be rather trivial. It is expected that further investigations of the mechanisms of biomineralization will provide fundamental stimuli for the field of biomimetic materials synthesis. As indicated by the specific interactions of carboxylate groups and the evolving crystal phase, further research should focus on the molecular-chemical influence of polar functional groups. To unravel the mechanisms of biomineralization the described mesoscopic effects of the hydrogel matrices and the respective processes at an atomar scale should be combined. The molecular-chemical mechanisms in the course of CaCO3 crystallization in aqueous solutions containing various organic additives are studied within an associate project at the University of Münster [Set03]. The combination of both approaches should provide an improved understanding of the general principles of biomineralization.
38

Development of Dual Setting Cement Systems as Composite Biomaterials with Ductile Properties / Entwicklung dual härtender Zemente als Komposit-Biomaterialien mit duktilen Eigenschaften

Rödel, Michaela January 2019 (has links) (PDF)
Synthetic bone replacement materials have their application in non-load bearing defects with the function of (re-)construction or substitution of bone. This tissue itself represents a biological composite material based on mineralized collagen fibrils and combines the mechanical strength of the mineral with the ductility of the organic matrix. By mimicking these outstanding properties with polymer-cement-composites, an imitation of bone is feasible. A promising approach for such replacement materials are dual setting systems, which are generated by dissolution-precipitation reaction with cement setting in parallel to polymerization and gelation of the organic phase forming a coherent hydrogel network. Hereby, the high brittleness of the pure inorganic network was shifted to a more ductile and elastic behavior. The aim of this thesis was focused on the development of different dual setting systems to modify pure calcium phosphate cements’ (CPCs’) mechanical performance by incorporation of a hydrogel matrix. A dual setting system based on hydroxyapatite (HA) and cross-linked 2-hydroxyethyl methacrylate (HEMA) via radical polymerization was advanced by homogenous incorporation of a degradable cross-linker composed of poly(ethylene glycol) (PEG) as well as poly(lactic acid) (PLA) with reactive terminal methacrylate functionalities (PEG-PLLA-DMA). By integration of this high molecular weight structure in the HEMA-hydrogel network, a significant increase in energy absorption (toughness) under 4-point bending testing was observed. An addition of only 10 wt% hydrogel precursor (referred to the liquid phase) resulted in a duplication of stress over a period of 8 days. Additionally, the calculated elasticity was positively affected and up to six times higher compared to pure HA. With a constantly applied force during compressive strength testing, a deformation and thus strain levels of about 10 % were reached immediately after preparation. For higher degradability, the system was modified in a second approach regarding organic as well as inorganic phase. The latter component was changed by brushite forming cement that is resorbable in vivo due to solubility processes. This CPC was combined with a hydrogel based on PEG-PLLA-DMA and other dimethacrylated PEGs with different molecular weights and concentrations. Hereby, new reaction conditions were created including a shift to acidic conditions. On this ground, the challenge was to find a new radical initiator system. Suitable candidates were ascorbic acid and hydrogen peroxide. that started the polymerization and successful gelation in this environment. These highly flexible dual set composites showed a very high ductility with an overall low strength compared to HA-based models. After removal of the applied force during compressive strength testing, a complete shape recovery was observed for the samples containing the highest polymeric amount (50 wt%) of PEG-PLLA-DMA. Regarding phase distribution in the constructs, a homogenously incorporated hydrogel network was demonstrated in a decalcifying study with ethylenediaminetetraacetic acid. Intact, coherent hydrogels remained after dissolution of the inorganic phase via calcium ion complexation. In a third approach, the synthetic hydrogel matrix of the previously described system was replaced by the natural biopolymer gelatin. Simultaneously to brushite formation, physical as well as chemical cross-linking by the compound genipin was performed in the dual setting materials. Thanks to the incorporation of gelatin, elasticity increased significantly, in which concentrations up to 10.0 w/v% resulted in a certain cohesion of samples after compressive strength testing. They did not dissociate in little pieces but remained intact cuboid specimens though having cracks or fissures. Furthermore, the drug release of two active pharmaceutical ingredients (vancomycin and rifampicin) was investigated over a time frame of 5 weeks. The release exponent was determined according to Korsmeyer-Peppas with n = 0.5 which corresponds to the drug liberation model of Higuchi. A sustained release was observed for the antibiotic vancomycin encapsulated in composites with a gelatin concentration of 10.0 w/v% and a powder-to-liquid ratio of 2.5 g/mL. With respect to these developments of different dual setting systems, three novel approaches were successfully established by polymerization of monomers and cross-linking of precursors forming an incorporated, homogenous hydrogel matrix in a calcium phosphate network. All studies showed an essential transfer of mechanical performance in direction of flexibility and bendability. / Synthetische Knochenersatzmaterialien finden ihre Anwendung im Bereich nicht lasttragender Defekte zum Wiederaufbau und Ersatz von defekter oder verlorener Knochensubstanz. Diese stellt aufgrund ihres Aufbaus aus mineralisierten Kollagen-Fibrillen selbst ein biologisches Komposit-Material dar, welches die mechanische Festigkeit des Minerals mit der Duktilität der organischen Matrix kombiniert. Eine Nachahmung dieser herausragenden Eigenschaften des Knochens wird im Sinne eines Ersatzmaterials durch geeignete Polymer-Zement-Komposite ermöglicht. Ein vielversprechender Ansatz für solche Komposite sind hierbei dual härtende Systeme, bei denen die Lösungs-Fällungs-Reaktion der Zementbildung parallel zur Polymerisation oder Gelierung der organischen Phase zu einem kohärenten Hydrogelnetzwerk abläuft. Die hohe Sprödigkeit und Bruchanfälligkeit rein anorganischer Netzwerke sollte dabei durch die Integration elastischer Polymerkomponenten hin zu mehr Flexibilität und Elastizität modifiziert werden. In der vorliegenden Arbeit wurden verschiedene dual härtende Hybrid-Materialien entwickelt, um etablierte Calciumphosphatzemente durch Einbringen von zusätzlicher Hydrogel-Matrizes bezüglich ihrer mechanischen Eigenschaften zu modifizieren. In ein dual härtendes System aus Hydroxylapatit (HA) und radikalisch vernetztem 2-Hydroxyethlymethacrylat (HEMA), wurde ein abbaubarer Cross-linker aus Polyethylenglykol (PEG) und Polymilchsäure (PLA)-Einheiten homogen inkorporiert, der mittels einer Reaktion der terminalen Methacrylatfunktionen (PEG-PLLA-DMA) zur Ausbildung der Vernetzungen führte und mittels PLLA hydrolytisch labile Esterbindungen ins System integrierte. Durch Einbringen dieser hochmolekularen Polymere in das engmaschige HEMA-Hydrogelnetzwerk kam es zu einer signifikanten Erhöhung der Energieaufnahme des Konstruktes unter 4-Punkt-Biegebelastung im Vergleich zum bereits etablierten System. Durch Zusatz von 10 Gew% hochmolekularem Hydrogel Präkursor (bezogen auf die flüssige Phase) konnte über einen Zeitraum von acht Tagen ein zweifach höherer Bruchwiderstand erhalten werden, verbunden mit einer bis zu sechsfach höheren Elastizität gegenüber reinem HA Zement. Zur Steigerung der Bioabbaubarkeit wurde in einem zweiten Ansatz durch Austausch der anorganischen Komponente mit einem in vivo leichter resorbierbaren Bruschit Zement das dual härtende System modifiziert. Dabei wurden dimethacrylierte PEGs verschiedener Molekulargewichte in unterschiedlichen Konzentrationen mit dem Zementpulver kombiniert. Die Reaktionsbedingungen im sauren Milieu erforderten den Austausch des radikalischen Initiator-Systems, wobei sich eine Kombination aus Ascorbinsäure und Wasserstoffperoxid als geeignet erwies. Die so erhaltenen dual härtenden Komposite zeigten eine sehr hohe Duktilität und Flexibilität bei insgesamt niedriger Festigkeit im Vergleich zu HA-basierenden Systemen. So fand im Druckversuch eine vollständige Relaxation zu den Ausgangsabmessungen des Prüfkörpers bei einem hohen Polymeranteil an PEG-PLLA-DMA (50 Gew%) statt. Die homogene Verteilung der inkorporierten Polymerphase wurde mittels Decalcifizierung durch Ethylendiamintetraessigsäure bewiesen. Hierbei wurden durchgängige Hydrogele nach Herauslösen der anorganischen Phase durch Komplexierung von Calcium-Ionen erhalten. Abschließend wurde die auf synthetischen Polymeren basierende Hydrogel-Matrix durch das natürliche Biopolymer Gelatine ersetzt. Neben der Bruschit-bildenden Zement-Reaktion wurde das Polymernetzwerk sowohl durch eine physikalische Gelierung als auch eine chemische Vernetzung mit Genipin stabilisiert. Durch die zusätzliche organische Phase wurden die Eigenschaften des Zementes hinsichtlich Elastizität erhöht, wobei bei einer Gelatine-Konzentration von 10,0 Gew% eine erneute Kohäsion der Prüfkörper nach mechanischer Druckbelastung beobachtet werden konnte. Diese zerfielen nicht in einzelne Teile, sondern wurden trotz Auftreten von Rissen als weitestgehend intakte Quader zusammengehalten. Weiterhin wurde die Wirkstoff-Freisetzung zweier antibiotisch aktiver Substanzen (Vancomycin und Rifampicin) über einen Zeitraum von fünf Wochen untersucht. Mittels Bestimmung des Freisetzungsexponenten nach Korsmeyer-Peppas konnte eine verzögerte Wirkstoffliberation für das Antibiotikum Vancomycin gemäß Wurzel-t-Kinetik (Higuchi-Modell) mit n = 0,5 für ein Pulverflüssigkeitsverhältnis von 2,5 g/mL bei einer Gelatinekonzentration von 10,0 Gew% erhalten werden. Im Hinblick auf die Entwicklung verschiedener Formulierungen als dual härtende Systeme wurden in der vorliegenden Arbeit drei Varianten etabliert, die durch Polymerisation von Monomeren beziehungsweise Hydrogel-Präkursoren zu einer inkorporierten, homogenen Hydrogel-Matrix im Calciumphosphatnetzwerk führten. Bei allen Ansätzen wurde ein wesentlicher Transfer der mechanischen Eigenschaften in Richtung Flexibilität und Biegsamkeit erzielt.
39

Studies On Polymer Hydrogel Electrolytes For Application In Electrochemical Capacitors And Direct Borohydride Fuel Cells

Choudhury, Nurul Alam 10 1900 (has links)
In recent years, electrochemical capacitors have emerged as devices with the potential to enable major advances in electrical energy storage. Electrochemical capacitors (ECs) are akin to conventional capacitors but employ higher surface-area electrodes and thinner dielectrics to achieve larger capacitances. This helps ECs to attain energy densities greater than those of conventional capacitors and power densities greater than those of batteries. Akin to conventional capacitors, ECs also have high cycle-lives and can be charged and discharged rapidly. But ECs are yet to match the energy densities of mid to high-end batteries and fuel cells. On the basis of mechanism involved in the charge-storage process, ECs are classified as electrical double-layer capacitors (EDLCs) or pseudocapacitors. Charge storage in EDLCs and pseudocapacitors is brought about by non-faradaic and faradaic processes, respectively. Faradaic process, such as an oxidation-reduction reaction, involves the transfer of charge between electrode and electrolyte. By contrast, a non-faradaic process does not use a chemical mechanism and charges are distributed on surfaces by physical processes that do not involve any chemical reaction. ECs employ both aqueous and non-aqueous electrolytes in either liquid or solid form, the latter providing the advantages of freedom from leakage of any liquid component, compactness, reliability and large operating potential-window. In the literature, polymer electrolytes are the most widely studied solid electrolytes. Complexation of functional-groups of certain polymers with cations results in the formation of polymer-cation complexes commonly referred to as solid-polymer electrolytes (SPEs). Mixing a polymer with an alkali metal salt dissolved in an organic solvent result in the formation of a polymer gel electrolyte. Organic solvents with low molecular-weights, such as ethylene carbonate and propylene carbonate, employed in polymer gel electrolytes are commonly referred to as plasticizers. When water is used as a plasticizer, the polymer electrolyte is called a polymer hydrogel electrolyte. Part I of the thesis is directed to studies pertaining to Polymer Hydrogel Electrolytes for Electrochemical Capacitors and comprises four sections. After a brief survey of literature on polymer hydrogel electrolytes employed in ECs in Section I.1, Section I.2 of Part I describes the studies on electrochemical capacitors employing cross-linked poly (vinyl alcohol) hydrogel membrane electrolytes with varying perchloric acid dopant concentration. Acidic poly (vinyl alcohol) hydrogel membrane electrolytes (PHMEs) with different perchloric acid concentrations are prepared by cross-linking poly (vinyl alcohol) with glutaraldehyde in the presence of a protonic acid acting as a catalyst under ambient conditions. PHMEs are characterized by scanning electron microscopy and temperature-modulated differential scanning calorimetry in conjunction with relevant electrochemical techniques. An optimised electrochemical capacitor assembled employing PHME in conjunction with black pearl carbon (BPC) electrodes yields a maximum specific capacitance value of about 96 F g-1, phase angle value of about 79o and a discharge capacitance value of about 88 F g-1. Section I.3 of Part I describes the studies on cross-linked poly (vinyl alcohol)/ploy (acrylic acid) blend hydrogel electrolytes for electrochemical capacitors. Acidic poly (vinyl alcohol)/poly (acrylic acid) blend hydrogel electrolytes (BHEs) have been prepared by cross-linking poly (vinyl alcohol)/poly (acrylic acid) blend with glutaraldehyde in presence of perchloric acid. These acidic BHEs have been treated suitably to realize alkaline and neutral BHEs. Thermal characteristics and glass-transition behavior of BHEs have been followed by differential scanning calorimetry. Ionic conduction in acidic BHEs has been found to take place by Grötthus-type mechanism while polymer segmental motion mechanism is predominantly responsible for ion motion in alkaline and neutral BHEs. Ionic conductivity of BHEs has been found to range between 10-3 and 10-2 S cm-1 at 298 K. Electrochemical capacitors assembled with acidic PVA hydrogel electrolyte yield a maximum specific capacitance of about 60 and 1000 F g-1 with BPC and RuOx.xH2O/C electrodes, respectively. Section I.4 of Part I describes the studies on gelatin hydrogel electrolytes and their application to electrochemical capacitors. Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde under ambient conditions, and characterized by scanning electron microscopy, temperature-modulated differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 340 and 377 K depending on the dopant concentration. Ionic conductivity behavior of GHEs is studied with varying concentrations of gelatin, glutaraldehyde and NaCl, and conductivity values are found to vary between 10-3 and 10-1 S cm-1 under ambient conditions. GHEs have a potential window of about 1 V with BPC electrodes. The ionic conductivity of pristine and 0.25 N NaCl-doped GHEs follows Arrhenius behavior with activation energy values of 1.9×10-4 and 1.8×10-4 eV, respectively. Electrochemical capacitors employing GHEs in conjunction with black pearl carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of about 81 F g-1, 75o, and 0.03 s are obtained for 3 M NaCl-doped GHE, respectively. EC with pristine GHE exhibits continuous cycle life for about 4.3 h as against 4.7 h for the electrochemical capacitor with 3 M NaCl-doped GHE. Unlike electrochemical capacitors, fuel cells do not store the charge internally but instead use a continuous supply of fuel from an external storage tank. Thus, fuel cells have the potential to solve the most challenging problem associated with the electrochemical capacitors, namely their limited energy-density. A fuel cell is an electrochemical power source with advantages of both the combustion engine and the battery. Like a combustion engine, a fuel cell will run as long as it is provided with fuel; and like a battery, fuel cells convert chemical energy directly to electrical energy. As an electrochemical power source, fuel cells are not subjected to the Carnot limitations of combustion (heat) engines. A fuel cell operates quietly and efficiently and, when hydrogen is used as a fuel, it generates only power and potable water. Thus, a fuel cell is a so called ‘zero-emission engine’. In the past, several fuel cell concepts have been tested in various laboratories but the systems that are being potentially considered for commercial developments are: (i) Alkaline Fuel Cells (AFCs), (ii) Phosphoric Acid Fuel Cells (PAFCs), (iii) Polymer Electrolyte Fuel Cells (PEFCs), (iv) Solid-Polymer-Electrolyte-Direct Methanol Fuel Cells (SPE-DMFCs), (v) Molten Carbonate Fuel Cells (MCFCs) and (vi) Solid Oxide Fuel Cells (SOFCs). Among the aforesaid systems, PEFCs that employ hydrogen as fuel are considered attractive power systems for quick start-up and ambient-temperature operations. Ironically, however, hydrogen as fuel is not available freely in the nature. Accordingly, it has to be generated from a readily available hydrogen carrying fuel such as natural gas, which needs to be reformed. But, such a process leads to generation of hydrogen with some content of carbon monoxide, which even at minuscule level is detrimental to the fuel cell performance. Pure hydrogen can be generated through water electrolysis but hydrogen thus generated needs to be stored as compressed / liquefied gas, which is cost-intensive. Therefore, certain hydrogen carrying organic fuels such as methanol, ethanol, propanol, ethylene glycol, and diethyl ether have been considered for fuelling PEFCs directly. Among these, methanol with a hydrogen content of about 13 wt. % (specific energy = 6.1 kWh kg-1) is the most attractive organic liquid. PEFCs using methanol directly as fuel are referred to as SPE-DMFCs. But SPE-DMFCs suffer from methanol crossover across the polymer electrolyte membrane, which affects the cathode performance and hence the cell performance during its operation. SPE-DMFCs also have inherent limitations of low open-circuit-potential and low electrochemical-activity. An obvious solution to the aforesaid problems is to explore other promising hydrogen carrying fuels such as sodium borohydride, which has a hydrogen content of about 11 wt. %. Such fuel cells are called direct borohydride fuel cells (DBFCs). Part II of the thesis includes studies on direct borohydride fuel cells and comprises three sections. After a brief introduction to DBFCs in section II.1, Section II.2 describes studies on an alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. A peak power density of about 150 mW cm-2 at a cell voltage of 540 mV could be achieved from the optimized DBFC operating at 70oC. Section II.3 describes studies on poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells. This DBFC employs a poly (vinyl alcohol) hydrogel membrane as electrolyte, an AB5 Misch metal alloy as anode, and a gold-plated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. The performance of the PHME-based DBFC in respect of peak power outputs, ex-situ cross-over of oxidant, fuel, anolyte and catholyte across the membrane electrolytes, utilization efficiencies of fuel and oxidant as also cell performance durability under ambient conditions are compared with a similar DBFC employing a Nafion®-117 membrane electrolyte (NME). Peak power densities of about 30 and 40 mW cm-2 are observed for the DBFCs with PHME and NME, respectively. The PHME and NME-based DBFCs exhibit cell potentials of about 1.2 and 1.4 V, respectively, at a load current density of 10 mA cm-2 for 100 h. Publications of Nurul Alam Choudhury 1. Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors, N. A. Choudhury, S. Sampath, and A. K. Shukla, J. Electrochem. Soc., 155 (2008) A74. 2. Cross-linked polymer hydrogel electrolytes for electrochemical capacitors, N. A. Choudhury, A. K. Shukla, S. Sampath, and S. Pitchumani, J. Electrochem. Soc., 153 (2006) A614. 3. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, N. A. Choudhury, S. Sampath, and A. K. Shukla, Energy and Environmental Science (In Press). 4. Cross-linked poly (vinyl alcohol) hydrogel membrane electrolytes with varying perchloric acid dopant concentration and their application to electrochemical capacitors, N. A. Choudhury, S. Sampath, and A. K. Shukla, J. Chem. Sc. (Submitted) 5. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, N. A. Choudhury, R. K. Raman, S. Sampath, and A. K. Shukla, J. Power Sources, 143 (2005) 1. 6. Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells, N. A. Choudhury, S. K. Prashant, S. Pitchumani, P. Sridhar, and A. K. Shukla, J. Chem. Sc. (Submitted). 7. A phenyl-sulfonic acid anchored carbon-supported platinum catalyst for polymer electrolyte fuel cell electrodes, G. Selvarani, A. K. Sahu, N. A. Choudhury, P. Sridhar, S. Pitchumani, and A. K. Shukla, Electrochim. Acta, 52 (2007) 4871. 8. A high-output voltage direct borohydride fuel cell, R. K. Raman, N. A. Choudhury, and A. K. Shukla, Electrochem. Solid-State Lett., 7 (2004) A 488. 9. Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells, A. K. Shukla, R. K. Raman, N. A. Choudhury, K. R. Priolkar, P. R. Sarode, S. Emura, and R. Kumashiro, J. Electroanal. Chem., 563 (2004) 181.
40

Water Drop Tribology of Graphene and Polymer Nanocomposites

Cox, Paris 16 September 2013 (has links)
Basic physics teaches us that the frictional force (lateral force) needed to move objects on surfaces are proportional to load (normal force) – Amonton’s Laws. In tribology, this force is proportional to contact area, whereas Amonton is just a special case for contact area scaling with load. Such established laws do not seem to apply to small drops on flat, smooth surfaces in which frictional forces have an inverse relation to contact area and have time component prior to movement. Such phenomena can be explained by Shanahan-deGennes were intermolecular forces are considered for a deformed surface. Graphene is a special case where no time component is observed and frictional forces are attributed to its chemical homogeneity and stability. In the second part of this thesis, graphene is considered as nanofiller to build up polymer nanocomposites via Layer by Layer (LbL). Graphene Nanoribbons derived from multi-walled carbon nanotubes (MWCNT) offers a special case for thermoplastic polyurethane nanocomposites in that of thermally activated twisting morphology influences nanocomposite properties. Finally an electric field driven transdermal hydrogel drug delivery device has been demonstrated by just using CNTs, polyvinyl-borax gel and a CNT membrane

Page generated in 0.0448 seconds