• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 11
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 56
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

'n Vergelykende studie tussen Pt en Pd vir die elektro-oksidasie van waterige SO₂ asook ander model elektrochemiese reaksies / Adri Young

Young, Adri January 2014 (has links)
The pressure on clean and sustainable energy supplies is increasing. In this regard energy conversion by electrochemical processes plays a major role, for both fuel cell reactions and electrolysis reactions. The sulphur dioxide oxidation reaction (SOR) is a common reaction found in the Hybrid Sulphur Cycle (HyS) and the HyS is a way to produce large-scale hydrogen (H2). The problem with the use of the HyS and fuel cells is the cost involved as large amounts of Pt are required for effective operation. The aim of the study was to determine whether there was an alternative catalyst which was more efficient and cost-effective than Pt. The oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR) and SOR were studied by means of different electrochemical techniques (cyclovoltammetry (CV), linear polarization (LP) and rotating disk electrode (RDE)) on polycrystalline platinum (Pt) and palladium (Pd). The SRR and EOR are common reactions occurring at the cathode and anode, respectively, in fuel cells and these reactions have been investigated extensively. The reason for studying the reactions was as a preparation for the SOR. This study compared polycrystalline Pt and Pd for the different reactions, with the main focus on the SOR as Pd is considerably cheaper than Pt, and for the SOR polycrystalline Pd has by no means been investigated intensively. Polycrystalline Pt and Pd were compared by different electrochemical techniques and analyses. The Koutecky-Levich and Levich analyses were used to (i) calculate the number of e- involved in the relevant reaction, (ii) to determine whether the reaction was mass transfer controlled at high overpotentials and (iii) whether the reaction mechanism changed with potential. Next the kinetic current density ( k) was calculated from Koutecky-Levich analyses, which was further used for Tafel slope analyses. If it was not possible to carry out the analyses, the activation energy (Ea) was used to determine the electrocatalytic activity of the catalyst. The electrocatalytic activity was also determined by comparing onset potentials (Es), peak potentials (Ep) and limited/maximum current density ( b/ p) of each catalyst. This study was only a preliminary study for the SOR and therefore, further studies are certainly required. It seemed Pd shows better electrocatalytic activity than Pt for the SRR in an alkaline electrolyte because of similar Es, but Pd produced a higher cathodic current density. Pt showed a lower Es than Pd for the SRR in an acid electrolyte, but Pd delivered a higher cathodic current density. This, therefore, means that the SRR in an acid electrolyte is kinetically more favourable on Pd than on Pt. For the EOR better electrocatalytic activity was obtained with Pd than with Pt in an alkaline electrolyte due to higher current densities at lower potentials and Pd showed lower Ea values than Pt in the potential range normally used for fuel cells. Pd was inactive for EOR in an acid electrolyte, while a reaction occurred on Pt. A possible reason for this observation may be due to the H2 absorbing strongly on Pd thus blocking the active positions on the electrode surfaces, preventing further reaction. Pd showed higher electrocatalytic activity for the SOR due to lower Es and higher current densities at low potentials. From the RDE studies it was established that the SRR in an alkaline electrolyte on polycrystalline Pt and Pd was mass transfer controlled at low potentials (high overpotentials), but the SRR in an acid electrolyte was only mass transfer controlled on Pt. The SOR was not mass transfer controlled on polycrystalline Pt and Pd at high potentials (high overpotentials). These assumptions were confirmed by Levich analysis. Using Koutecky-Levich analysis, it was determined that the reaction mechanism on polycrystalline Pt and Pd changed with potential for SRR in an alkaline electrolyte and the SOR. For the SRR in an acid electrolyte the reaction mechanism remained constant with changes in potential on polycrystalline Pd, but the reaction mechanism on polycrystalline Pt changed with potential. These assumptions were confirmed by the number of e-, calculated using Koutecky-Levich analyses. Levich and Koutecky-Levich analyses were not performed for EOR as an increase in rotation speed did not produce an increase in current density. Tafel slope analyses were conducted by making use of overpotentials and k, where possible. As in the case of ethanol, it was not possible to execute Koutecky-Levich analyses and, therefore, it was not possible to perform Tafel slope analyses using k. Tafel slope analyses for the EOR was therefore performed with normal current densities at 0 rotations per minute (rpm). The reaction mechanisms on Pt and Pd for the SRR in alkaline and acidic electrolytes differed due to different Tafel slopes. Pt and Pd displayed similar Tafel slopes for the EOR in alkaline electrolyte, thus suggesting that the reaction mechanisms on Pt and Pd were the same. For the SOR it seemed that the reaction mechanism on Pt and Pd were similar because of similar Tafel slopes. This was only a preliminary and comparative study for polycrystalline Pt and Pd, and the reaction mechanism was not further studied by means of spectroscopic techniques. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
52

'n Vergelykende studie tussen Pt en Pd vir die elektro-oksidasie van waterige SO₂ asook ander model elektrochemiese reaksies / Adri Young

Young, Adri January 2014 (has links)
The pressure on clean and sustainable energy supplies is increasing. In this regard energy conversion by electrochemical processes plays a major role, for both fuel cell reactions and electrolysis reactions. The sulphur dioxide oxidation reaction (SOR) is a common reaction found in the Hybrid Sulphur Cycle (HyS) and the HyS is a way to produce large-scale hydrogen (H2). The problem with the use of the HyS and fuel cells is the cost involved as large amounts of Pt are required for effective operation. The aim of the study was to determine whether there was an alternative catalyst which was more efficient and cost-effective than Pt. The oxygen reduction reaction (ORR), the ethanol oxidation reaction (EOR) and SOR were studied by means of different electrochemical techniques (cyclovoltammetry (CV), linear polarization (LP) and rotating disk electrode (RDE)) on polycrystalline platinum (Pt) and palladium (Pd). The SRR and EOR are common reactions occurring at the cathode and anode, respectively, in fuel cells and these reactions have been investigated extensively. The reason for studying the reactions was as a preparation for the SOR. This study compared polycrystalline Pt and Pd for the different reactions, with the main focus on the SOR as Pd is considerably cheaper than Pt, and for the SOR polycrystalline Pd has by no means been investigated intensively. Polycrystalline Pt and Pd were compared by different electrochemical techniques and analyses. The Koutecky-Levich and Levich analyses were used to (i) calculate the number of e- involved in the relevant reaction, (ii) to determine whether the reaction was mass transfer controlled at high overpotentials and (iii) whether the reaction mechanism changed with potential. Next the kinetic current density ( k) was calculated from Koutecky-Levich analyses, which was further used for Tafel slope analyses. If it was not possible to carry out the analyses, the activation energy (Ea) was used to determine the electrocatalytic activity of the catalyst. The electrocatalytic activity was also determined by comparing onset potentials (Es), peak potentials (Ep) and limited/maximum current density ( b/ p) of each catalyst. This study was only a preliminary study for the SOR and therefore, further studies are certainly required. It seemed Pd shows better electrocatalytic activity than Pt for the SRR in an alkaline electrolyte because of similar Es, but Pd produced a higher cathodic current density. Pt showed a lower Es than Pd for the SRR in an acid electrolyte, but Pd delivered a higher cathodic current density. This, therefore, means that the SRR in an acid electrolyte is kinetically more favourable on Pd than on Pt. For the EOR better electrocatalytic activity was obtained with Pd than with Pt in an alkaline electrolyte due to higher current densities at lower potentials and Pd showed lower Ea values than Pt in the potential range normally used for fuel cells. Pd was inactive for EOR in an acid electrolyte, while a reaction occurred on Pt. A possible reason for this observation may be due to the H2 absorbing strongly on Pd thus blocking the active positions on the electrode surfaces, preventing further reaction. Pd showed higher electrocatalytic activity for the SOR due to lower Es and higher current densities at low potentials. From the RDE studies it was established that the SRR in an alkaline electrolyte on polycrystalline Pt and Pd was mass transfer controlled at low potentials (high overpotentials), but the SRR in an acid electrolyte was only mass transfer controlled on Pt. The SOR was not mass transfer controlled on polycrystalline Pt and Pd at high potentials (high overpotentials). These assumptions were confirmed by Levich analysis. Using Koutecky-Levich analysis, it was determined that the reaction mechanism on polycrystalline Pt and Pd changed with potential for SRR in an alkaline electrolyte and the SOR. For the SRR in an acid electrolyte the reaction mechanism remained constant with changes in potential on polycrystalline Pd, but the reaction mechanism on polycrystalline Pt changed with potential. These assumptions were confirmed by the number of e-, calculated using Koutecky-Levich analyses. Levich and Koutecky-Levich analyses were not performed for EOR as an increase in rotation speed did not produce an increase in current density. Tafel slope analyses were conducted by making use of overpotentials and k, where possible. As in the case of ethanol, it was not possible to execute Koutecky-Levich analyses and, therefore, it was not possible to perform Tafel slope analyses using k. Tafel slope analyses for the EOR was therefore performed with normal current densities at 0 rotations per minute (rpm). The reaction mechanisms on Pt and Pd for the SRR in alkaline and acidic electrolytes differed due to different Tafel slopes. Pt and Pd displayed similar Tafel slopes for the EOR in alkaline electrolyte, thus suggesting that the reaction mechanisms on Pt and Pd were the same. For the SOR it seemed that the reaction mechanism on Pt and Pd were similar because of similar Tafel slopes. This was only a preliminary and comparative study for polycrystalline Pt and Pd, and the reaction mechanism was not further studied by means of spectroscopic techniques. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
53

Manufacture of straw MDF and fibreboards

Halvarsson, Sören January 2010 (has links)
The purpose of this thesis was to develop an economical, sustainable, and environmentally friendly straw Medium Density Fibreboard (MDF) process, capable of full-scale manufacturing and to produce MDF of requested quality. The investigated straw was based on wheat (Triticum aestivum L.) and rice (Oryzae sativa L.). In this thesis three different methods were taken for manufacture of straw MDF; (A) wheat-straw fibre was blowline blended with melamine-modified urea-formaldehyde (MUF), (B) rice-straw fibre was mixed with methylene diphenyl diisocyanate (MDI) in a resin drum-blender, and (C) wheat-straw fibre was activated in the blowline by the addition of Fenton’s reagent (H2O2/Fe2+) for production of non-resin MDF panels.  The MUF/wheat straw MDF panels were approved according to the requirements of the EN standard for MDF (EN 622-5, 2006). The MDI/rice-straw MDF panels were approved according to requirements of the standard for MDF of the American National Standard Institute (ANSI A208.2-2002). The non-resin wheat-straw panels showed mediocre MDF panel properties and were not approved according to the requirements in the MDF standard. The dry process for wood-based MDF was modified for production of straw MDF. The straw MDF process was divided into seven main process steps. 1.       Size-reduction (hammer-milling) and screening of straw 2.       Wetting and heating of straw 3.       Defibration 4.       Resination of straw fibre 5.       Mat forming 6.       Pre-pressing 7.       Hot-pressing       The primary results were that the straw MDF process was capable of providing satisfactory straw MDF panels based on different types of straw species and adhesives. Moreover, the straw MDF process was performed in pilot-plant scale and demonstrated as a suitable method for producing straw MDF from straw bales to finished straw MDF panels. In the environmental perspective the agricultural straw-waste is a suitable source for producing MDF to avoid open field burning and to capture carbon dioxide (CO2), the biological sink for extended time into MDF panels, instead of converting straw directly into bio energy or applying straw fibre a few times as recycled paper. Additionally, the straw MDF panels can be recycled or converted to energy after utilization. A relationship between water retention value (WRV) of resinated straw fibres, the thickness swelling of corresponding straw MDF panels, and the amount of applied adhesive was determined. WRV of the straw fibre increased and the TS of straw MDF declined as a function of the resin content. The empirical models developed were of acceptable significance and the R2 values were 0.69 (WRV) and 0.75 (TS), respectively. Reduced thickness swelling of MDF as the resin content is increased is well-known. The increase of WRV as a function of added polymers is not completely established within the science of fibre swelling. Fortunately, more fundamental research can be initiated and likely a simple method for prediction of thickness swelling of MDF by analysis of the dried and resinated MDF fibres is possible. / Syftet med denna avhandling var att lägga grunden för en ekonomisk, hållbar och miljövänlig MDF process för halmråvara, kapabel för fullskalig produktion av MDF och goda skivegenskaper. Framställningen av MDF skivor utgick från halm av vete (Triticum aestivum L.) och ris (Oryzae sativa L.). Tre olika metoder användes för att producera MDF av halm; (A) fibrer av vetehalm belimmades i blåsledning med ett melaminmodifierat urea-formaldehydlim (MUF), (B) fibrer av rishalm belimmades i en limblandare med metylen difenyl diisocyanate (MDI), (C) Limfria MDF skivor av vetehalm framställdes med aktivering av fibrer genom tillsats av Fenton´s reagens (H2O2/Fe2+) i blåsledning utan någon tillsats av syntetiskt lim. Sammanfattningsvis kan det understrykas att framställda MDF-skivor av MUF/vetehalm var godkända enligt standard för MDF (EN 622-5, 2006). Dessutom var framställda MDF skivor av MDI/rishalm också godkända enligt krav i standard för MDF ”American National Standard Institute” (ANSI A2008.2-2002). Limfria vetehalmskivor visade på måttliga skivegenskaper och klarade inte kraven i MDF standard.   Fiberframställningsprocessen för MDF modifierades till en produktion utgående från halm. MDF processen för halm delades upp i sju primära processoperationer.   (1)            Storleksreducering och sållning av halm (2)            Vätning och uppvärmning av halm (3)            Defibrering (4)            Belimning av halmfiber (5)            Mattformning (6)            Förpressning (7)            Pressning   De viktigaste resultaten från denna studie är att MDF av halm kunde produceras utgående från olika typer av halmsorter och lim. Dessutom utfördes MDF-processen i pilotskala och visade på en lämplig metod för framställning av MDF-skivor från halmbalar till färdiga halmfiberskivor. Det miljömässiga perspektivet på att använda jordbruksavfall till framställning av halmskivor är att undvika förbränning av halm ute på fältet, men det är även möjligt att binda koldioxid (CO2) i halmskivor under längre tid än att omsätta halmråvaran omedelbart som bioenergi eller använda halmfiber som returpapper några få gånger. Dessutom kan MDF återanvändas eller bli omsatt till energi efter användning.   Ett förhållande mellan ”water retention value” (WRV), av belimmade halmfiber, tjocklekssvällning för motsvarande MDF av halmskivor och mängden av tillsatt lim vid olika nivåer har undersökts. Med ökande limhalt tilltog WRV fibersvällning, vidare minskade tjocklekssvällning för motsvarande MDF skivor. De framtagna empiriska modellerna var godtagbara och beräknade R2 värden var 0.69 (WRV) och 0.75 (TS). Minskad tjocklekssvällning med ökad limhalt är dokumenterad sen tidigare. Ökad fibersvällning WRV vid tillsats av polymerer (limmer) är inte fullständigt etablerad inom vetenskapen för fibersvällning. Lyckligtvis kan grundläggande forskning initieras och sannolikt föreligger en enkel metod för att prediktera tjocklekssvällning av MDF genom analyser av torkade och belimmad MDF fiber.
54

The subprime mortgage crisis : asset securitization and interbank lending / M.P. Mulaudzi

Mulaudzi, Mmboniseni Phanuel January 2009 (has links)
Subprime residential mortgage loan securitization and its associated risks have been a major topic of discussion since the onset of the subprime mortgage crisis (SMC) in 2007. In this regard, the thesis addresses the issues of subprime residential mortgage loan (RML) securitization in discrete-, continuous-and discontinuous-time and their connections with the SMC. In this regard, the main issues to be addressed are discussed in Chapters 2, 3 and 4. In Chapter 2, we investigate the risk allocation choices of an investing bank (IB) that has to decide between risky securitized subprime RMLs and riskless Treasuries. This issue is discussed in a discrete-time framework with IB being considered to be regret- and risk-averse before and during the SMC, respectively. We conclude that if IB takes regret into account it will be exposed to higher risk when the difference between the expected returns on securitized subprime RMLs and Treasuries is small. However, there is low risk exposure when this difference is high. Furthermore, we assess how regret can influence IB's view - as a swap protection buyer - of the rate of return on credit default swaps (CDSs), as measured by the premium based on default swap spreads. We find that before the SMC, regret increases IB's willingness to pay lower premiums for CDSs when its securitized RML portfolio is considered to be safe. On the other hand, both risk- and regret-averse IBs pay the same CDS premium when their securitized RML portfolio is considered to be risky. Chapter 3 solves a stochastic optimal credit default insurance problem in continuous-time that has the cash outflow rate for satisfying depositor obligations, the investment in securitized loans and credit default insurance as controls. As far as the latter is concerned, we compute the credit default swap premium and accrued premium by considering the credit rating of the securitized mortgage loans. In Chapter 4, we consider a problem of IB investment in subprime residential mortgage-backed securities (RMBSs) and Treasuries in discontinuous-time. In order to accomplish this, we develop a Levy process-based model of jump diffusion-type for IB's investment in subprime RMBSs and Treasuries. This model incorporates subprime RMBS losses which can be associated with credit risk. Furthermore, we use variance to measure such risk, and assume that the risk is bounded by a certain constraint. We are now able to set-up a mean-variance optimization problem for IB's investment which determines the optimal proportion of funds that needs to be invested in subprime RMBSs and Treasuries subject to credit risk measured by the variance of IE's investment. In the sequel, we also consider a mean swaps-at-risk (SaR) optimization problem for IB's investment which determines the optimal portfolio which consists of subprime RMBSs and Treasuries subject to the protection by CDSs required against the possible losses. In this regard, we define SaR as indicative to IB on how much protection from swap protection seller it must have in order to cover the losses that might occur from credit events. Moreover, SaR is expressed in terms of Value-at-Risk (VaR). Finally, Chapter 5 provides an analysis of discrete-, continuous- and discontinuous-time models for subprime RML securitization discussed in the aforementioned chapters and their connections with the SMC. The work presented in this thesis is based on 7 peer-reviewed international journal articles (see [25], [44], [45], [46], [47], [48] and [55]), 4 peer-reviewed chapters in books (see [42], [50j, [51J and [52]) and 2 peer-reviewed conference proceedings papers (see [11] and [12]). Moreover, the article [49] is currently being prepared for submission to an lSI accredited journal. / Thesis (Ph.D. (Applied Mathematics))--North-West University, Potchefstroom Campus, 2010.
55

The subprime mortgage crisis : asset securitization and interbank lending / M.P. Mulaudzi

Mulaudzi, Mmboniseni Phanuel January 2009 (has links)
Subprime residential mortgage loan securitization and its associated risks have been a major topic of discussion since the onset of the subprime mortgage crisis (SMC) in 2007. In this regard, the thesis addresses the issues of subprime residential mortgage loan (RML) securitization in discrete-, continuous-and discontinuous-time and their connections with the SMC. In this regard, the main issues to be addressed are discussed in Chapters 2, 3 and 4. In Chapter 2, we investigate the risk allocation choices of an investing bank (IB) that has to decide between risky securitized subprime RMLs and riskless Treasuries. This issue is discussed in a discrete-time framework with IB being considered to be regret- and risk-averse before and during the SMC, respectively. We conclude that if IB takes regret into account it will be exposed to higher risk when the difference between the expected returns on securitized subprime RMLs and Treasuries is small. However, there is low risk exposure when this difference is high. Furthermore, we assess how regret can influence IB's view - as a swap protection buyer - of the rate of return on credit default swaps (CDSs), as measured by the premium based on default swap spreads. We find that before the SMC, regret increases IB's willingness to pay lower premiums for CDSs when its securitized RML portfolio is considered to be safe. On the other hand, both risk- and regret-averse IBs pay the same CDS premium when their securitized RML portfolio is considered to be risky. Chapter 3 solves a stochastic optimal credit default insurance problem in continuous-time that has the cash outflow rate for satisfying depositor obligations, the investment in securitized loans and credit default insurance as controls. As far as the latter is concerned, we compute the credit default swap premium and accrued premium by considering the credit rating of the securitized mortgage loans. In Chapter 4, we consider a problem of IB investment in subprime residential mortgage-backed securities (RMBSs) and Treasuries in discontinuous-time. In order to accomplish this, we develop a Levy process-based model of jump diffusion-type for IB's investment in subprime RMBSs and Treasuries. This model incorporates subprime RMBS losses which can be associated with credit risk. Furthermore, we use variance to measure such risk, and assume that the risk is bounded by a certain constraint. We are now able to set-up a mean-variance optimization problem for IB's investment which determines the optimal proportion of funds that needs to be invested in subprime RMBSs and Treasuries subject to credit risk measured by the variance of IE's investment. In the sequel, we also consider a mean swaps-at-risk (SaR) optimization problem for IB's investment which determines the optimal portfolio which consists of subprime RMBSs and Treasuries subject to the protection by CDSs required against the possible losses. In this regard, we define SaR as indicative to IB on how much protection from swap protection seller it must have in order to cover the losses that might occur from credit events. Moreover, SaR is expressed in terms of Value-at-Risk (VaR). Finally, Chapter 5 provides an analysis of discrete-, continuous- and discontinuous-time models for subprime RML securitization discussed in the aforementioned chapters and their connections with the SMC. The work presented in this thesis is based on 7 peer-reviewed international journal articles (see [25], [44], [45], [46], [47], [48] and [55]), 4 peer-reviewed chapters in books (see [42], [50j, [51J and [52]) and 2 peer-reviewed conference proceedings papers (see [11] and [12]). Moreover, the article [49] is currently being prepared for submission to an lSI accredited journal. / Thesis (Ph.D. (Applied Mathematics))--North-West University, Potchefstroom Campus, 2010.
56

An Analysis of Race and Gender in Select Choice Programs Within Brevard County Public Schools

Doaks, Synthia 01 January 2014 (has links)
The focus of this research was to compare the student membership population proportions, by race and gender, of Brevard County Public School students with the actual participation in select choice programs offered to Brevard County public high school students. This study was based on an analysis of the scores of 1,152 eighth-grade students who received a score of 4 or 5 on the 2008 Florida Comprehensive Assessment Test (FCAT) mathematics and a score of 4 or 5 on the 2008 Florida Comprehensive Assessment Test (FCAT) reading and their participation in high school advanced academic courses. The advanced academic choice programs selected for this study consisted of the four Florida articulated accelerated college credit seeking programs: Advanced Placement (AP), Dual-Enrollment (DE), International Baccalaureate (IB) Diploma Programme, and the Cambridge Advanced International Certificate of Education (AICE). The proportion comparison consisted of student membership data and eighth-grade FCAT scores from 2007-2008 and the student membership data and high school course load data from the 2008-2009, 2009-2010, 2010-2011, and 2011-2012 academic school years. Chi-square goodness-of-fit tests were run to analyze the proportions by race and gender of the sample groups and student membership populations. For each respective year involved in this study, there was a statistically significant difference in the race and gender proportions of the samples and the student membership populations.

Page generated in 0.4073 seconds