• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 8
  • 6
  • 6
  • 3
  • Tagged with
  • 36
  • 36
  • 26
  • 18
  • 15
  • 14
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Optique linéaire et non linéaire de films de nano particules métalliques

El Harfouch, Yara 19 October 2009 (has links) (PDF)
La technique de la génération de second harmonique (SHG) a été employée pour étudier la réponse non linéaire des assemblées de nano particules métalliques aux interfaces liquides. Les nanoparticules ont d'abord été caractérisées en utilisant la génération de second harmonique incohérente, également nommée diffusion hyper Rayleigh. L'étude de particules d'or et d'argent, nanosphères et des nanobâtonnets, ont permis de mettre en évidence l'influence de la couche protectrice de surfactants sur l'hyperpolarisabilité quadratique de ces particules. Ces particules ont ensuite été placées à l'interface air/eau dans une cuve de Langmuir afin d'étudier le rôle des interactions entre les particules sur la réponse optique linéaire et non linéaire. Celle-ci a révélé dans ces films formés à l'interface la présence de couplages forts entre les particules lors de la compression de la surface. Cela conduit à une transition dans le film une fois que la distance entre les particules passe en dessous d'une distance critique. Ces études ont été complétées par des expériences réalisées à l'interface liquide/liquide et sur une électrode de carbone vitreux pour examiner plus en détail le rôle de la rugosité à l'échelle nanométrique dans l'exaltation de la réponse non linéaire SHG
22

Derivados de Chalconas e Azometinas: um estudo das hiperpolarizabilidades de primeira e segunda ordem / Chalcones and Azomethynes derivativies: a study of the first and second hiperpolarizabilities

Gotardo, Fernando 24 August 2018 (has links)
A utilização de laser para estudo, análise e caracterização de materiais é de imensa importância no desenvolvimento e progresso da ciência e tecnologia, melhorando ciclicamente a área de ótica não linear (ONL). Estudos do comportamento de compostos orgânicos cujas estruturas são π conjugadas mostram sua ampla aplicabilidade em dispositivos eletrônicos e na área medicinal. A adição de grupos laterias doadores ou aceitadores de elétrons têm a capacidade de aumentar os efeitos ópticos não lineares nestes compostos, otimizando suas propriedades. Nesta dissertação de mestrado, foram realizados estudos em compostos orgânicos focados em suas características ópticas não lineares. Nove derivados de chalconas e quatro derivados de azometinas foram analisadas através da técnica de espalhamento hiper-Rayleigh (HRS) e da técnica de varredura-z, cujos efeitos óticos não lineares observados correspondem à segunda e terceira ordem da polarizabilidade, respectivamente. Com o espalhamento hiper-Rayleigh, foram determinadas a primeira hiperpolarizabilidade βHRS cujo valor mais alto foi 24×10−30 cm5/esu para as chalconas e 273×10−30 cm5/esu para as azometinas. A técnica de varredura-z foi utilizada para determinar o espectro da seção de choque de absorção de dois fótons (σ2PA) cujos valores de pico das moléculas derivadas de chalconas são de aproximadamente 15 GM e algumas apresentaram estados excitados que são permitidos apenas por absorção de dois fótons. Duas das moléculas derivadas de azometinas apresentaram valores de pico da ordem de 12 GM, uma não apresentou absorção de dois fótons e uma apresentou valor de pico de 55 GM. Além disso, foi utilizado o método de Soma-Sobre-Estados (SOS - do inglês Sum-Over-States) para determinar os momentos de dipolo de transição e diferença de momentos de dipolo permanente de todos os derivados. / The use of lasers for study, analyses and characterization of materials are of great importance for progress and development of science and technology, improving in a cyclic way the nonlinear optics area (NLO). Studies of the behave of π-conjugated organic compounds show its wide applicability in electronic devices and in the medicinal area. Adding electron donor or acceptor lateral groups to these compounds may alter its nonlinear optical effects, optimizing its properties. In this Master dissertation, studies on organic compounds focused in its nonlinear optical characteristics were realized. Nine chalcone derivatives and four azomethines derivatives were analyzed using the Hyper-Rayleigh Scattering technique (HRS) and Z-Scan technique, by which the nonlinear optical effects observed corresponds to the second and third order of the polarizabilities, respectively. With the HRS the first hyperpolarizability βHRS was determined, which the highest values was of 24×10−30 cm5/esu for the chalcones, and 273×10−30 cm5/esu for the azomethines. The Z-Scan technique was utilized for determining the two-photon cross-section σ2PA which peak values of the chalcone derivatives were of approximately 15 GM and some of them presented excited states that are only allowed by two-photon absorption. Two of the azomethines derivatives molecules presented peak values of the order of 12 GM, one of them did not present two-photon absorption, and one presented peak value of 55 GM. Furthermore, the Sum-Over-States (SOS) method was used to determine the transition dipole momentums and the difference of permanent dipole momentum of all of the derivatives.
23

Caractérisation par diffusion de second harmonique de nanocristaux pour l'imagerie biomédicale / Second harmonic scattering characterization of nanocrystals for biomedical imaging

Joulaud, Cécile 29 May 2013 (has links)
Les nanocristaux à structure non-centrosymétrique présentent des propriétés optiques non linéaires prometteuses pour une utilisation en tant que marqueurs optiques en imagerie biomédicale, avec un intérêt significatif en termes de suivi sur de longues durées et de profondeur de pénétration dans les tissus biologiques. Le développement de ces marqueurs nécessite la détermination de leurs efficacités optiques non linéaires afin de pouvoir sélectionner les nanocristaux les plus prometteurs. Pour cela, la technique de diffusion Hyper-Rayleigh a été adaptée à la caractérisation de suspensions de nanoparticules (BaTiO3, KNbO3, KTP, LiNbO3 et ZnO, BiFeO3) pour lesquelles l’influence de paramètres comme la taille, la concentration ou l’état d’agrégation a été analysée et discutée. Les nanocristaux de BiFeO3 possèdent une efficacité optique non linéaire largement supérieure aux autres particules, démontrant leur potentiel pour la réalisation de nano-sondes optiques particulièrement performantes. Des mesures résolues en polarisation ont également été mises en œuvre pour déterminer les coefficients optiques non linéaires indépendants des particules étudiées. Dans ce cadre, une étude a permis de mettre en évidence l’influence de la forme des nanocristaux sur cette réponse. / Non-centrosymetric nanocrystals show promising nonlinear optical properties for being used as optical labels in bio-imaging applications, with significant interest for observations of long duration and for penetration depth into biological tissues. The development of such biomarkers requires the determination of their nonlinear optical properties to select the best potential markers. In this thesis, Hyper-Rayleigh Scattering (HRS) technique is used to determine nonlinear efficiencies of several nanocystals (BaTiO3, KNbO3, KTP, LiNbO3, ZnO and BiFeO3). These ensemble measurements have been performed on nanocrystals suspensions, for which the influence of parameters such as size, concentration and aggregation state was discussed. BiFeO3nanocrystals offer the best nonlinear optical efficiency compared to other particles, showing their potential as efficient optical biomarkers. Polarisation-resolved measurements have also been performed to retrieve individual coefficients of the nonlinear tensor of the investigated materials and influent parameters such as nanocrystals shape have been identified.
24

Derivados de Chalconas e Azometinas: um estudo das hiperpolarizabilidades de primeira e segunda ordem / Chalcones and Azomethynes derivativies: a study of the first and second hiperpolarizabilities

Fernando Gotardo 24 August 2018 (has links)
A utilização de laser para estudo, análise e caracterização de materiais é de imensa importância no desenvolvimento e progresso da ciência e tecnologia, melhorando ciclicamente a área de ótica não linear (ONL). Estudos do comportamento de compostos orgânicos cujas estruturas são π conjugadas mostram sua ampla aplicabilidade em dispositivos eletrônicos e na área medicinal. A adição de grupos laterias doadores ou aceitadores de elétrons têm a capacidade de aumentar os efeitos ópticos não lineares nestes compostos, otimizando suas propriedades. Nesta dissertação de mestrado, foram realizados estudos em compostos orgânicos focados em suas características ópticas não lineares. Nove derivados de chalconas e quatro derivados de azometinas foram analisadas através da técnica de espalhamento hiper-Rayleigh (HRS) e da técnica de varredura-z, cujos efeitos óticos não lineares observados correspondem à segunda e terceira ordem da polarizabilidade, respectivamente. Com o espalhamento hiper-Rayleigh, foram determinadas a primeira hiperpolarizabilidade βHRS cujo valor mais alto foi 24×10−30 cm5/esu para as chalconas e 273×10−30 cm5/esu para as azometinas. A técnica de varredura-z foi utilizada para determinar o espectro da seção de choque de absorção de dois fótons (σ2PA) cujos valores de pico das moléculas derivadas de chalconas são de aproximadamente 15 GM e algumas apresentaram estados excitados que são permitidos apenas por absorção de dois fótons. Duas das moléculas derivadas de azometinas apresentaram valores de pico da ordem de 12 GM, uma não apresentou absorção de dois fótons e uma apresentou valor de pico de 55 GM. Além disso, foi utilizado o método de Soma-Sobre-Estados (SOS - do inglês Sum-Over-States) para determinar os momentos de dipolo de transição e diferença de momentos de dipolo permanente de todos os derivados. / The use of lasers for study, analyses and characterization of materials are of great importance for progress and development of science and technology, improving in a cyclic way the nonlinear optics area (NLO). Studies of the behave of π-conjugated organic compounds show its wide applicability in electronic devices and in the medicinal area. Adding electron donor or acceptor lateral groups to these compounds may alter its nonlinear optical effects, optimizing its properties. In this Master dissertation, studies on organic compounds focused in its nonlinear optical characteristics were realized. Nine chalcone derivatives and four azomethines derivatives were analyzed using the Hyper-Rayleigh Scattering technique (HRS) and Z-Scan technique, by which the nonlinear optical effects observed corresponds to the second and third order of the polarizabilities, respectively. With the HRS the first hyperpolarizability βHRS was determined, which the highest values was of 24×10−30 cm5/esu for the chalcones, and 273×10−30 cm5/esu for the azomethines. The Z-Scan technique was utilized for determining the two-photon cross-section σ2PA which peak values of the chalcone derivatives were of approximately 15 GM and some of them presented excited states that are only allowed by two-photon absorption. Two of the azomethines derivatives molecules presented peak values of the order of 12 GM, one of them did not present two-photon absorption, and one presented peak value of 55 GM. Furthermore, the Sum-Over-States (SOS) method was used to determine the transition dipole momentums and the difference of permanent dipole momentum of all of the derivatives.
25

Photonic Crystals with Active Organic Materials

Wu, Yeheng 31 March 2010 (has links)
No description available.
26

Investigations of Strongly Charge Transfer Molecules Using Nonlinear Optical Scattering and Absorption

Tai, Yung-hui 19 January 2005 (has links)
This thesis provides an extensive study of the first molecular hyperpolarizability b of charge-transfer chromophores using hyper-Rayleigh scattering (HRS). The charge-transfer chromophores used in present work involve the tricyanohydrofuran¡]TCF¡^group as an electron acceptor, and/or thiophene in the pi-electron bridge. TCF is a very strong electron acceptor and thiophene greatly lowers the resonance energy. Their presence significantly increases the beta value of the chromophore, therefore enhancing potentials in applications. In hyper-Rayleigh scattering experiments, the laser radiation with tunable wavelengths is used as an excitation source for measuring the frequency dependence of beta. The experiment shows beta exhibiting a significant dispersion in the two-photon resonance region. Using the linear absorption spectrum in coordination with theory, we show that it is possible to use Kramers-Kronig (K-K) transform to reproduce the experimental beta value in the two-photon resonance region. The K-K approach provides an extension to the conventional Oudar-Chemla equation, which is invalid in the spectral region in which two-photon resonance occurs. Using the new approach, it is shown that reliable values of intrinsic hyperpolarizabilities beta_zero of charge-transfer chromophores can be extracted. The coordination of beta_zero with molecular structure provides one with an insight for the origin of the enhancement of the first molecular hyperpolarizability of charge-transfer chromophores. This thesis examines the variation of beta_zero with molecular structure. The same technique is also applied to a dendrimer that has charge-transfer nonlinear optical chromophores incorporated in the dendritic structure. The measured frequency dependent hyperpolarizability of the dendrimer is compared with that calculated from the linear absorption spectrum by the KK transform technique. The intrinsic hyperpolarizability beta_zero of the dendrimer obtained is compared with that of the single chromophore having a structure similar to that incorporated in the dendrimer. The comparison shows that the 3D dendritic structure is effective in reducing the interaction between chromophores by providing sufficient space between them, hence avoiding the possibility of aggregation formation due to attractive interactions between chromophores. The topic of two-photon fluorescence (TPF), which is related to HRS, is also investigated. The intensity of TPF is generally proportional to the square of the incident excitation intensity. Careful measurements of the TPF intensity of a nonlinear optical chromophore in conjunction with required auxiliary parameters have been used as a technique for determining the two-photon absorption cross-section. The TPF intensity measurement carried out in this thesis uses a variety of intensities. At low intensity excitation, the TPF intensity follows the usual quadratic intensity law (QIL), whereas deviations from the QIL are observed at higher incident intensities. The observation of similar lineshape associated with one- and two-photon fluorescence spectra suggests a 3-level model for the description of TPF excited by the incident intensity at various strengths. It is shown that by fitting the observed TPF intensity to an equation developed from the three-level model, it is possible to deduce the two-photon absorption cross section of the nonlinear optical chromophore in solution. The new technique developed using the three-level model is tested on a Rhodamine B/Chloroform solution. The two-photon absorption cross-section obtained by using the new technique is found in agreement with that reported in the literature. Having demonstrated the suitability of the new technique, it is used to determine the two-photon absorption cross-section of a novel nonlinear optical chromophore. The two-photon absorption cross-section using the new technique is then compared with that obtained by the nonlinear transmittance method. The two results are in good agreement, indicating the applicability of the new technique. The new technique is more convenient than the conventional low excitation TPF method as it does not require various auxiliary parameters, some of them are difficult to obtain. The second harmonic generation (SHG) of a chromophore/polymer film which is optically poled by using a coherent superposition of a fundamental and its second harmonic beams. The growth rate of the SHG intensity is found to be proportional to the fourth power of the incident intensity of the fundamental beam, and the plateau intensity SHG is proportional to the square of the incident intensity. These observations are not in agreement with the published theory. While the reason for disagreement is yet to be clarified, the information obtained is useful for the development of nonlinear optical devices.
27

Quadratic Nonlinearity In Covalently And Non-Covalently Linked Molecules In Solution

Bhattacharya, Mily 06 1900 (has links)
This thesis deals with the investigation of the first hyperpolarizabilities (β) of a large number of molecules linked to other molecules either covalently or noncovalently. Chapter 1 gives a brief introduction to supramolecular chemistry and Nonlinear Optics (NLO). A survey of literature pertinent to noncovalently interacting supramolecular assembly and their NLO properties as well as NLO properties of oligomeric systems has been presented. The scope of the present investigation has been described at the end of the chapter. Chapter 2 discusses all the methods used in carrying out this thesis work. The first hyperpolarizabilities (β) of all the compounds have been measured by the hyper Rayleigh scattering (HRS) technique; the experimental details of which are written in this chapter. Various spectroscopic techniques such as NMR, IR, UV-Vis, etc. that were used in the investigation have been presented. The subsequent chapters 3-5 deal with the actual results obtained in this work. In chapter 3 first hyperpolarizabilities of o-, m-, and p-aminobenzoic acids and their oligomers viz., dimer, trimer and tetramer (covalently linked) have been studied. The compounds are synthesized and characterized by various spectroscopic methods and their β values have been measured by HRS. The hyperpolarizability increases in going from the monomer to the dimer but decreases subsequently from the dimer to the trimer to the tetramer. This unexpected trend in β has been attributed to the formation of molecular aggregates in the trimers and tetramers. Further evidences of aggregation come from the results of1H NMR spectroscopy and conductivity measurements. In chapter 4, synthesis, characterization and HRS investigation to probe the formation, dissociation and binding constants of hydrogen bonded supramolecular complexes (noncovalent interaction) formed in solution between 6-amino-2-(pivaloylamino)pyridine and ferrocene functionalized barbituric acid and 5-methoxy-N,N′-bis(6-amino-2-pyridinyl)-1,3-benzenedicarboxamide and ferrocenyl barbituric acid have been described. From the HRS data the stoichiometry of the supramolecular complexes has been determined and compared to that from the NMR data. Some of the complex stoichiometries that are measured by HRS have not been seen in the NMR data and vice versa. The results have been rationalized in terms of the strengths and weaknesses of various spectroscopic methods as applied to this problem. Many fold increase in the β value has been realized in the supramolecular complex formation process. Depolarized HRS experiments have been carried out to obtain structural information on the complexes. In the last chapter the synthesis, characterization and measurements on the first hyperpolarizabilities of unsubstituted tetraphenylporphyrin and its metallated complexes have been presented. Synthesis of supramolecular complexes of ferrocenyl barbituric acid with functionalized porphyrin compounds has been carried out although the amount of the final complex was insufficient for HRS measurements. This chapter ends with a perspective for the future work in the direction.
28

Probing The Origin Of Second Harmonic Generation From Copper Nanoparticles In Solution By Hyper-Rayleigh Scattering

Chandra, Manabendra 09 1900 (has links)
In recent years, coinage metal nanoparticles have emerged as materials with largest quadratic optical nonlinearity. Their first hyperpolarizabilities (β) are very high (105-106 x 10-30 esu) but such large values were quite unexpected because of their apparently centrosymmetric bulk structure. Only a small second harmonic generation (SHG) from coinage metal nanoparticles is expected through higher order multipolar (e.g., quadrupolar) polarization mechanisms. Various possible reasons have been attributed to the observation of large β values in coinage metal nanoparticles. They are: 1) Particles may not be overall centrosymmetric (as appears from the TEM pictures) which, in turn, can make SHG electric dipole allowed, 2) Several polarization mechanisms (dipolar, quadrupolar, retardation, etc.) may be operating simultaneously to render SHG very efficient, 3) SHG can be resonance enhanced if the incident or SH photons fall within the surface plasmon resonance (SPR) absorption bands or higher energy interband transitions in the metal particles, and 4) Surface capping agents used for stabilization of the nanoparticles in solution alter the SH response. It is, therefore, important to experimentally find out which of the above mentioned possibilities are dominant and under what conditions we can identify the contribution of various mechanisms to the overall SHG response of the coinage metal nanoparticles. In this thesis work, the origin of SHG from copper (one of the coinage metals) nanoparticles has been investigated using hyper-Rayleigh scattering (HRS). In chapter 1, an introduction to metal nanoparticles and their optical properties have been presented. A general introduction to second order nonlinear optics and various methods for the determination of first hyperpolarizability are provided. A literature survey on the second order NLO properties of metal nanoparticles is also done. At the end of the chapter, the motivation of the work done is outlined. In chapter 2, the experimental set-ups for unpolarized and polarization resolved hyper-Rayleigh scattering (HRS) measurements at different wavelengths are described. Generation of IR wavelength of 1543 and 1907 nm using stimulated Raman scattering in gases have been presented in this chapter. In chapter 3, synthesis and characterization of copper nanoparticles are described. Four different size copper nanoparticles (5, 9, 25, and 55 nm) were prepared by laser ablation. Size dependencies of first hyperpolarizability were investigated at different wavelengths and it was found that β increases with increasing size of the particle and that the SHG originates mainly from the surface of the particle. Dispersion in first hyperpolarizabilities of the copper nanoparticles has also been investigated and we find that at incident and SH wavelengths far from the SPR absorption band, the hyperpolarizability is large compared to molecular hyperpolarizabilities. In chapter 4, the results of polarization resolved HRS measurements on copper nanoparticles of five different sizes at four different wavelengths (738, 1064, 1543 and 1907 nm) are reported. Polarization analyses show that at small particle size to wavelength (d/λ) ratio the dipolar contribution to SHG is dominant whereas the quadrupolar and retardation effects become important at larger d/λ values. The “small particle limit” in the SHG from coinage metal nanoparticles has been assessed based on our results on copper and others’ results on silver and gold nanoparticles. In chapter 5, the effect of surface capping on the first hyperpolarizability of copper nanoparticles is investigated. Polyvinyl pyrrolidone (PVP) has been used as a capping agent. The results obtained for bare and capped copper nanoparticles show that capping enhances the hyperpolarizability by a factor of 2. In the last chapter 6, general conclusions drawn on SHG from coinage metal nanoparticles based on this work are presented along with future perspectives.
29

Probing The Equilibrium Geometry Of Weakly Interacting Systems In Solution By Hyper-Rayleigh Scattering

Pandey, Ravindra 07 1900 (has links) (PDF)
Under the electric dipole approximation, second harmonic of the incident light is scattered by a collection of randomly oriented molecular dipoles in solution due to instantaneous orientational fluctuation which is directional. If two such dipoles are correlated in space through intermolecular or other interactions, the intensity of the second harmonic scattered light (SHSL) will be related to the extent of such interactions. If two dipoles are arranged in a particular geometry by design, the geometry will determine the intensity of the SHSL. If a molecule has no dipole moment, the intensity of the SHSL will be less and is only allowed by higher order electric multipoles. If two such zero-dipole molecules interact with each other and transfer some amount of electronic charge from one to the other, the induced dipole moment will give rise to an enhanced SHSL. However, along with the direction of the dipole moment from the donor to the acceptor, the actual geometry of such molecular dimer/complex should also play an important role to determine the nature of the SHSL response. If all the isotropic nonzero components of first hyperpolarizability (β) are taken into account, from the measurement of β and related quantities such as depolarization ratios, in solution it should be possible to derive information about the geometry of the dimer/complex. This is precisely the motivation behind this thesis. Chapter 1 gives a brief introduction of 1:1 charge transfer (CT) complexes between a donor and an acceptor and their importance in chemistry. It also contains an introduction to nonlinear optics, various spectroscopic techniques to characterize CT complexes, etc. The motivation of extracting the geometry of such complexes from hyper-Rayleigh scattering (HRS) measurements in solution is presented in this chapter. In Chapter 2, all the experimental details of the unpolarized and polarization resolved HRS measurements at various excitation wavelengths have been described. Generation of infrared wavelengths (1543 nm and 1907 nm) using stimulated Raman scattering in gases have also been discussed. In Chapter 3, the first hyperpolarizability (βHRS) for two series of 1:1 molecular complexes between methyl substituted benzene donors with tetrachloro-p-benzoquinone (CHL) and dicyanodichloro-p-benzoquinone (DDQ) acceptors in solution at 1543 nm have been presented. Enhancement of βHRS due to charge transfer from the donor to the acceptor molecule which was predicted theoretically has been verified. Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, two macroscopic depolarization ratios D = I2ω,X,X/I2ω,Z,X and D' = I2ω,X,C/I2ω,Z,C in the laboratory fixed XYZ frame by detecting the SHSL in a polarization resolved fashion have been measured. The experimentally obtained first hyperpolarizability (βHRS), D and D' values, are then matched with the theoretically calculated values from single and double configuration interaction calculations using the Zerner’s intermediate neglect of differential overlap and the self-consistent reaction field (ZINDO–SDCI– SCRF) approach by adjusting the geometrical parameters. It has been found that in most of the CT complexes studied here, there exists a significant twist in the equilibrium geometry at room temperature which is not a simple slipped parallel geometry as was believed. In chapter 4, the βHRS, D and D' values of 1:1 pyridine (PY)-chloranil (CHL) complex at 1064 nm have been described. Previous theoretical studies have shown that there is a tilt angle of 77.9 degree in the gas phase PY-CHL complex. In this chapter, this prediction about the geometry of 1:1 PY-CHL complex has been probed. The experimentally found βHRS, D and D' are matched well with theoretically calculated values, using ZINDO–SDCI–SCRF, for a cofacial geometry of PY-CHL complex in solution indicating that the solution geometry is different from the gas phase geometry. In Chapter 5, the βHRS, D and D' for a series of 1:1 complexes of tropyliumtetrafluoroborate and methyl-substituted benzenes in solution at 1064 nm have been reported. The measured D and D' values vary from 1.36 to 1.46 and 1.62 to 1.72, respectively and are much lower than the values expected from a typical sandwich or a T-shaped geometry. The lowering in D and D' indicates that these complexes have higher symmetry than C2v. The value of D close to 1.5 indicates there is a significant octupolar contribution in such complexes. In order to probe it further, βHRS, D and D' were computed using the ZINDO-SDCI-SCRF technique in the presence of BF4-anion. By arranging the three BF4-ions in a C3 symmetry around the complex in such a way that electrical neutrality is maintained, the computed values are brought to agreement with experiments. This unprecedented influence of the anion on the HRS, D and D' values of these complexes are discussed in this chapter. In Chapter 6, the effect of dipolar interactions, within a multichromophoric system, on the second order nonlinear optical properties have been studied. It has been found that the βHRS response of the multichromophoric system is always larger than expected for uncorrelated chromophores demonstrating that the dipole moment of individual chromophores are not merely additive within the multichromophoric system but contribute cooperatively to the SHSL signal. Also the relative orientation and nature of the chromophores and the angle of interaction between them alter the HRS values. Chapter 7 is the concluding chapter in which all the work done in the thesis has been summarized and future direction has been proposed.
30

Measurement Of Dissociation Constant (Ka) And Partition Coefficient (KP) Of Weak Organic Acids From Their First Hyperpolarizabilities

Ray, Paresh Chandra 10 1900 (has links)
No description available.

Page generated in 0.0319 seconds