Spelling suggestions: "subject:"hyperbolische atemsysteme"" "subject:"hyperbolischen atemsysteme""
1 |
Analysis for dissipative Maxwell-Bloch type modelsEichenauer, Florian 13 December 2016 (has links)
Die vorliegende Dissertation befasst sich mit der mathematischen Modellierung semi-klassischer Licht-Materie-Interaktion. Im semiklassischen Bild wird Materie durch eine Dichtematrix "rho" beschrieben. Das Konzept der Dichtematrizen ist quantenmechanischer Natur. Auf der anderen Seite wird Licht durch ein klassisches elektromagnetisches Feld "(E,H)" beschrieben. Wir stellen einen mathematischen Rahmen vor, in dem wir systematisch dissipative Effekte in die Liouville-von-Neumann-Gleichung inkludieren. Bei unserem Ansatz sticht ins Auge, dass Lösungen der resultierenden Gleichung eine intrinsische Liapunov-Funktion besitzen. Anschließend koppeln wir die resultierende Gleichung mit den Maxwell-Gleichungen und erhalten ein neues selbstkonsistentes, dissipatives Modell vom Maxwell-Bloch-Typ. Der Fokus dieser Arbeit liegt auf der intensiven mathematischen Studie des dissipativen Modells vom Maxwell-Bloch-Typ. Da das Modell Lipschitz-Stetigkeit vermissen lassen, kreieren wir eine regularisierte Version des Modells, das Lipschitz-stetig ist. Wir beschränken unsere Analyse im Wesentlichen auf die Lipschitz-stetige Regularisierung. Für regularisierte Versionen des dissipativen Modells zeigen wir die Existenz von Lösungen des zugehörigen Anfangswertproblems. Der Kern des Existenzbeweises besteht aus einem Resultat von ``compensated compactness'''', das von P. Gérard bewiesen wurde, sowie aus einem Lemma vom Rellich-Typ. In Teilen folgt dieser Beweis dem Vorgehen einer älteren Arbeit von J.-L. Joly, G. Métivier und J. Rauch. / This thesis deals with the mathematical modeling of semi-classical matter-light interaction. In the semi-classical picture, matter is described by a density matrix "rho", a quantum mechanical concept. Light on the other hand, is described by a classical electromagnetic field "(E,H)". We give a short overview of the physical background, introduce the usual coupling mechanism and derive the classical Maxwell-Bloch equations which have intensively been studied in the literature. Moreover, We introduce a mathematical framework in which we state a systematic approach to include dissipative effects in the Liouville-von-Neumann equation. The striking advantage of our approach is the intrinsic existence of a Liapunov function for solutions to the resulting evolution equation. Next, we couple the resulting equation to the Maxwell equations and arrive at a new self-consistent dissipative Maxwell-Bloch type model for semi-classical matter-light interaction. The main focus of this work lies on the intensive mathematical study of the dissipative Maxwell-Bloch type model. Since our model lacks Lipschitz continuity, we create a regularized version of the model that is Lipschitz continuous. We mostly restrict our analysis to the Lipschitz continuous regularization. For regularized versions of the dissipative Maxwell-Bloch type model, we prove existence of solutions to the corresponding Cauchy problem. The core of the proof is based on results from compensated compactness due to P. Gérard and a Rellich type lemma. In parts, this proof closely follows the lines of an earlier work due to J.-L. Joly, G. Métivier and J. Rauch.
|
2 |
Exponential dichotomy and smooth invariant center manifolds for semilinear hyperbolic systemsLichtner, Mark 25 August 2006 (has links)
Es wird gezeigt, dass ein Satz über die Abbildung spektraler Lücken, welcher exponentielle Dichotomie charakterisiert, für eine allgemeine Klasse (SH) von semilinearen hyperbolischen Systemen von partiellen Differentialgleichungen in einem Banach-Raum X von stetigen Funktionen gilt. Dies beantwortet ein Schlüsselproblem für die Existenz und Glattheit invarianter Mannigfaltigkeiten semilinearer hyperbolischer Systeme. Unter natürlichen Annahmen an die Nichtlinearitäten wird gezeigt, dass schwache Lösungen von (SH) einen glatten Halbfluß im Raum X bilden. Für Linearisierungen werden hochfrequente Abschätzungen für Spektren sowie Resolventen unter Verwendung von reduzierten (block)diagonal Systemen hergestellt. Darauf aufbauend wird der Abbildungssatz für spektrale Lücken im kleinen Raum X bewiesen: Eine offene spektrale Lücke des Generators wird exponentiell auf eine offene spektrale Lücke der Halbruppe abgebildet und umgekehrt. Es folgt, dass ein Phänomen wie im Gegenbeispiel von Renardy nicht auftreten kann. Unter Verwendung der allgemeinen Theorie implizieren die Ergebnisse die Existenz von glatten Zentrumsmannigfaltigkeiten für (SH). Die Ergebnisse werden auf traveling wave Modelle für die Dynamik von Halbleiter Lasern angewandt. Für diese werden Moden Approximationen (Systeme von gewöhnlichen Differentialgleichungen, welche die Dynamik auf gewissen Zentrumsmannigfaltigkeiten approximativ beschreiben) hergeleitet und gerechtfertigt, die generische Bifurkation von modulierten Wellen aus rotierenden Wellen wird gezeigt. Globale Existenz und glatte Abhängigkeit von nichtautonomen traveling wave Modellen werden betrachtet, außerdem werden Moden Approximationen für solche nichtautonomen Modelle rigoros hergeleitet. Insbesondere arbeitet die Theorie für die Stabilitäts- und Bifurkationsanalyse von Turing Modellen mit korellierter Zufallsbewegung. Ferner beinhaltet die Klasse (SH) neutrale und retardierte funktionale Differentialgleichungen. / A spectral gap mapping theorem, which characterizes exponential dichotomy, is proven for a general class of semilinear hyperbolic systems of PDEs in a Banach space X of continuous functions. This resolves a key problem on existence and smoothness of invariant manifolds for semilinear hyperbolic systems. It is shown that weak solutions to (SH) form a smooth semiflow in X under natural conditions on the nonlinearities. For linearizations high frequency estimates of spectra and resolvents in terms of reduced diagonal and blockdiagonal systems are given. Using these estimates a spectral gap mapping theorem in the small Banach space X is proven: An open spectral gap of the generator is mapped exponentially to an open spectral gap of the semigroup and vice versa. Hence, a phenomenon like in Renardy''s counterexample cannot appear for linearizations of (SH). By the general theory the results imply existence of smooth center manifolds for (SH). Moreoever, the results are applied to traveling wave models of semiconductor laser dynamics. For such models mode approximations (ODE systems which approximately describe the dynamics on center manifolds) are derived and justified, and generic bifurcations of modulated waves from rotating waves are shown. Global existence and smooth dependence of nonautonomous traveling wave models with more general solutions, which possess jumps, are considered, and mode approximations are derived for such nonautonomous models. In particular the theory applies to stability and bifurcation analysis for Turing models with correlated random walk. Moreover, the class (SH) includes neutral and retarded functional differential equations.
|
Page generated in 0.0821 seconds