• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 58
  • 13
  • 11
  • 10
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 279
  • 279
  • 64
  • 60
  • 51
  • 49
  • 44
  • 40
  • 39
  • 31
  • 30
  • 29
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Development of Porous Nickel Electro-Catalysts for Photo-Water Splitting Using Zn, Co, Mn and NH4+ Based Precursors

Bidurukontham, Aditya V. January 2011 (has links)
No description available.
122

Electrocatalysis of the Oxidation of Ammonia by Raney Nickel, Platinum and Rhodium

Cooper, Matthew January 2005 (has links)
No description available.
123

Assessment of coal and graphite electrolysis

Sathe, Nilesh 22 May 2006 (has links)
No description available.
124

Investigation of Anode Catalysts and Alternative Electrolytes for Stable Hydrogen Production from Urea Solutions

King, Rebecca Lynne 27 July 2010 (has links)
No description available.
125

Multiscale Study of Chemical Looping Technology and Its Applications for Low Carbon Energy Conversions

Zeng, Liang 20 December 2012 (has links)
No description available.
126

Improving Photocatalytic Hydrogen Production of Ru,Rh,Ru Supramolecular Complexes in Aerobic Aqueous Solutions

Canterbury, Theodore Richard 08 June 2017 (has links)
The production of hydrogen fuel via solar water splitting is an important carbon-neutral strategy for the development of renewable resources and has sparked great interest in the scientific community. Hydrogen production efficiencies for supramolecular photocatalysts of the architecture [{(TL)2Ru(BL)}2RhX2]5+ (BL=bridging ligand, TL=terminal ligand, X=halide) are among the highest reported in deoxygenated organic solvents, but do not function in air-saturated aqueous solution due to quenching of the metal-to-ligand charge transfer (MLCT) excited-state under these conditions. Herein, we report the groundbreaking use of polyelectrolytes to increase efficiency of supramolecular photocatalysts in solar hydrogen production schemes under aqueous aerobic conditions. The new photocatalytic system incorporates poly(4-styrenesulfonate) (PSS) into aqueous solutions containing [{(bpy)2Ru(dpp)}2RhCl2]5+ (bpy = 2,2'-bipyridine, dpp = 2,3-bis(2-pyridyl)pyrazine). PSS has a profound impact on photocatalyst efficiency, increasing hydrogen production over three times that of deoxygenated aqueous solutions alone. Hydrogen photocatalysis proceeds even under aerobic conditions for PSS containing solutions, an exciting consequence for solar hydrogen production research. Thermodynamics of binding due to intermolecular interactions between Ru,Rh,Ru photocatalysts and polyelectrolytes was probed using isothermal titration calorimetry (ITC). ITC studies reveal the driving forces of aggregate formation, providing new insight into the intermolecular forces that lead to increased photocatalytic efficiency and stability in the presence of water soluble polymers. Synthesis and characterization of a novel supramolecular photocatalyst having hydrophilic terminal ligands are reported. Addition of sulfonated terminal ligands into a Ru,Rh,Ru photocatalyst has a significant impact on the excited-state properties of the complex. The new complex demonstrates increased solubility and hydrogen production efficiency in aqueous solutions. Hydrogen production is observed even under aerobic conditions for the new complex, a stark contrast to the hydrophobic analog in organic solvents. The synthesis, characterization, and electropolymerization of a chromophore-catalyst assembly having vinyl-substituted terminal ligands to create robust water reduction photocatalysts on wide-bandgap semiconductors is reported. The polymeric photocatalysts are expected to show increased stability over a wide pH range and increased photostability compared to chromophore-catalyst assemblies that employ carboxylic or phosphonic acid groups to adsorb the photoreactive catalyst to the metal oxide surface. / Ph. D.
127

Global Rates of Free Hydrogen (H2) Production by Serpentinization and other Abiogenic Processes within Young Ocean Crust

Worman, Stacey Lynn January 2015 (has links)
<p>The main conclusion of this dissertation is that global H2 production within young ocean crust (<10 Mya) is higher than currently recognized, in part because current estimates of H2 production accompanying the serpentinization of peridotite may be too low (Chapter 2) and in part because a number of abiogenic H2-producing processes have heretofore gone unquantified (Chapter 3). The importance of free H2 to a range of geochemical processes makes the quantitative understanding of H2 production advanced in this dissertation pertinent to an array of open research questions across the geosciences (e.g. the origin and evolution of life and the oxidation of the Earth’s atmosphere and oceans).</p><p>The first component of this dissertation (Chapter 2) examines H2 produced within young ocean crust [e.g. near the mid-ocean ridge (MOR)] by serpentinization. In the presence of water, olivine-rich rocks (peridotites) undergo serpentinization (hydration) at temperatures of up to ~500°C but only produce H2 at temperatures up to ~350°C. A simple analytical model is presented that mechanistically ties the process to seafloor spreading and explicitly accounts for the importance of temperature in H2 formation. The model suggests that H2 production increases with the rate of seafloor spreading and the net thickness of serpentinized peridotite (S-P) in a column of lithosphere. The model is applied globally to the MOR using conservative estimates for the net thickness of lithospheric S-P, our least certain model input. Despite the large uncertainties surrounding the amount of serpentinized peridotite within oceanic crust, conservative model parameters suggest a magnitude of H2 production (~1012 moles H2/y) that is larger than the most widely cited previous estimates (~1011 although previous estimates range from 1010-1012 moles H2/y). Certain model relationships are also consistent with what has been established through field studies, for example that the highest H2 fluxes (moles H2/km2 seafloor) are produced near slower-spreading ridges (<20 mm/y). Other modeled relationships are new and represent testable predictions. Principal among these is that about half of the H2 produced globally is produced off-axis beneath faster-spreading seafloor (>20 mm/y), a region where only one measurement of H2 has been made thus far and is ripe for future investigation.</p><p>In the second part of this dissertation (Chapter 3), I construct the first budget for free H2 in young ocean crust that quantifies and compares all currently recognized H2 sources and H2 sinks. First global estimates of budget components are proposed in instances where previous estimate(s) could not be located provided that the literature on that specific budget component was not too sparse to do so. Results suggest that the nine known H2 sources, listed in order of quantitative importance, are: Crystallization (6x1012 moles H2/y or 61% of total H2 production), serpentinization (2x1012 moles H2/y or 21%), magmatic degassing (7x1011 moles H2/y or 7%), lava-seawater interaction (5x1011 moles H2/y or 5%), low-temperature alteration of basalt (5x1011 moles H2/y or 5%), high-temperature alteration of basalt (3x1010 moles H2/y or <1%), catalysis (3x108 moles H2/y or <<1%), radiolysis (2x108 moles H2/y or <<1%), and pyrite formation (3x106 moles H2/y or <<1%). Next we consider two well-known H2 sinks, H2 lost to the ocean and H2 occluded within rock minerals, and our analysis suggests that both are of similar size (both are 6x1011 moles H2/y). Budgeting results suggest a large difference between H2 sources (total production = 1x1013 moles H2/y) and H2 sinks (total losses = 1x1011 moles H2/y). Assuming this large difference represents H2 consumed by microbes (total consumption = 9x1011 moles H2/y), we explore rates of primary production by the chemosynthetic, sub-seafloor biosphere. Although the numbers presented require further examination and future modifications, the analysis suggests that the sub-seafloor H2 budget is similar to the sub-seafloor CH4 budget in the sense that globally significant quantities of both of these reduced gases are produced beneath the seafloor but never escape the seafloor due to microbial consumption.</p><p>The third and final component of this dissertation (Chapter 4) explores the self-organization of barchan sand dune fields. In nature, barchan dunes typically exist as members of larger dune fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides (“calving”); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.</p> / Dissertation
128

Hydrogen production via a sulfur-sulfur thermochemical water-splitting cycle

AuYeung, Nicholas J. 14 October 2011 (has links)
Thermochemical water splitting cycles have been conceptualized and researched for over half a century, yet to this day none are commercially viable. The heavily studied Sulfur-Iodine cycle has been stalled in the early development stage due to a difficult HI-H₂O separation step and material compatibility issues. In an effort to avoid the azeotropic HI-H₂O mixture, an imidazolium-based ionic liquid was used as a reaction medium instead of water. Ionic liquids were selected based on their high solubility for SO₂, I₂, and tunable miscibility with water. The initial low temperature step of the Sulfur-Iodine cycle was successfully carried out in ionic liquid reaction medium. Kinetics of the reaction were investigated by I₂ colorimetry. The reaction also evolved H₂S gas, which led to the conceptual idea of a new Sulfur-Sulfur thermochemical cycle, shown below: / 4I₂(l)+4SO₂(l)+8H₂O(l)↔4H₂SO₄(l)+ 8HI(l) / 8HI(l)+H₂SO₄(l)↔ H₂S(g)+4H₂O(l)+4I₂(l) / 3H₂SO₄(g)↔ 3H₂O(g)+3SO₂(g)+1½O₂(g) / H₂S(g)+2H₂O(g)↔ SO₂(g)+3H₂(g) / The critical step in the Sulfur-Sulfur cycle is the steam reformation of H₂S. This highly endothermic step is shown to successfully occur at temperatures in excess of 800˚C in the presence of a molybdenum catalyst. A parametric study varying the H₂O:H₂S ratio, temperature, and residence time in a simple tubular quartz reactor was carried out and Arrhenius parameters were estimated. All reactive steps of the Sulfur-Sulfur cycle have been either demonstrated previously or demonstrated in this work. A theoretical heat-to-hydrogen thermal efficiency is estimated to be 55% at a hot temperature of 1100 K and 59% at 2000 K. As a highly efficient, all-fluid based thermochemical cycle, the Sulfur-Sulfur cycle has great potential for feasible process implementation for the transformation of high quality heat to chemical energy. / Graduation date: 2012
129

Rôle de l'AmtB dans la régulation de la nitrogénase et la production d'hydrogène chez la bactérie Rhodobacter capsulatus

Boukharouba, Narimane 12 1900 (has links)
L’azote est l’élément le plus abondant dans l’atmosphère terrestre avec un pourcentage atteignant 78 %. Composant essentiel pour la biosynthèse des matériels organiques cellulaires, il est inutilisable sous sa forme diatomique (N2) très stable par la plupart des organismes. Seules les bactéries dites diazotrophiques comme Rhodobacter capsulatus sont capables de fixer l’azote moléculaire N2 par le biais de la synthèse d’une enzyme, la nitrogénase. Cette dernière catalyse la réduction du N2 en ammonium (NH4) qui peut alors être assimilé par d’autres organismes. La synthèse et l’activité de la nitrogénase consomment beaucoup d’énergie ce qui implique une régulation rigoureuse et son inhibition tant qu’une quantité suffisante d’ammonium est disponible. Parmi les protéines impliquées dans cette régulation, la protéine d’intérêt AmtB est un transporteur membranaire responsable de la perception et le transport de l’ammonium. Chez R. capsulatus, il a été démontré que suite à l’addition de l’ammonium, l’AmtB inhibe de façon réversible (switch off/switch on) l’activité de la nitrogénase en séquestrant la protéine PII GlnK accompagnée de l’ajout d’un groupement ADP ribose sur la sous unités Fe de l’enzyme par DraT. De plus, la formation de ce complexe à lui seul ne serait pas suffisant pour cette inactivation, ce qui suggère la séquestration d’une troisième protéine, DraG, afin d’inhiber son action qui consiste à enlever l’ADP ribose de la nitrogénase et donc sa réactivation. Afin de mieux comprendre le fonctionnement de l’AmtB dans la régulation et le transport de l’ammonium à un niveau moléculaire et par la même occasion la fixation de l’azote, le premier volet de ce mémoire a été d’introduire une mutation ponctuelle par mutagénèse dirigée au niveau du résidu conservé W237 de l’AmtB. La production d’hydrogène est un autre aspect longtemps étudié chez R. capsulatus. Cette bactérie est capable de produire de l’hydrogène à partir de composés organiques par photofermentation suite à l’intervention exclusive de la nitrogénase. Plusieurs études ont été entreprises afin d’améliorer la production d’hydrogène. Certaines d’entre elles se sont intéressées à déterminer les conditions optimales qui confèrent une production maximale de gaz tandis que d’autres s’intéressent au fonctionnement de la bactérie elle même. Ainsi, le fait que la bioproduction de H2 par fermentation soit catalysée par la nitrogénase cela implique la régulation de l’activité de cette dernière par différents mécanismes dont le switch off par ADP ribosylation de l’enzyme. De ce fait, un mutant de R. capsulatus dépourvu d’AmtB (DG9) a été étudié dans la deuxième partie de cette thèse en termes d’activité de la nitrogénase, de sa modification par ADP ribosylation avec la détection des deux protéines GlnK et DraG qui interviennent dans cette régulation pour connaitre l’influence de différents acides aminés sur la régulation de la nitrogénase et pour l‘utilisation future de cette souche dans la production d’H2 car R. capsulatus produit de l’hydrogène par photofermentation grâce à cette enzyme. Les résultats obtenus ont révélé une activité de la nitrogénase continue et ininterrompue lorsque l’AmtB est absent avec une activité maximale quand la proline est utilisée comme source d’azote durant la culture bactérienne ce qui implique donc que l’abolition de l’activité de cette protéine entraine une production continue d’H2 chez R. capsulatus lorsque la proline est utilisée comme source d’azote lors de la culture bactérienne. Par ailleurs, avec des Western blots on a pu déterminer l’absence de régulation par ADP ribosylation ainsi que les expressions respectives de GlnK et DraG inchangées entre R. capsulatus sauvage et muté. En conclusion, la nitrogénase n’est pas modifiée et inhibée lorsque l’amtB est muté ce qui fait de la souche R. capsulatus DG9 un candidat idéal pour la production de biohydrogène en particulier lorsque du glucose et de la proline sont respectivement utilisés comme source de carbone et d'azote pour la croissance. / Nitrogen is the most abundant element in the Earth's atmosphere with a percentage of 78 %. This element is essential for the biosynthesis of cellular organic material and is unusable in its stable diatomic form (N2) by most organisms. Only bacteria called diazotrophs such as Rhodobacter capsulatus are able to fix molecular nitrogen N2 through the synthesis of the nitrogenase enzyme. The latter catalyzes the reduction of N2 to NH4 which can then be absorbed by other organisms. The synthesis and activity of nitrogenase consumes a lot of energy and therefore implies a strict regulation and its inhibition when a sufficient amount of ammonium is available. Among the proteins involved in this regulation, is the membrane transporter AmtB which is responsible for the sensing and transportation of ammonia. In R. capsulatus, it was shown that following the addition of ammonium, AmtB reversibly inhibits (switch off / switch on) nitrogenase activity by sequestering the PII protein GlnK accompanied by the addition of an ADP ribose group onto the Fe subunit of the enzyme by DraT. In addition, the formation of this complex alone would not be sufficient for this inactivation, suggesting the sequestration of a third protein, DraG is required to inhibit its action of removing the ADP ribose from the nitrogenase and therefore its reactivation. To better understand the role of the AmtB in the fixation of nitrogen, regulation and transport of ammonium at the molecular level, the first part of this study was to introduce a point mutation by directed mutagenesis in the conserved residue W237 of AmtB . Hydrogen production is another property of R. capsulatus that has been studied for a long time. This bacterium is capable of producing hydrogen from organic compounds following photofermentation and the exclusive enzymatic intervention of nitrogenase. Several studies have been undertaken to improve the production of hydrogen. Some of them were involved in determining the optimum conditions that give maximum gas production while others were interested in improving the growth of the bacterium itself. Thus, since the bio-production of H2 by fermentation is catalyzed by the nitrogenase, it is important to study the regulation of the activity of this enzyme by different mechanisms such as the switch off by ADP ribosylation. Therefore, a mutant of R. capsulatus (DG9) lacking AmtB was studied in the second part of this thesis for its nitrogenase activity, its modification by GlnK-DraG, and to see the effects of different amino acids used in the growth medium on the regulation and therefore the future use of this strain for the production of H2. The results showed a continuous and uninterrupted activity of the nitrogenase when AmtB was absent with a maximum activity when proline was used as a nitrogen source for bacterial growth. In addition, Western blots were used to demonstrate the effect of ADP ribosylation on regulation and that the expression of GlnK and DraG were unchanged between the wild –type and mutant R. capsulatus. In conclusion, nitrogenase is not modified or inhibited when mutated amtB what makes the R. capsulatus strain DG9 an ideal candidate for biohydrogen production especially when glucose and proline are respectively used as source carbon and nitrogen for growth.
130

Photocatalytic hydrogen production over layered materials

Jia, Tiantian January 2014 (has links)
The technology of semiconductor-based photocatalytic water splitting to produce hydrogen using solar energy has been considered as one of the most important approaches to solve the world energy crisis. Therefore, the development of the effective semiconductor photocatalysts has undergone considerable research. However, the traditional photocatalysts suffer from the negative effects from rapid charge recombination, which reduces the excited charges by emitting light or generating phonons. Efficient charge separation and fast charge transport, avoiding any bulk/surface recombination, are fundamentally important for photocatalytic hydrogen generation through water splitting. Here, we have introduced assembled layered materials as photocatalyst systems with their unique physicochemical properties to realize the effective charge separation and high photocatalytic activity. Using graphene as a two-dimensional supporting matrix, we have succeeded in selective anchoring of semiconductor and metal nanoparticles as separate catalytically active sites on the graphene surface. The ability of graphene to capture, transfer and store electrons and its potential to serve as a conductive support are demonstrated. The TiO<sub>2</sub> semiconductor/metals nanocrystals-graphene ensemble makes it possible to carry out selective catalytic processes at the separate sites and provides the potentials for applications in water splitting reactions. After demonstrating the positive role of graphene in such photocatalytic system, we then fabricate a simple but highly cooperative ensemble with CdS and MoS<sub>2</sub> nanocrystals dispersed on graphene sheets. It is demonstrated that CdS nanocrystals can also capture visible light energy and facilitate excited electron transfer to MoS<sub>2</sub> (as metal substituent) for catalytic hydrogen production via the 2-D graphene which plays a key role as an efficient electron mediator. Hexagonal multilayer MoS<sub>2</sub> with a layered structure in this system serves to provide active sites for hydrogen evolution by its exposed Mo edges. Hence, multilayer MoS<sub>2</sub> is an ideal cocatalyst of semiconductors for hydrogen generation. This crystalline-layered structure also shows semiconducting properties, however, its characteristic indirect band gap displays a poor light capture and emission ability with excited electrons and holes with different momentum. In contrast, single layer MoS<sub>2</sub> shows a direct band gap behavior. Our studies have clearly shown that single layer MoS<sub>2</sub> prepared with lithium intercalation indeed displays encouraging results in hydrogen evolution due to the direct band gap and quantum confinement effects. In addition, the exfoliated single layer MoS<sub>2</sub> exhibits extraordinary enhanced activity and stability in combination with the Eosin Y sensitized system when compared to those of multilayer MoS<sub>2</sub> and bulk MoS<sub>2</sub> counterparts, which is attributed to the improvement of the density of surface active sites with stronger adsorption for the Eosin Y molecules on the single layer MoS<sub>2</sub>. In addition, this multifunctional catalyst on graphene sheet can also create adsorption sites on a defective basal surface of single layer MoS<sub>2</sub> through adsorption of Eosin Y where electron transfer from photoexcited Eosin Y molecule to graphene via the 2-D MoS<sub>2</sub> mainly takes place. Thus, the photo-generated electrons are then effectively transported to the exposed active sites of MoS<sub>2</sub> for the proton reduction to hydrogen molecule. It is believed the above novel assembled molecular layered systems may be applicable for a wide range of catalytic,photocatalytic and electrocatalytic reactions.

Page generated in 0.1101 seconds