• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A numerical study of an autothermal reformer for the production of hydrogen from Iso-octane

Sylvestre, Steven W. J. 12 September 2007 (has links)
The development of an auxiliary power unit (APU) capable of providing climate control and electricity in long haul trucks is of significant interest due to the expected economic and environmental benefits. A potentially efficient and environmentally friendly APU design is one based on the use of an autothermal fuel reformer that converts on-board truck fuel to a hydrogen rich gas that directly fuels a solid oxide fuel cell unit. To assist in the development of such a unit a numerical study of the autothermal reforming of iso-octane in a compact tubular reactor has been undertaken. This was done to determine the reactor performance and the factors that potentially influence its performance. Variations in the wall thermal conductivity, the catalyst thermal conductivity, the catalyst porosity, the conditions of the inlet reactant gas, and the effectiveness factor of the chemical reaction mechanism have been studied to determine their effects on the performance of the reformer. It has been found that higher thermal conductivities of the outer wall and in the catalyst region gave increased dry hydrogen yield and fuel conversion. The study of the effects of inlet species concentration ratios indicated that maximum hydrogen yield was obtained with an oxygen-to-fuel ratio between 1.0 and 1.15 and a steam-to-fuel ratio of approximately 3.0. Results obtained with various inlet species temperatures and bed porosities showed only small changes in the reformer performance. While the results obtained here do provide useful information about the performance of the autothermal reformer, the model used has been re-assessed and it is recommended that an improved model be used in future work. In particular, the assumed effectiveness factors for all of the chemical reactions occurring in the catalyst region need to be improved. This was highlighted by the fact that a brief study indicated a very strong dependence of the reformer product gas composition on the effectiveness factor. This indicates that while the present model is able to predict trends in the reformer performance, it is limited in its accuracy due to the fact that the effectiveness factor used is only approximately known. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2007-08-31 13:22:27.466
2

Contribution à l'étude des transferts de matière gaz-liquide en présence de réactions chimiques/Contribution to the gas-liquid mass transfer study coupled with chemical reactions

Wylock, Christophe E M 29 September 2009 (has links)
Le bicarbonate de soude raffiné, produit industriellement par la société Solvay, est fabriqué dans des colonnes à bulles de grande taille, appelées les colonnes BIR. Dans ces colonnes, une phase gazeuse contenant un mélange d’air et dioxyde de carbone (CO2) est dispersée sous forme de bulles dans une solution aqueuse de carbonate et de bicarbonate de sodium (respectivement Na2CO3 et NaHCO3). Cette dispersion donne lieu à un transfert de CO2 des bulles vers la phase liquide. Au sein des colonnes, la phase gazeuse se répartit dans deux populations de bulles : des petites bulles (diamètre de quelques mm) et des grandes bulles (diamètre de quelques cm). Le transfert bulle-liquide de CO2 est couplé à des réactions chimiques prenant place en phase liquide, qui conduisent à la conversion du Na2CO3 en NaHCO3. Une fois la concentration de saturation dépassée, le NaHCO3 précipite sous forme de cristaux et un mélange liquide-solide est recueilli à la sortie de ces colonnes. Ce travail, réalisé en collaboration avec la société Solvay, porte sur l’étude et la modélisation mathématique des phénomènes de transfert de matière entre phases, couplés à des réactions chimiques, prenant place au sein d’une colonne BIR. L’association d’études sur des colonnes à bulles à l’échelle industrielle ou réduite (pilote) et d’études plus fondamentales sur des dispositifs de laboratoire permet de développer une meilleure compréhension du fonctionnement des colonnes BIR et d’en construire un modèle mathématique détaillé. L’objectif appliqué de ce travail est la mise au point d’un modèle mathématique complet et opérationnel d’une colonne BIR. Cet objectif est supporté par trois blocs de travail, dans lesquels différents outils sont développés et exploités. Le premier bloc est consacré à la modélisation mathématique du transfert bulle-liquide de CO2 dans une solution aqueuse de NaHCO3 et de Na2CO3. Ce transfert est couplé à des réactions chimiques en phase liquide qui influencent sa vitesse. Dans un premier temps, des modèles sont développés selon des approches unidimensionnelles classiquement rencontrées dans la littérature. Ces approches passent par une idéalisation de l’écoulement du liquide autour des bulles. Une expression simplifiée de la vitesse du transfert bulle-liquide de CO2, est également développée et validée pour le modèle de colonne BIR. Dans un second temps, une modélisation complète des phénomènes de transport (convection et diffusion), couplés à des réactions chimiques, est réalisée en suivant une approche bidimensionnelle axisymétrique. L’influence de la vitesse de réactions sur la vitesse de transfert est étudiée et les résultats des deux approches sont également comparés. Le deuxième bloc est consacré à l’étude expérimentale du transfert gaz-liquide de CO2 dans des solutions aqueuses de NaHCO3 et de Na2CO3. A cette fin, un dispositif expérimental est développé et présenté. Du CO2 est mis en contact avec des solutions aqueuses de NaHCO3 et de Na2CO3 dans une cellule transparente. Les phénomènes provoqués en phase liquide par le transfert de CO2 sont observés à l’aide d’un interféromètre de Mach-Zehnder. Les résultats expérimentaux sont comparés à des résultats de simulation obtenus avec un des modèles unidimensionnels développés dans le premier bloc. De cette comparaison, il apparaît qu’une mauvaise estimation de la valeur de certains paramètres physico-chimiques apparaissant dans les équations de ce modèle conduit à des écarts significatifs entre les grandeurs observées expérimentalement et les grandeurs estimées par simulation des équations du modèle. C’est pourquoi une méthode d’estimation paramétrique est également développée afin d’identifier les valeurs numériques de ces paramètres physico-chimiques sur base des résultats expérimentaux. Ces dernières sont également discutées. Dans le troisième bloc, nous apportons une contribution à l’étude des cinétiques de précipitation du NaHCO3 dans un cristallisoir à cuve agitée. Cette partie du travail est réalisée en collaboration avec Vanessa Gutierrez (du service Matières et Matériaux de l’ULB). Nous contribuons à cette étude par le développement de trois outils : une table de calcul Excel permettant de synthétiser les résultats expérimentaux, un ensemble de simulations de l’écoulement au sein du cristallisoir par mécanique des fluides numérique et une nouvelle méthode d’extraction des cinétiques de précipitation du NaHCO3 à partir des résultats expérimentaux. Ces trois outils sont également utilisés de façon combinée pour estimer les influences de la fraction massique de solide et de l’agitation sur la cinétique de germination secondaire du NaHCO3. Enfin, la synthèse de l’ensemble des résultats de ces études est réalisée. Le résultat final est le développement d’un modèle mathématique complet et opérationnel des colonnes BIR. Ce modèle est développé en suivant l’approche de modélisation en compartiments, développée au cours du travail de Benoît Haut. Ce modèle synthétise les trois blocs d’études réalisées dans ce travail, ainsi que les travaux d’Aurélie Larcy (du service Transferts, Interfaces et Procédés de l’ULB) et de Vanessa Gutierrez. Les équations modélisant les différents phénomènes sont présentées, ainsi que la méthode utilisée pour résoudre ces équations. Des simulations des équations du modèle sont réalisées et discutées. Les résultats de simulation sont également comparés à des mesures effectuées sur une colonne BIR. Un accord raisonnable est observé. A l’issue de ce travail, nous disposons donc d’un modèle opérationnel de colonne BIR. Bien que ce modèle doive encore être optimisé et validé, il peut déjà être utilisé pour étudier l’effet des caractéristiques géométriques des colonnes BIR et des conditions appliquées à ces colonnes sur le comportement des simulations des équations du modèle et pour identifier des tendances. // The refined sodium bicarbonate is produced by the Solvay company using large size bubble columns, called the BIR columns. In these columns, a gaseous phase containing an air-carbon dioxyde mixture (CO2) is dispersed under the form of bubbles in an aqueous solution of sodium carbonate and sodium bicarbonate (Na2CO3 and NaHCO3, respectively). This dispersion leads to a CO2 transfer from the bubbles to the liquid phase. Inside these columns, the gaseous phase is distributed in two bubbles populations : small bubbles (a few mm of diameter) and large bubbles (a few cm of diameter). The bubble-liquid CO2 transfer is coupled with chemical reactions taking places in the liquid phase that leads to the conversion of Na2CO3 to NaHCO3. When the solution is supersaturated in NaHCO3, the NaHCO3 precipitates under the form of crystals and a liquid-solid mixture is extracted at the outlet of the BIR columns. This work, realized in collaboration with Solvay, aims to study and to model mathematically the mass transport phenomena between the phases, coupled with chemical reactions, taking places inside a BIR column. Study of bubble columns at the industrial and the pilot scale is combined to a more fundamental study at laboratory scale to improve the understanding of the BIR columns functioning and to develop a detailed mathematical modeling. The applied objective of this work is to develop a complete and operational mathematical modeling of a BIR column. This objective is supported by three blocks of work. In each block, several tools are developed and used. The first block is devoted to the mathematical modeling of the bubble-liquid CO2 transfer in an NaHCO3 and Na2CO3 aqueous solution. This transfer is coupled with chemical reactions in liquid phase, which affect the transfer rate. In a first time, mathematical models are developed following the classical one-dimensional approaches of the literature. These approaches idealize the liquid flow around the bubbles. A simplified expression of the bubble-liquid CO2 transfer rate is equally developed and validated for the BIR column model. In a second time, a complete modeling of the transport phenomena (convection and diffusion) coupled with chemical reactions is developed, following an axisymmetrical twodimensional approach. The chemical reaction rate influence on the bubble-liquid transfer rate is studied and the results of the two approaches are then compared. The second block is devoted to the experimental study of the gas-liquid CO2 transfer to NaHCO3 and Na2CO3 aqueous solutions. An experimental set-up is developed and presented. CO2 is put in contact with NaHCO3 and Na2CO3 aqueous solutions in a transparent cell. The phenomena induced in liquid phase by the CO2 transfer are observed using a Mach-Zehnder interferometer. The experimental results are compared to simulation results that are obtained using one of the one-dimensional model developed in the first block. From this comparison, it appears that a wrong estimation of some physico-chemical parameter values leads to significative differences between the experimentally observed quantities and those estimated by simulation of the model equations. Therefore, a parametric estimation method is developed in order to estimate those parameters numerical values from the experimental results. The found values are then discussed. In the third block is presented a contribution to the NaHCO3 precipitation kinetic study in a stirred-tank crystallizer. This part of the work is realized in collaboration with Vanessa Gutierrez (Chemicals and Materials Department of ULB). Three tools are developed : tables in Excel sheet to synthetize the experimental results, a set of simulations of the flow inside the crystallizer by Computational Fluid Dynamic (CFD) and a new method to extract the NaHCO3 precipitation kinetics from the experimental measurements. These three tools are combined to estimate the influences of the solid mass fraction and the flow on the NaHCO3 secondary nucleation rate. Finally, the synthesis of all these results is realized. The final result is the development of a complete and operational mathematical model of BIR columns. This model is developed following the compartmental modeling approach, developed in the PhD thesis of Benoît Haut. This model synthetizes the three block of study realized in this work and the studies of Aurélie Larcy (Transfers, Interfaces and Processes Department of ULB) and those of Vanessa Gutierrez. The equations modeling the phenomena taking place in a BIR column are presented as the used method to solve these equations. The equations of the model are simulated and the results are discussed. The results are equally compared to experimental measurement realized on a BIR column. A reasonable agreement is observed. At the end of this work, an operational model of a BIR column is thus developed. Although this model have to be optimized and validated, it can already be used to study the influences of the geometrical characteristics of the BIR columns and of the conditions applied to these columns on the behaviour of the model equation simulations and to identity tendencies.
3

Novel Iron Catalyst and Fixed-Bed Reactor Model for the Fischer-Tropsch Synthesis

Brunner, Kyle Martin 09 August 2012 (has links) (PDF)
This work investigates a novel iron Fischer-Tropsch (FT) catalyst preparation and describes the development of a trickle fixed-bed recycle reactor model (TFBRRM) for the FT synthesis applicable to both iron and cobalt catalysts. The iron catalyst preparation was developed using a novel solvent deficient precipitation reaction. Fifteen Fe/Cu/K/SiO2 catalysts were prepared to investigate key preparation variables including timing of promoter addition, washing or not washing after precipitation, and drying temperature. Adding promoters to starting materials before precipitation (1S) gives more uniform promoter distributions which gives higher water-gas shift activity and lower methane selectivity. Unwashed catalysts have smaller average pore and crystallite diameters (3.9-10.8 nm versus 15.3-29.5 nm) and 30% smaller pore volumes, but 65% higher rates of reaction than washed catalysts. Catalysts dried first at 100 °C have up to 50% smaller average pore and crystallite diameters, but 10-20% higher rates of reaction than catalysts dried first at 60 °C. Overall, 1S catalysts, left unwashed, and dried first at 100 °C are best suited in activity, selectivity, and stability for wax production from hydrogen-deficient feed stocks such as coal, biomass, or municipal waste. The activity of the most active catalyst of this study is greater than or equal to the activities of two of three catalysts reported in the literature. This dissertation describes in detail the TFBRRM, reports its validation, and presents results of varying fundamental, theoretically-based parameters (e.g. effective diffusivity, Prandtl number, friction factor, etc.) as well as physical process parameters (i.e. recycle ratio, pressure, flow rate, tube diameter, cooling temperature, and pellet diameter and shape). For example, the model predicts that decreasing effective diffusivity from 7.1E-9 to 2.8E-9 m^2/s results in a lower maximum temperature (from 523 to 518 K) and a longer required bed length to achieve 60% conversion of CO (from 5.7 to 8.5 m). Using the Tallmadge equation to estimate friction losses as recommended by the author results in a pressure drop 40% smaller than using the Ergun equation. Validation of the model was accomplished by matching published full-scale plant data from the SASOL Arge reactors.
4

Multiscale Study of Chemical Looping Technology and Its Applications for Low Carbon Energy Conversions

Zeng, Liang 20 December 2012 (has links)
No description available.
5

Development of an Improved Thermal-Hydraulic Modeling of the Jules Horowitz Reactor

Pegonen, Reijo January 2017 (has links)
The newest European high performance material testing reactor, the Jules Horowitz Reactor, is under construction at CEA Cadarache research center in France. The reactor will support existing and future nuclear reactor technologies, with the first criticality expected at the end of this decade. The current/reference CEA methodology for simulating the thermalhydraulic behavior of the reactor gives reliable results. The CATHARE2 code simulates the full reactor circuit with a simplified approach for the core. The results of this model are used as boundary conditions in a three-dimensional FLICA4 core simulation. However this procedure needs further improvement and simplification to shorten the computational requirements and give more accurate core level data. The reactor’s high performance (e.g. high neutron fluxes, high power densities) and its design (e.g. narrow flow channels in the core) render the reactor modeling challenging compared to more conventional designs. It is possible via thermal-hydraulic or solely hydraulic Computational Fluid Dynamics (CFD) simulations to achieve a better insight of the flow and thermal aspects of the reactor’s performance. This approach is utilized to assess the initial modeling assumptions and to detect if more accurate modeling is necessary. There were no CFD thermal-hydraulic publications available on the JHR prior to the current PhD thesis project. The improvement process is split into five steps. In the first step, the state-of-the-art CEA methodology for thermal-hydraulic modeling of the reactor using the system code CATHARE2 and the core analysis code FLICA4 is described. In the second and third steps, a CFD thermal-hydraulic simulations of the reactor’s hot fuel element are undertaken with the code STAR-CCM+. Moreover, a conjugate heat transfer analysis is performed for the hot channel. The knowledge of the flow and temperature fields between different channels is important for performing safety analyses and for accurate modeling. In the fourth step, the flow field of the full reactor vessel is investigated by conducting CFD hydraulic simulations in order to identify the mass flow split between the 36 fuel elements and to describe the flow field in the upper and lower plenums. As a side study a thermal-hydraulic calculation, similar to those performed in previous steps is undertaken utilizing the outcome of the hydraulic calculation as an input. The final step culminates by producing an improved, more realistic, purely CATHARE2 based, JHR model, incorporating all the new knowledge acquired from the previous steps. The primary outcome of this four year PhD research project is the improved, more realistic, CATHARE2 model of the JHR with two approaches for the hot fuel element. Furthermore, the project has led to improved thermal-hydraulic knowledge of the complex reactor (including the hot fuel element), with the most prominent findings presented. / <p>QC 20161208</p> / DEMO-JHR
6

CFD simulation of transport and reaction in cylindrical catalyst particles

Taskin, Ertan M. 15 August 2007 (has links)
"Multitubular packed bed reactors with low tube-to-particle diameter ratios (N) are especially selected for strongly endothermic reactions such as steam reforming and propane dehydrogenation. For low N tubes, the presence of the wall causes changes in bed structure, flow patterns, transport rates and the amount of catalyst per unit volume. In particular, the particles close to the wall will behave differently to those inside the bed. The problem is that, due to the simplifying assumptions, such as uniform catalyst pellet surroundings, that are usual for the current pseudo-continuum reactor models, the effects of catalyst pellet design changes in the near-wall environment are lost. The challenge is to develop a better understanding of the interactions between flow patterns, species pellet diffusion, and the changes in catalyst activity due to the temperature fields in the near wall region for the modeling and design of these systems. To contribute to this improved understanding, Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for near-wall catalyst particles under steam reformer and propane dehydrogenation reactor inlet conditions. As a first step, a reduced size model was generated by only considering a 120 degree segment of an N = 4 tube, and validated with a larger size complete bed model. In terms of the flow and temperature contours and profiles, the complete tubes can be represented well by the reduced size models, especially focusing on the center particles positioned in the middle of the near wall region. The methane steam reforming heat effects were implemented by a user-defined code with the temperature-dependent sinks in the catalyst particles, near to the pellet surfaces for different activity levels. For the sinks terms, bulk phase species concentrations were used in the reaction rates, and with the reaction heat effects inclusion, significant pellet sensitivity was observed with different activity levels. Furthermore, non-symmetric temperature fields in and around the near wall particles were noticed as contrary to the conventional approach. In order to focus on the 3D intra-pellet distributions of temperature and species, diffusion and reaction were coupled to the external flow and temperature fields by user-defined code. Strong deviations from uniformity and symmetry on the temperature and species distributions existed as a result of the strong wall heat-flux into the particles Additionally, the pseudo-continuum type of packed bed model was created, which considers the simplified environment for the reacting particles. The results obtained by the diffusion reaction application in the 3D discrete packing model could not be re-produced by the conventional simplified pseudo-continuum approach, no matter which parameter values were chosen for the latter. The significance of these observations is that, under the conventional assumption of symmetric particle surroundings, the tube wall temperature and reaction rates for catalyst particles can be incorrectly evaluated and important design considerations may not be well predicted, thus, negative consequences on the plant safety and efficiency may be observed. "
7

Dynamic Modelling of a Fixed Bed Reactor to Study the First Instants of Gas Phase Ethylene Polymerisation / Modélisation en dynamique d'un réacteur à lit fixe pour étudier les premiers instants de la polymérisation de l'éthylène en phase gaz

Hazard Browning, Barbara 09 July 2013 (has links)
La polymérisation des oléfines à l'aide de catalyseurs metallocène est une réaction développée au niveau industriel. Bien que les premiers instants de la réaction aient une importance déterminante pour le procédé, ils n'ont fait l'objet que de très peu de travaux de recherche. Dernièrement, le l'équipe du prof. Mc Kenna a conçu un réacteur de type lit fixe pour étudier en détail ces premiers instants de la réaction. Néanmoins, face à la complexité de la réaction étudiée, un travail de modélisation s'avérait nécessaire afin de mieux appréhender l'ensemble des phénomènes influant sur les résultats et ainsi proposer des améliorations à ce montage expérimental. C'est ce travail qui est présenté dans ce manuscrit. Le premier modèle considère le réacteur comme un calorimètre semi-ouvert sur la matière en entrée, et utilise des lois cinétiques simplifiées. Il a ainsi était démontré que l'augmentation de la température dans le réacteur était un paramètre particulièrement important. Le design a ainsi été modifié en conséquence afin de contrôler l'exothermie de la réaction. Dans un second temps, une étude fine sur les mesures de pression récupérées dans le réacteur a été réalisée mettant en avant que le régime transitoire de montée en pression avait un rôle clef sur cette réaction. L'intégration de ces données a permis d'améliorer le modèle utilisé. Contrairement aux résultats obtenus sur des temps de réaction longs, il a été démontré que la désactivation était plus rapide à basse température lors des premiers instants de la réaction / The behaviour of silica supported metallocene catalyst in the early moments of olefin polymerization is not well understood. The complexity, rapidity and high exothermicity of the reaction impede observation of the kinetics and morphological changes. The fixed bed reactor constructed by McKenna’s group is designed to study these first instants of gas phase olefin polymerisation. The purpose of the modelling work presented is to gain understanding and improve the set-up through better knowledge of the reactor conditions. After a literature survey, the existing set-up was reviewed and analysed. A reactor model was constructed and programmed with polymerisation kinetics represented by a simple relation. The model was validated for individual experiments under optimised conditions. Use of the reactor as a calorimeter was evaluated and a state observer for the polymerisation rate was tested. The model was also used to show that very high temperatures are possible in the reactor bed and to simulate effects of changes to reactor construction and operating conditions. The reactor pressurisation profile is non negligible for experiments of shorter duration. New kinetics based on this were incorporated into the model: these were able to represent series of experiments and take account of the deactivation reaction. Contrary to results from longer duration experiments, our model finds initial deactivation does not appear to be controlled by temperature
8

Compact photocatalytic reactors for water treatment : mass and photon transfer issues / Conception, caractérisation et application d'un réacteur photocatalytique compact pour le traitement de l'eau en espace restreint

Zhou, Shuzhen 19 December 2014 (has links)
Le but de ce travail est de concevoir, opérer et caractériser un réacteur photo-catalytique compact qui opère en régime non limité par le transfert de matière et le transfert de la lumière. Plus particulièrement, il s'agit de traiter de l'eau polluée par un principe pharmaceutique, le diclofénac (DCF) dans un pilote à l'échelle du laboratoire et, essentiellement, de fournir les données quantitatives pour le dimensionnement d'un pilote industriel. La fabrication du dépôt du photocatalyseur TiO2, la désactivation, les transferts interne et externe de matière et l'extinction lumineuse dans la couche de TiO2 ont été étudiés expérimentalement. Les paramètres opératoires – débits, concentration initiale de MB et d'oxygène, intensité lumineuse, épaisseur du dépôt – ont été variés. Un modèle de simulation du réacteur a été construit qui incorpore les transferts externe et interne de matière et l'extinction lumineuse dans le cas d'une molécule modèle, le bleu de méthylène (MB). Enfin, à l'aide d'outils de résolution numérique, les paramètres du modèle ont été déterminées. Cette méthodologie a ensuite été appliquée partiellement à la molécule cible, le DCF, en combinant hydrogénation et photocatalyse. Pour le dépôt de catalyseur (TiO2-P25), la méthode de dépôt par gouttes a été sélectionnée car conduisant à une large gamme d'épaisseurs. La densité du catalyseur déposé a été déterminée ce qui a permis de mettre au point une méthode d'évaluation rapide de l'épaisseur du film par simple pesée. Le coefficient d'extinction du rayonnement UV utilisé dans ce travail à travers le film de TiO2 a été déterminé et comparé favorablement avec les données de la bibliographie. Le composé DCF a été dégradé par hydrogénation et par oxydation photocatalytique. L'hydrogénation se révèle être une méthode de choix pour l hydrodéchloration et l'hydrodéaromatisation du DCF dans l'eau en présence d'un catalyseur au ruthénium déposé sur charbon actif (5%Ru, 59.7% H2O, type H 101B Degussa) à 60°C et 25 bars. Les résultats de cette recherche peuvent potentiellement s'appliquer à d'autres secteurs industriels où des systèmes compacts sont nécessaires / In this work, we aim to overcome photon transfer limitations and mass transfer limitations to design, operate and characterize a compact photocatalytic reactor to remove the pharmaceutical pollutant diclofenac (DCF) in a laboratory pilot reactor, and further to produce metrics for the design of a full scale industrial pilot. Metrics include rate law for pollutant degradation, optimal photocatalytic film thickness, catalyst deactivation law, light distribution, geometry, etc. under process conditions. Catalyst deposition, kinetics, catalyst deactivation; external and internal mass transfer and UV light diffusion in TiO2 film, etc. were studied with a model molecule methylene blue (MB) and operation parameters - flow rate, initial concentration of MB, light intensity, thickness of catalyst film, dissolved oxygen, etc - on MB photocatalytic degradation were investigated. A reactor model was built considering the mass transfer and light extinction issues. Numerical integration was performed to fit the experimental data to determine the intrinsic rate constant and order of light intensity. This methodology was then applied albeit partially to the targeted DCF, combined photocatalysis together with hydrogenation technology. Drop-coating method was chosen mainly for catalyst deposition and a wide range of catalyst (TiO2 P25) film was got with this method. A method to get and use the density of the catalyst film was performed to determine the thickness of deposited catalyst film. The extinction coefficients of the Pyrex glass and TiO2-P25 film were measured experimentally and compatible with literature data. DCF was degraded by photocatalysis and hydrogenation. Hydrogenation was proved to be effective for hydrodechlorination and hydrodearomatisation of DCF in water in the presence of Ru/C catalyst (5% Ru, Type H 101B Degussa) at 60°C and around 25 bars. This research can also be applied to other industrial sectors (off-shore platforms, “inside-thecity” production units, etc.) where such compact process may be required
9

Contribution à l'étude des transferts de matière gaz-liquide en présence de réactions chimiques / Contribution to the gas-liquid mass transfer study coupled with chemical reactions

Wylock, Christophe 29 September 2009 (has links)
Le bicarbonate de soude raffiné, produit industriellement par la société Solvay, est fabriqué dans des colonnes à bulles de grande taille, appelées les colonnes BIR.<p>Dans ces colonnes, une phase gazeuse contenant un mélange d’air et dioxyde de carbone (CO2) est dispersée sous forme de bulles dans une solution aqueuse de carbonate et de bicarbonate de sodium (respectivement Na2CO3 et NaHCO3). Cette dispersion donne lieu à un transfert de CO2 des bulles vers la phase liquide. Au sein des colonnes, la phase gazeuse se répartit dans deux populations de bulles :des petites bulles (diamètre de quelques mm) et des grandes bulles (diamètre de quelques cm). Le transfert bulle-liquide de CO2 est couplé à des réactions chimiques prenant place en phase liquide, qui conduisent à la conversion du Na2CO3 en NaHCO3. Une fois la concentration de saturation dépassée le NaHCO3 précipite sous forme de cristaux et un mélange liquide-solide est recueilli à la sortie de ces colonnes.<p>Ce travail, réalisé en collaboration avec la société Solvay, porte sur l’étude et la modélisation mathématique des phénomènes de transfert de matière entre phases, couplés à des réactions chimiques, prenant place au sein d’une colonne BIR. L’association d’études sur des colonnes à bulles à l’échelle industrielle ou réduite (pilote) et d’études plus fondamentales sur des dispositifs de laboratoire permet de développer une meilleure compréhension du fonctionnement des colonnes BIR et d’en construire un modèle mathématique détaillé.<p>L’objectif appliqué de ce travail est la mise au point d’un modèle mathématique complet et opérationnel d’une colonne BIR. Cet objectif est supporté par trois blocs de travail, dans lesquels différents outils sont développés et exploités.<p><p>Le premier bloc est consacré à la modélisation mathématique du transfert bulle-liquide de CO2 dans une solution aqueuse de NaHCO3 et de Na2CO3. Ce transfert est couplé à des réactions chimiques en phase liquide qui influencent sa vitesse. Dans un premier temps, des modèles sont développés selon des approches unidimensionnelles classiquement rencontrées dans la littérature. Ces approches passent par une idéalisation de l’écoulement du liquide autour des bulles. Une expression simplifiée de la vitesse du transfert bulle-liquide de CO2, est également développée et validée pour le modèle de colonne BIR.<p>Dans un second temps, une modélisation complète des phénomènes de transport (convection et diffusion), couplés à des réactions chimiques, est réalisée en suivant une approche bidimensionnelle axisymétrique. L’influence de la vitesse de réactions sur la vitesse de transfert est étudiée et les résultats des deux approches sont également comparés.<p><p>Le deuxième bloc est consacré à l’étude expérimentale du transfert gaz-liquide de CO2 dans des solutions aqueuses de NaHCO3 et de Na2CO3. A cette fin, un dispositif expérimental est développé et présenté. Du CO2 est mis en contact avec des solutions aqueuses de NaHCO3 et de Na2CO3 dans une cellule transparente. Les phénomènes provoqués en phase liquide par le transfert de CO2 sont observés à l’aide d’un interféromètre de Mach-Zehnder.<p>Les résultats expérimentaux sont comparés à des résultats de simulation obtenus avec un des modèles unidimensionnels développés dans le premier bloc. De cette comparaison, il apparaît qu’une mauvaise estimation de la valeur de certains paramètres physico-chimiques apparaissant dans les équations de ce modèle conduit à des écarts significatifs entre les grandeurs observées expérimentalement et les grandeurs estimées par simulation des équations du modèle.<p>C’est pourquoi une méthode d’estimation paramétrique est également développée afin d’identifier les valeurs numériques de ces paramètres physico-chimiques sur base des résultats expérimentaux. Ces dernières sont également discutées.<p><p>Dans le troisième bloc, nous apportons une contribution à l’étude des cinétiques de précipitation du NaHCO3 dans un cristallisoir à cuve agitée. Cette partie du travail est réalisée en collaboration avec Vanessa Gutierrez (du service Matières et Matériaux de l’ULB).<p>Nous contribuons à cette étude par le développement de trois outils :une table de calcul Excel permettant de synthétiser les résultats expérimentaux, un ensemble de simulations de l’écoulement au sein du cristallisoir par mécanique des fluides numérique et une nouvelle méthode d’extraction des cinétiques de précipitation du NaHCO3 à partir des résultats expérimentaux. Ces trois outils sont également utilisés de façon combinée pour estimer les influences de la fraction massique de solide et de l’agitation sur la cinétique de germination secondaire du NaHCO3.<p><p>Enfin, la synthèse de l’ensemble des résultats de ces études est réalisée. Le résultat final est le développement d’un modèle mathématique complet et opérationnel des colonnes BIR. Ce modèle est développé en suivant l’approche de modélisation en compartiments, développée au cours du travail de Benoît Haut. Ce modèle synthétise les trois blocs d’études réalisées dans ce travail, ainsi que les travaux d’Aurélie Larcy (du service Transferts, Interfaces et Procédés de l’ULB) et de Vanessa Gutierrez. Les équations modélisant les différents phénomènes sont présentées, ainsi que la méthode utilisée pour résoudre ces équations. Des simulations des équations du modèle sont réalisées et discutées. Les résultats de simulation sont également comparés à des mesures effectuées sur une colonne BIR. Un accord raisonnable est observé.<p>A l’issue de ce travail, nous disposons donc d’un modèle opérationnel de colonne BIR. Bien que ce modèle doive encore être optimisé et validé, il peut déjà être utilisé pour étudier l’effet des caractéristiques géométriques des colonnes BIR et des conditions appliquées à ces colonnes sur le comportement des simulations des équations du modèle et pour identifier des tendances.<p>//<p>The refined sodium bicarbonate is produced by the Solvay company using large size bubble columns, called the BIR columns.<p>In these columns, a gaseous phase containing an air-carbon dioxyde mixture (CO2) is dispersed under the form of bubbles in an aqueous solution of sodium carbonate and sodium bicarbonate (Na2CO3 and NaHCO3, respectively). This dispersion leads to a CO2 transfer from the bubbles to the liquid phase. Inside these columns, the gaseous phase is distributed in two bubbles populations :small bubbles (a few mm of diameter) and large bubbles (a few cm of diameter).<p>The bubble-liquid CO2 transfer is coupled with chemical reactions taking places in the liquid phase that leads to the conversion of Na2CO3 to NaHCO3. When the solution is supersaturated in NaHCO3, the NaHCO3 precipitates under the form of crystals and a liquid-solid mixture is extracted at the outlet of the BIR columns.<p>This work, realized in collaboration with Solvay, aims to study and to model mathematically the mass transport phenomena between the phases, coupled with chemical reactions, taking places inside a BIR column. Study of bubble columns at the industrial and the pilot scale is combined to a more fundamental study at laboratory scale to improve the understanding of the BIR columns functioning and to develop a detailed mathematical modeling.<p>The applied objective of this work is to develop a complete and operational mathematical modeling of a BIR column. This objective is supported by three blocks of work. In each block, several tools are developed and used.<p><p>The first block is devoted to the mathematical modeling of the bubble-liquid CO2 transfer in an NaHCO3 and Na2CO3 aqueous solution. This transfer is coupled with chemical reactions in liquid phase, which affect the transfer rate.<p>In a first time, mathematical models are developed following the classical one-dimensional approaches of the literature. These approaches idealize the liquid flow around the bubbles. A simplified expression of the bubble-liquid CO2 transfer rate is equally developed and validated for the BIR column model.<p>In a second time, a complete modeling of the transport phenomena (convection and diffusion) coupled with chemical reactions is developed, following an axisymmetrical twodimensional approach. The chemical reaction rate influence on the bubble-liquid transfer rate is studied and the results of the two approaches are then compared.<p><p>The second block is devoted to the experimental study of the gas-liquid CO2 transfer to NaHCO3 and Na2CO3 aqueous solutions. An experimental set-up is developed and presented. CO2 is put in contact with NaHCO3 and Na2CO3 aqueous solutions in a transparent cell. The phenomena induced in liquid phase by the CO2 transfer are observed using a Mach-Zehnder interferometer.<p>The experimental results are compared to simulation results that are obtained using one of the one-dimensional model developed in the first block. From this comparison, it appears that a wrong estimation of some physico-chemical parameter values leads to significative differences between the experimentally observed quantities and those estimated by simulation of the model equations. Therefore, a parametric estimation method is developed in order to estimate those parameters numerical values from the experimental results. The found values are then discussed.<p><p>In the third block is presented a contribution to the NaHCO3 precipitation kinetic study in a stirred-tank crystallizer. This part of the work is realized in collaboration with Vanessa Gutierrez (Chemicals and Materials Department of ULB).<p>Three tools are developed :tables in Excel sheet to synthetize the experimental results, a set of simulations of the flow inside the crystallizer by Computational Fluid Dynamic (CFD) and a new method to extract the NaHCO3 precipitation kinetics from the experimental measurements. These three tools are combined to estimate the influences of the solid mass fraction and the flow on the NaHCO3 secondary nucleation rate.<p><p>Finally, the synthesis of all these results is realized. The final result is the development of a complete and operational mathematical model of BIR columns. This model is developed following the compartmental modeling approach, developed in the PhD thesis of Benoît Haut. This model synthetizes the three block of study realized in this work and the studies of Aurélie Larcy (Transfers, Interfaces and Processes Department of ULB) and those of Vanessa Gutierrez. The equations modeling the phenomena taking place in a BIR column are presented as the used method to solve these equations. The equations of the model are simulated and the results are discussed. The results are equally compared to experimental measurement realized on a BIR column. A reasonable agreement is observed.<p>At the end of this work, an operational model of a BIR column is thus developed. Although this model have to be optimized and validated, it can already be used to study the influences of the geometrical characteristics of the BIR columns and of the conditions applied to these columns on the behaviour of the model equation simulations and to identity tendencies. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0918 seconds