• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 453
  • 98
  • 87
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • Tagged with
  • 830
  • 245
  • 239
  • 237
  • 226
  • 187
  • 150
  • 140
  • 138
  • 94
  • 91
  • 90
  • 85
  • 83
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

El Niño Southern Oscillation Influences on Precipitation, Discharge, and Nutrient Concentrations in the Upper Salt River Watershed in Arizona

January 2012 (has links)
abstract: Many studies over the past two decades examined the link between climate patterns and discharge, but few have attempted to study the effects of the El Niño Southern Oscillation (ENSO) on localized and watershed specific processes such as nutrient loading in the Southwestern United States. The Multivariate ENSO Index (MEI) is used to describe the state of the ENSO, with positive (negative) values referring to an El Niño condition (La Niña condition). This study examined the connection between the MEI and precipitation, discharge, and total nitrogen (TN) and total phosphorus (TP) concentrations in the Upper Salt River Watershed in Arizona. Unrestricted regression models (UMs) and restricted regression models (RMs) were used to investigate the relationship between the discharges in Tonto Creek and the Salt River as functions of the magnitude of the MEI, precipitation, and season (winter/summer). The results suggest that in addition to precipitation, the MEI/season relationship is an important factor for predicting discharge. Additionally, high discharge events were associated with high magnitude ENSO events, both El Niño and La Niña. An UM including discharge and season, and a RM (restricting the seasonal factor to zero), were applied to TN and TP concentrations in the Salt River. Discharge and seasonality were significant factors describing the variability in TN in the Salt River while discharge alone was the significant factor describing TP. TN and TP in Roosevelt Lake were evaluated as functions of both discharge and MEI. Some significant correlations were found but internal nutrient cycling as well as seasonal stratification of the water column of the lake likely masks the true relationships. Based on these results, the MEI is a useful predictor of discharge, as well as nutrient loading in the Salt River Watershed through the Salt River and Tonto Creek. A predictive model investigating the effect of ENSO on nutrient loading through discharge can illustrate the effects of large scale climate patterns on smaller systems. / Dissertation/Thesis / M.S. Biology 2012
402

Uso do modelo Dryrios na simulação de trocas hídricas entre um trecho do Rio Jaguaribe e o Aquífero Aluvionar na Bacia Hidrográfica Patos / Cariús / Iguatu - Ceará / Using Dryrio Model to simulate water exchanges between a stretch of the Jaguaribe River and the Alluvial Aquifer in the Watershed Patos / Cariús / Iguatu - Ceará

Landim, Rafael Bezerra Tavares Vasques January 2014 (has links)
LANDIM, Rafael Bezerra Tavares Vasques. Uso do modelo Dryrios na simulação de trocas hídricas entre um trecho do Rio Jaguaribe e o Aquífero Aluvionar na Bacia Hidrográfica Patos / Cariús / Iguatu - Ceará. 2014. 99 f. Dissertação (Mestrado em Engenharia Agrícola)-Universidade Federal do Ceará, Fortaleza, 2014. / Submitted by Vitor Campos (vitband@gmail.com) on 2016-10-14T23:07:38Z No. of bitstreams: 1 2014_dis_rbtvlandim.pdf: 3778257 bytes, checksum: f93151a4dd261906bdba7716249fe2cc (MD5) / Approved for entry into archive by Jairo Viana (jairo@ufc.br) on 2016-10-18T18:50:05Z (GMT) No. of bitstreams: 1 2014_dis_rbtvlandim.pdf: 3778257 bytes, checksum: f93151a4dd261906bdba7716249fe2cc (MD5) / Made available in DSpace on 2016-10-18T18:50:05Z (GMT). No. of bitstreams: 1 2014_dis_rbtvlandim.pdf: 3778257 bytes, checksum: f93151a4dd261906bdba7716249fe2cc (MD5) Previous issue date: 2014 / The hydrology of semiarid region is quite different from the hydrology of humid and arid regions. Understanding the hydrology under current and future climate, as well as under the influence of the use and occupation of land, is essential for the management and planning of water resources. The interaction mechanism river-aquifer indirectly reflects the knowledge of the groundwater recharge, thus being a prerequisite for the efficient and sustainable management of the groundwater resource. The Dryrios model was developed to simulate the dynamics of river-aquifer in arid and semiarid regions. In this context, the aim of this study was to evaluate the dynamics of river-aquifer flow in the Basin Patos / Carius / Iguatu, located in the South Central region of the state of Ceará, using Dryrios model. In this work we carried out the three monitoring wells located in the study area in the period 2010-2013. Flows River were monitored by CPRM. With information on hydrological variables obtained three parameterizations were performed. Considering seven observed hydrological events, we carried out a sensitivity analysis using the Error (E) as a parameter for analysis. Simultaneously there was the calibration of the model, considering the most sensitive parameters, using the analysis the coefficient of efficiency NASH (COE), reducing the uncertainties of the model parameterization process. Then took place the seven hydrological simulations events aiming to validate the model using E and the COE in the analysis of the results of flow of the river and the aquifer hydraulic loads. The analysis also compared the calculated and observed values of the volumes transported by the event and the maximum peak flows. The results showed that only two parameters had sensitivity saturated hydraulic conductivity and wetting front suction. To calibrate the model, it was found not acceptable improvements. After the calibration of the model, the COE for better flow rates was 36%, an acceptable value. In all calibrations hydraulic loads of the aquifer showed no COE's acceptable. Thus, the use of Dryrios civil society and water resources management institutions did not represent reality, preventing decisionmaking, especially when it comes to groundwater. / A hidrologia do semiárido é bastante diferente da hidrologia de regiões úmidas e áridas. Compreender a hidrologia sob o clima atual e futuro, bem como sob a influência do uso e ocupação da terra, é essencial para a gestão e planejamento dos recursos hídricos. O mecanismo de interação rio-aquífero reflete indiretamente no conhecimento da recarga das águas subterrâneas, sendo, portanto, um pré-requisito para uma gestão eficiente e sustentável do recurso hídrico subterrâneo. O modelo Dryrios foi desenvolvido para simular a dinâmica rio-aquífero em regiões áridas e semiáridas. Nesse contexto, o objetivo desse trabalho foi avaliar a dinâmica de fluxo rio-aquífero na Bacia Hidrográfica Patos/ Cariús/ Iguatu, localizada na Região Centro-Sul do Estado do Ceará, utilizando o modelo Dryrios. Nesse trabalho realizou-se o monitoramento de três poços localizados na área de estudo, no período de 2010 a 2013. As vazões do rio foram monitoradas pela CPRM. Com informações de variáveis hidrológicas obtidas foram realizadas três parametrizações. Considerando sete eventos hidrológicos observados, realizou-se uma análise de sensibilidade, utilizando o Erro (E) como parâmetro de análise. Simultaneamente realizou-se a calibração do modelo, considerando os parâmetros mais sensíveis, utilizando na análise o coeficiente de eficiência NASH (COE), reduzindo incertezas do processo de parametrização do modelo. Em seguida realizou-se simulações dos sete eventos hidrológicos buscando a validação do modelo, utilizando o E e o COE na análise dos resultados obtidos de vazões do rio e cargas hidráulicas do aquífero. Na análise também comparou-se os valores calculados e observados dos volumes transportados por evento e dos picos máximos de vazão. Os resultados mostraram que apenas dois parâmetros apresentaram sensibilidade, condutividade hidráulica saturada e sucção na frente de molhamento. Na calibração do modelo, não constatou-se melhoras aceitáveis. Após as calibrações do modelo, o melhor COE para as vazões foi de 36%, um valor aceitável. Em todas as calibrações as cargas hidráulicas do aquífero não apresentaram COE's aceitáveis. Assim, a utilização do Dryrios pela sociedade civil e instituições gestoras de recursos hídricos não representa bem a realidade, inviabilizando a tomada de decisões, especialmente em se tratando de águas subterrâneas.
403

A Hierarchical Modeling Approach to Simulating the Geomorphic Response of River Systems to Climate Change

Praskievicz, Sarah 29 September 2014 (has links)
Anthropogenic climate change significantly affects water resources. River flows in mountainous regions are driven by snowmelt and are therefore highly sensitive to increases in temperature resulting from climate change. Climate-driven hydrological changes are potentially significant for the fluvial geomorphology of river systems. In unchanging climatic and tectonic conditions, a river's morphology will develop in equilibrium with inputs of water and sediment, but climate change represents a potential forcing on these variables that may push the system into disequilibrium and cause significant changes in river morphology. Geomorphic factors, such as channel geometry, planform, and sediment transport, are major determinants of the value of river systems, including their suitability for threatened and endangered species and for human uses of water. This dissertation research uses a hierarchical modeling approach to investigate potential impacts of anthropogenic climate change on river morphology in the interior Pacific Northwest. The research will address the following theoretical and methodological objectives: 1) Develop downscaled climate change scenarios, based on regional climate-model output, including changes in daily minimum and maximum temperature and precipitation. 2) Estimate how climate change scenarios affect river discharge and suspended-sediment load, using a basin-scale hydrologic model. 3) Examine potential impacts of climate-driven hydrologic changes on stream power and shear stress, bedload sediment transport, and river morphology, including channel geometry and planform. The downscaling approach, based on empirically-estimated local topographic lapse rates, produces high-resolution climate grids with positive forecast skill. The hydrologic modeling results indicate that projected climate change in the study rivers will change the annual cycle of hydrology, with increased winter discharge, a decrease in the magnitude of the spring snowmelt peak, and decreased summer discharge. Geomorphic modeling results suggest that changes in reach-averaged bedload transport are highly sensitive to likely changes in the recurrence interval of the critical discharge needed to mobilize bed sediments. This dissertation research makes an original contribution to the climate-change impacts literature by linking Earth processes across a wide range of spatial scales to project changes in river systems that may be significant for management of these systems for societal and ecological benefits. This dissertation includes unpublished co-authored material.
404

Integration of Remote Sensing, Field Observations and Modelling for Ecohydrological Studies in Sonora, Mexico

January 2014 (has links)
abstract: Ecohydrological responses to rainfall in the North American monsoon (NAM) region lead to complex surface-atmosphere interactions. In early summer, it is expected that soil properties and topography act as primary controls in hydrologic processes. Under the presence of strongly dynamic ecosystems, catchment hydrology is expected to vary substantially in comparison to other semiarid areas, affecting our understanding of ecohydrological processes and the parameterization of predictive models. A large impediment toward making progress in this field is the lack of spatially extensive observational data. As a result, it is critical to integrate numerical models, remote sensing observations and ground data to understand and predict ecohydrological dynamics in space and time, including soil moisture, evapotranspiration and runoff generation dynamics. In this thesis, a set of novel ecohydrological simulations that integrate remote sensing and ground observations were conducted at three spatial scales in a semiarid river basin in northern Sonora, Mexico. First, single site simulations spanning several summers were carried out in two contrasting mountain ecosystems to predict evapotranspiration partitioning. Second, a catchment-scale simulation was conducted to evaluate the effects of spatially-variable soil thickness and textural properties on water fluxes and states during one monsoon season. Finally, a river basin modeling effort spanning seven years was applied to understand interannual variability in ecohydrological dynamics. Results indicated that ecohydrological simulations with a dynamic representation of vegetation greening tracked well the seasonal evolution of observed evapotranspiration and soil moisture at two measurement locations. A switch in the dominant component of evapotranspiration from soil evaporation to plant transpiration was observed for each ecosystem, depending on the timing and magnitude of vegetation greening. Furthermore, spatially variable soil thickness affects subsurface flow while soil texture controls patterns of surface soil moisture and evapotranspiration during the transition from dry to wet conditions. Finally, the ratio of transformation of precipitation into evapotranspiration (ET/P) and run off (Q/P) changed in space and time as summer monsoon progresses. The results of this research improve the understanding of the ecohydrology of NAM region, which can be useful for developing sustainable watershed management plans in the face of anticipated land cover and climate changes. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2014
405

In the Complaint of Gins

January 2015 (has links)
abstract: A collection of stories as viewed through the lens of Oulipo methodology. / Dissertation/Thesis / Masters Thesis Creative Writing 2015
406

Turbulence, Sediment Transport, Erosion, and Sandbar Beach Failure Processes In Grand Canyon

January 2015 (has links)
abstract: This research examines lateral separation zones and sand bar slope stability using two methods: a parallelized turbulence resolving model and full-scale laboratory experiments. Lateral flow separation occurs in rivers where banks exhibit strong curvature, for instance canyon rivers, sharp meanders and river confluences. In the Colorado River, downstream Glen Canyon Dam, lateral separation zones are the principal storage of sandbars. Maximum ramp rates have been imposed to Glen Canyon Dam operation to minimize mass loss of sandbars. Assessment of the effect of restricting maximum ramp rates in bar stability is conducted using multiple laboratory experiments. Results reveal that steep sandbar faces would rapidly erode by mass failure and seepage erosion to stable slopes, regardless of dam discharge ramp rates. Thus, continued erosion of sand bars depends primarily of turbulent flow and waves. A parallelized, three-dimensional, turbulence resolving model is developed to study flow structures in two lateral separation zones located along the Colorado River in Grand Canyon. The model employs a Detached Eddy Simulation (DES) technique where variables larger than the grid scale are fully resolved, while Sub-Grid-Scale (SGS) variables are modeled. The DES-3D model is validated using ADCP flow measurements and skill metric scores show predictive capabilities of simulated flow. The model reproduces the patterns and magnitudes of flow velocity in lateral recirculation zones, including size and position of primary and secondary eddy cells and return current. Turbulence structures with a predominately vertical axis of vorticity are observed in the shear layer, becoming three-dimensional without preferred orientation downstream. The DES-3D model is coupled with a sediment advection-diffusion formulation, wherein advection is provided by the DES velocity field minus particles settling velocity, and diffusion is provided by the SGS. Results show a lateral recirculation zone having a continuous export and import of sediment from and to the main channel following a pattern of high frequency pulsations of positive deposition fluxes. These high frequency pulsations play an important role to prevent an oversupply of sediment within the lateral separation zones. Improved predictive capabilities are achieved with this model when compared with previous two- and three-dimensional quasi steady and steady models. / Dissertation/Thesis / Appendix C Video 3.1 / Appendix C Video 3.2 / Appendix C Video 3.3 / Appendix C Video 3.4 / Appendix C Video 3.5 / Appendix C Video 3.6 / Appendix C Video 3.7 / Appendix F Video 4.1.a / Appendix F Video 4.1.b / Appendix F Video 4.2 / Doctoral Dissertation Geography 2015
407

Using an Ecohydrology Model to Explore the Role of Biological Soil Crusts on Soil Hydrologic Conditions at the Canyonlands Research Station, Utah

January 2015 (has links)
abstract: Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model in order to understand how BSCs affect the storage, retention, and infiltration of water into soils characteristic of the Colorado Plateau. A set of soil moisture measurements obtained at a climate manipulation experiment near Moab, Utah, are used for model development and testing. Over five years, different rainfall treatments over experimental plots resulted in the development of BSC cover with different properties that influence soil moisture differently. This study used numerical simulations to isolate the relative roles of different BSC properties on the hydrologic response at the plot-scale. On-site meteorological, soil texture and vegetation property datasets are utilized as inputs into a ecohydrology model, modified to include local processes: (1) temperature-dependent precipitation partitioning, snow accumulation and melt, (2) seasonally-variable potential evapotranspiration, (3) plant species-specific transpiration factors, and (4) a new module to account for the water balance of the BSC. Soil, BSC and vegetation parameters were determined from field measurements or through model calibration to the soil moisture observations using the Shuffled Complex Evolution algorithm. Model performance is assessed against five years of soil moisture measurements at each experimental site, representing a wide range of crust cover properties. Simulation experiments were then carried out using the calibrated ecohydrology model in which BSC parameters were varied according to the level of development of the BSC, as represented by the BSC roughness. These results indicate that BSCs act to both buffer against evaporative soil moisture losses by enhancing BSC moisture evaporation and significantly alter the rates of soil water infiltration by reducing moisture storage and increasing conductivity in the BSC. The simulation results for soil water infiltration, storage and retention across a wide range of meteorological events help explain the conflicting hydrologic outcomes present in the literature on BSCs. In addition, identifying how BSCs mediate infiltration and evaporation processes has implications for dryland ecosystem function in the western United States. / Dissertation/Thesis / Masters Thesis Geological Sciences 2015
408

Evaluation of Flood Mitigation Strategies for the Santa Catarina Watershed using a Multi-model Approach

January 2016 (has links)
abstract: The increasingly recurrent extraordinary flood events in the metropolitan area of Monterrey, Mexico have led to significant stakeholder interest in understanding the hydrologic response of the Santa Catarina watershed to extreme events. This study analyzes a flood mitigation strategy proposed by stakeholders through a participatory workshop and are assessed using two hydrological models: The Hydrological Modeling System (HEC-HMS) and the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). The stakeholder-derived flood mitigation strategy consists of placing new hydraulic infrastructure in addition to the current flood controls in the basin. This is done by simulating three scenarios: (1) evaluate the impact of the current structure, (2) implementing a large dam similar to the Rompepicos dam and (3) the inclusion of three small detention dams. These mitigation strategies are assessed in the context of a major flood event caused by the landfall of Hurricane Alex in July 2010 through a consistent application of the two modeling tools. To do so, spatial information on topography, soil, land cover and meteorological forcing were assembled, quality-controlled and input into each model. Calibration was performed for each model based on streamflow observations and maximum observed reservoir levels from the National Water Commission in Mexico. Simulation analyses focuses on the differential capability of the two models in capturing the spatial variability in rainfall, topographic conditions, soil hydraulic properties and its effect on the flood response in the presence of the different flood mitigation structures. The implementation of new hydraulic infrastructure is shown to have a positive impact on mitigating the flood peak with a more favorable reduction in the peak at the outlet from the larger dam (16.5% in tRIBS and 23% in HEC-HMS) than the collective effect from the small structures (12% in tRIBS and 10% in HEC-HMS). Furthermore, flood peak mitigation depends strongly on the number and locations of the new dam sites in relation to the spatial distribution of rainfall and flood generation. Comparison of the two modeling approaches complements the analysis of available observations for the flood event and provides a framework within which to derive a multi-model approach for stakeholder-driven solutions. / Dissertation/Thesis / Masters Thesis Civil and Environmental Engineering 2016
409

Experimental Study of the Role of Grain Size in Erosion of Bedrock Channels by Abrasion

January 2016 (has links)
abstract: The morphology of mountainous areas is strongly influenced by stream bed incision rates, but most studies of landscape evolution consider erosion at basin scales or larger. The research here attempts to understand the smaller-scale mechanics of erosion on exposed bedrock channels in the conceptual framework of an established saltation-abrasion model by Sklar and Dietrich [2004]. The recirculating flume used in this experiment allows independent control of bed slope, water discharge rate, sediment flux, and sediment grain size – all factors often bundled together in simple models of river incision and typically cross-correlated in natural settings. This study investigates the mechanics of erosion on exposed bedrock channels caused by abrasion of transported particles. Of particular interest are saltating particles, as well as sediment near the threshold between saltation and suspension - sediment vigorously transported but with significant interaction with the bed. The size of these erosive tools are varied over an order of magnitude in mean grain diameter, including a sand of D¬50 = 0.56 mm, and three gravel sizes of 3.39, 4.63, and 5.88 mm. Special consideration was taken to prevent any flow conditions that created a persistent alluvial cover. The erodible concrete substrate is fully exposed at all times during experiments reported here. Rates of erosion into the concrete substrate (a bedrock proxy) were measured by comparing topographic data before and after each experimental run, made possible by a precision laser mounted on a high speed computer-controlled cart. The experimental flume was able to produce flow discharge as high as 75 liters per second, sediment fluxes (of many varieties) up to 215 grams per second, and bed slopes up to 10%. I find a general positive correlation is found between erosion rate and bed slope, shear stress, grain size, and sediment flux. / Dissertation/Thesis / Masters Thesis Geological Sciences 2016
410

Impacts of Land Use and Land Cover Change on Urban Hydroclimate of Colorado River Basin

January 2017 (has links)
abstract: Rapid urbanization and population growth occurring in the cities of South Western United States have led to significant modifications in its environment at local and regional scales. Both local and regional climate changes are expected to have massive impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need of study of hydro-climatic impacts on water resource management in this region. This thesis is devoted to understanding the impact of land use and land cover (LULC) changes on the local and regional hydroclimate, with the goal to address urban planning issues and provide guidance for sustainable development. In this study, three densely populated urban areas, viz. Phoenix, Las Vegas and Denver in the CRB are selected to capture the various dimensions of the impacts of land use changes on the regional hydroclimate in the entire CRB. Weather Research and Forecast (WRF) model, incorporating the latest urban modeling system, is adopted for regional climate modeling. Two major types of urban LULC changes are studied in this Thesis: (1) incorporation of urban trees with their radiative cooling effect, tested in Phoenix metropolitan, and (2) projected urban expansion in 2100 obtained from Integrated Climate and Land Use Scenarios (ICLUS) developed by the US Environmental Protection Agency for all three cities. The results demonstrated prominent nocturnal cooling effect of due to radiative shading effect of the urban trees for Phoenix reducing urban surface and air temperature by about 2~9 °C and 1~5 °C respectively and increasing relative humidity by 10~20% during an mean diurnal cycle. The simulations of urban growth in CRB demonstratedii nocturnal warming of about 0.36 °C, 1.07 °C, and 0.94 °C 2m-air temperature and comparatively insignificant change in daytime temperature, with the thermal environment of Denver being the most sensitive the urban growth. The urban hydroclimatic study carried out in the thesis assists in identifying both context specific and generalizable relationships, patterns among the cities, and is expected to facilitate urban planning and management in local (cities) and regional scales. / Dissertation/Thesis / Masters Thesis Civil, Environmental and Sustainable Engineering 2017

Page generated in 0.0947 seconds