• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 11
  • 9
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 52
  • 31
  • 14
  • 13
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Mass-Selected Infrared Multiple-Photon Dissociation as a Structural Probe of Gaseous Ion-Molecule Complexes

Marta, Richard 27 August 2009 (has links)
Mass-selected infrared multiple photon spectroscopy (IRMPD), Fourier transform ion cyclotron resonance (FT-ICR) kinetic experiments, RRKM and electronic structure calculations have been performed in order to propose a complex mechanism involving the formation of the proton-bound dimer of water (H5O2+) from 1,1,3,3-tetrafluorodimethyl ether. It has been found that the reaction is facilitated by a series of sequential exothermic bimolecular ion-molecule reactions. Evidence for the dominant mechanistic pathway involving the reaction of CF2H-O=CHF+, an ion of m/z 99, with water is presented. The primary channel occurs via nucleophilic attack of water on the ion of m/z 99 (CF2H-O=CHF+), to lose formyl fluoride and yield protonated difluoromethanol (m/z 69). Association of a second water molecule with protonated difluoromethanol generates a reactive intermediate which decomposes via a 1,4-elimination to release hydrogen fluoride and yield the proton-bound dimer of water and formyl fluoride (m/z 67). The 1,4-elimination of hydrogen fluoride is found to be strongly supported by the results of both RRKM theory and electronic structure calculations. Lastly, the elimination of formyl fluoride occurs by the association of a third water molecule to produce H5O2+ (m/z 37). The most probable isomeric forms of the ions with m/z 99 and 69 were found using IRMPD spectroscopy and electronic structure theory calculations. Thermochemical information for reactant, transition and product species was obtained using MP2/aug-cc-pVQZ//MP2(full)/6-31G(d) level of theory. Ionic hydrogen bond (IHB) interactions, resulting from the association of ammonia and two of the protonated methylxanthine derivatives, caffeine and theophylline, have been characterized using mass-selected IRMPD and electronic structure calculations at the MP2/aug-cc-pVTZ//B3LYP/6-311+G(d,p) level of theory. It was found that the formation of a proton-bound dimer (PBD) of caffeine and ammonia was elusive under the experimental conditions. The low binding energy of the caffeine and ammonia PBD is responsible for the perceived difficulty in obtaining an IRMPD spectrum. The IRMPD spectrum of the PBD of theophylline and ammonia was obtained and revealed bidentate IHB formation within the complex, which greatly increased the binding energy relative to the most stable isomer of the PBD of caffeine and ammonia. The IRMPD spectra of the protonated forms of caffeine and theophylline have also obtained. The spectrum of protonated caffeine showed the dominant existence of a single isomer, whereas the spectrum of protonated theophylline showed a mixture of isomers. The mixture of isomers of protonated theophylline resulted as a consequence of proton-transport catalysis (PTC) occurring within the PBD of theophylline and ammonia. All calculated harmonic spectra have been produced at the B3LYP/6-311+G(d,p) level of theory with fundamental frequencies scaled by 0.9679; calculated anharmonic spectra have also been provided at the same level of theory and were found to greatly improve the match with the IRMPD spectra obtained in all cases. Ionic hydrogen bond (IHB) interactions, resulting from the association of caffeine and theophylline with their protonated counterparts, forming proton-bound homodimers, have been characterized using mass-selected IRMPD and electronic structure calculations at the MP2/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory. It is found that the IRMPD spectra of the proton-bound homodimers of caffeine and theophylline are complicated resulting from the existence of several pairs of enantiomers separated by a narrow range of relative Gibbs free energies (298 K) of 15.6 and 18.2 kJ mol-1, respectively. The IRMPD spectrum of the proton-bound homodimer of theophylline is dominated by a unique isomer facilitated by formation of a bidentate IHB. Formation of this interaction lowers the relative Gibbs free energy of the ion to 9.75 kJ mol-1 below that of the most favourable pair of enantiomers. The IRMPD spectrum of the PBD of caffeine is complicated by the existence of at least two pairs of enantiomers with the strong likelihood of the spectral contributions of a third pair existing. The most favourable enantiomeric pair involves the formation of a O-H+⋯O IHB. However, verification of a pair of enantiomeric PBDs containing a N-H+⋯O IHB is also observed in the IRMPD spectrum of the PBD of caffeine due to the presence of three free carbonyl stretching modes located at 1731, 1751 and 1785 cm-1. The mass-selected IRMPD spectra of the sodium cation-bound dimers (SCBD) of caffeine and theophylline also have been obtained. Both the mass-selected IRMPD spectra and electronic structure calculations predict the most likely structure of the SCBDs of caffeine and theophylline to form by an efficient O⋯Na+⋯O interaction between C=O functional groups possessed by each monomer. The frequencies of the C=O-Na+ stretch are found to be nearly identical in the IRMPD spectra for both of the SCBDs of caffeine and theophylline at 1644 and 1646 cm-1, respectively. However, the degenerate free C=O symmetric and asymmetric stretches for the SCBDs of caffeine and theophylline found at 1732 and 1758 cm^(-1), respectively, demonstrating a red-shift for caffeine possibly linked to a steric interaction absent in theophylline. Free rotation about the O⋯Na+⋯O bond is found to greatly decrease the complexity of the IRMPD spectra of the SCBDs of caffeine and theophylline and demonstrates excellent agreement between the IRMPD and calculated spectra. Electronic structure calculations have been done at the MP2(full)/aug-cc-pCVTZ/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory using the aug-cc-pCVTZ basis set for Na+ and all Na+-interacting heterotatoms, and the 6-311+G(2d,2p) basis set for all non-interacting atoms within the SCBDs, in order to provide accurate electronic energies. Currently, installation and implementation of a pulsed electrospray high pressure ion source mated to an existing high pressure mass spectrometer (HPMS) is underway. The new ion source will greatly increase the range of possibilities for the study of ion-molecule reactions in the McMahon laboratory. One of the unique features of the new design is the incorporation of a gas-tight electrospray interface, allowing for more possibilities than only the study of cluster-ion equilibria involving hydration (H2On⋯S+), where S+ is an ion produced by electrospray. Other small prototypical biological molecules such as amines and thiols can be used without concern for the toxicity of these species. Another unique design feature allows electrosprayed ions to associate with neutral solvent species in an electric field free reaction chamber (RC). This ensures that values of equilibrium constants determined are truly representative of ions in states of thermochemical equilibrium. The existing HPMS in the McMahon laboratory is limited to the study of small volatile organic molecules. The new ion source will permit the exploration of systems involving non-volatile species, doubly charged ions and many biologically relevant molecules such as amino acids, peptides, nucleobases and carbohydrates.
62

Mass-Selected Infrared Multiple-Photon Dissociation as a Structural Probe of Gaseous Ion-Molecule Complexes

Marta, Richard 27 August 2009 (has links)
Mass-selected infrared multiple photon spectroscopy (IRMPD), Fourier transform ion cyclotron resonance (FT-ICR) kinetic experiments, RRKM and electronic structure calculations have been performed in order to propose a complex mechanism involving the formation of the proton-bound dimer of water (H5O2+) from 1,1,3,3-tetrafluorodimethyl ether. It has been found that the reaction is facilitated by a series of sequential exothermic bimolecular ion-molecule reactions. Evidence for the dominant mechanistic pathway involving the reaction of CF2H-O=CHF+, an ion of m/z 99, with water is presented. The primary channel occurs via nucleophilic attack of water on the ion of m/z 99 (CF2H-O=CHF+), to lose formyl fluoride and yield protonated difluoromethanol (m/z 69). Association of a second water molecule with protonated difluoromethanol generates a reactive intermediate which decomposes via a 1,4-elimination to release hydrogen fluoride and yield the proton-bound dimer of water and formyl fluoride (m/z 67). The 1,4-elimination of hydrogen fluoride is found to be strongly supported by the results of both RRKM theory and electronic structure calculations. Lastly, the elimination of formyl fluoride occurs by the association of a third water molecule to produce H5O2+ (m/z 37). The most probable isomeric forms of the ions with m/z 99 and 69 were found using IRMPD spectroscopy and electronic structure theory calculations. Thermochemical information for reactant, transition and product species was obtained using MP2/aug-cc-pVQZ//MP2(full)/6-31G(d) level of theory. Ionic hydrogen bond (IHB) interactions, resulting from the association of ammonia and two of the protonated methylxanthine derivatives, caffeine and theophylline, have been characterized using mass-selected IRMPD and electronic structure calculations at the MP2/aug-cc-pVTZ//B3LYP/6-311+G(d,p) level of theory. It was found that the formation of a proton-bound dimer (PBD) of caffeine and ammonia was elusive under the experimental conditions. The low binding energy of the caffeine and ammonia PBD is responsible for the perceived difficulty in obtaining an IRMPD spectrum. The IRMPD spectrum of the PBD of theophylline and ammonia was obtained and revealed bidentate IHB formation within the complex, which greatly increased the binding energy relative to the most stable isomer of the PBD of caffeine and ammonia. The IRMPD spectra of the protonated forms of caffeine and theophylline have also obtained. The spectrum of protonated caffeine showed the dominant existence of a single isomer, whereas the spectrum of protonated theophylline showed a mixture of isomers. The mixture of isomers of protonated theophylline resulted as a consequence of proton-transport catalysis (PTC) occurring within the PBD of theophylline and ammonia. All calculated harmonic spectra have been produced at the B3LYP/6-311+G(d,p) level of theory with fundamental frequencies scaled by 0.9679; calculated anharmonic spectra have also been provided at the same level of theory and were found to greatly improve the match with the IRMPD spectra obtained in all cases. Ionic hydrogen bond (IHB) interactions, resulting from the association of caffeine and theophylline with their protonated counterparts, forming proton-bound homodimers, have been characterized using mass-selected IRMPD and electronic structure calculations at the MP2/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory. It is found that the IRMPD spectra of the proton-bound homodimers of caffeine and theophylline are complicated resulting from the existence of several pairs of enantiomers separated by a narrow range of relative Gibbs free energies (298 K) of 15.6 and 18.2 kJ mol-1, respectively. The IRMPD spectrum of the proton-bound homodimer of theophylline is dominated by a unique isomer facilitated by formation of a bidentate IHB. Formation of this interaction lowers the relative Gibbs free energy of the ion to 9.75 kJ mol-1 below that of the most favourable pair of enantiomers. The IRMPD spectrum of the PBD of caffeine is complicated by the existence of at least two pairs of enantiomers with the strong likelihood of the spectral contributions of a third pair existing. The most favourable enantiomeric pair involves the formation of a O-H+⋯O IHB. However, verification of a pair of enantiomeric PBDs containing a N-H+⋯O IHB is also observed in the IRMPD spectrum of the PBD of caffeine due to the presence of three free carbonyl stretching modes located at 1731, 1751 and 1785 cm-1. The mass-selected IRMPD spectra of the sodium cation-bound dimers (SCBD) of caffeine and theophylline also have been obtained. Both the mass-selected IRMPD spectra and electronic structure calculations predict the most likely structure of the SCBDs of caffeine and theophylline to form by an efficient O⋯Na+⋯O interaction between C=O functional groups possessed by each monomer. The frequencies of the C=O-Na+ stretch are found to be nearly identical in the IRMPD spectra for both of the SCBDs of caffeine and theophylline at 1644 and 1646 cm-1, respectively. However, the degenerate free C=O symmetric and asymmetric stretches for the SCBDs of caffeine and theophylline found at 1732 and 1758 cm^(-1), respectively, demonstrating a red-shift for caffeine possibly linked to a steric interaction absent in theophylline. Free rotation about the O⋯Na+⋯O bond is found to greatly decrease the complexity of the IRMPD spectra of the SCBDs of caffeine and theophylline and demonstrates excellent agreement between the IRMPD and calculated spectra. Electronic structure calculations have been done at the MP2(full)/aug-cc-pCVTZ/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory using the aug-cc-pCVTZ basis set for Na+ and all Na+-interacting heterotatoms, and the 6-311+G(2d,2p) basis set for all non-interacting atoms within the SCBDs, in order to provide accurate electronic energies. Currently, installation and implementation of a pulsed electrospray high pressure ion source mated to an existing high pressure mass spectrometer (HPMS) is underway. The new ion source will greatly increase the range of possibilities for the study of ion-molecule reactions in the McMahon laboratory. One of the unique features of the new design is the incorporation of a gas-tight electrospray interface, allowing for more possibilities than only the study of cluster-ion equilibria involving hydration (H2On⋯S+), where S+ is an ion produced by electrospray. Other small prototypical biological molecules such as amines and thiols can be used without concern for the toxicity of these species. Another unique design feature allows electrosprayed ions to associate with neutral solvent species in an electric field free reaction chamber (RC). This ensures that values of equilibrium constants determined are truly representative of ions in states of thermochemical equilibrium. The existing HPMS in the McMahon laboratory is limited to the study of small volatile organic molecules. The new ion source will permit the exploration of systems involving non-volatile species, doubly charged ions and many biologically relevant molecules such as amino acids, peptides, nucleobases and carbohydrates.
63

Präzisionsmassebestimmung einzelner Partikel im Femtogrammbereich und Anwendungen in der Oberflächenphysik

Illemann, Jens 03 August 2000 (has links) (PDF)
In this work, a new method for mass determination of single low-charged particles in the sub-picogram regime is developed. It opens applications to chemical physics and surface science via determination of growth rates. The method combines the well-known electrodynamic quadrupole ion trap in a UHV-chamber and fourier transformation of scattered light. The achieved mass resolution of down to $10^{-4}$ at 100 fg mass on a time scale of ten seconds allows a resolution of a few percent of the mass of an adsorbed monolayer and to determine growth rates down to one molecule per second on a time scale of one day. The observation of temperature dependent sticking coefficients results in the measures of the energy of an adsorption barrier. Observation of discrete steps in the rate gives information about the density of molecules in an ordered layer. Temperature dependent desorption data gives the binding energy. The dependence of these observables on the controllable curvature and charge of the substrate's surface is measurable. The first part of this dissertation consists of a description of the common theory of the quadrupole ion trap with the completion of not widely known, newly introduced, contributions to the trapping potential. These contributions lead to systematic shifts in the mass determination. In particular the influence of the inhomogenity of the electrical field, that is used for compensating the gravitational force, is investigated analytically and corroborated experimentally. It is assumed, that the particle's finite size effects in a further shift. In the experimental part initial demonstrative measurements are presented: the time-resolved adsorption of fullerene, anthracene and NO on silica spheres with 500nm diameter has been measured at room temperature. In addition the secondary electron yield of in-situ prepared particles during irradiation with monoenergetic electrons has been determined by analyzing the distribution of change of the number of elementary charges by single events of charging.
64

Rozpoznávání ručně psaného písma pomocí neuronových sítí / Handwritten Character Recognition Using Artificial Neural Networks

Horký, Vladimír January 2012 (has links)
Neural networks with algorithm back-propagation will be presented in this work. Theoretical background of the algorithm will be explained. The problems with training neural nets will be solving there. The work discuss some techniques of image preprocessing and image extraction features, which is one of main part in classification. Some part of work discuss few experiments with neural nets with chosen image features.
65

Präzisionsmassebestimmung einzelner Partikel im Femtogrammbereich und Anwendungen in der Oberflächenphysik

Illemann, Jens 26 July 2000 (has links)
In this work, a new method for mass determination of single low-charged particles in the sub-picogram regime is developed. It opens applications to chemical physics and surface science via determination of growth rates. The method combines the well-known electrodynamic quadrupole ion trap in a UHV-chamber and fourier transformation of scattered light. The achieved mass resolution of down to $10^{-4}$ at 100 fg mass on a time scale of ten seconds allows a resolution of a few percent of the mass of an adsorbed monolayer and to determine growth rates down to one molecule per second on a time scale of one day. The observation of temperature dependent sticking coefficients results in the measures of the energy of an adsorption barrier. Observation of discrete steps in the rate gives information about the density of molecules in an ordered layer. Temperature dependent desorption data gives the binding energy. The dependence of these observables on the controllable curvature and charge of the substrate's surface is measurable. The first part of this dissertation consists of a description of the common theory of the quadrupole ion trap with the completion of not widely known, newly introduced, contributions to the trapping potential. These contributions lead to systematic shifts in the mass determination. In particular the influence of the inhomogenity of the electrical field, that is used for compensating the gravitational force, is investigated analytically and corroborated experimentally. It is assumed, that the particle's finite size effects in a further shift. In the experimental part initial demonstrative measurements are presented: the time-resolved adsorption of fullerene, anthracene and NO on silica spheres with 500nm diameter has been measured at room temperature. In addition the secondary electron yield of in-situ prepared particles during irradiation with monoenergetic electrons has been determined by analyzing the distribution of change of the number of elementary charges by single events of charging.
66

Law with Heart and Beadwork: Decolonizing Legal Education, Developing Indigenous Legal Pedagogy, and Healing Community

Lussier, Danielle 16 April 2021 (has links)
Employing decolonized, Indigenous research methods, the author considers Métis Beadwork Practice through the analytical lens of Therapeutic Jurisprudence and establishes the practice as a holistic Indigenous Legal Pedagogy for knowledge creation and mobilization in legal education. The author agrees with Drs. Friedland and Napoleon who suggest that a significant challenge in and to Indigenous legal research is that such research occupies a space of “deep absence,” with the starting line moved back as a consequence of colonialism. Building on the work of Dr. Shawn Wilson, the author espouses an Indigenous Research Paradigm which requires a prioritization of the relationship to the ideas and making space for non-linear logic systems and Indigenous ways of knowing in scholarly research. In her work, the author prioritizes synthesis over deconstruction on the belief that deconstructing relationships to ideas for the purpose of analyzing them would have the effect of damaging the cognitive and emotional relationships developed through the research ceremony. While the work embodies the four essential elements of autoethnography, the author argues that the work of Indigenous scholars speaking in their own voices is sui generis in nature. She argues that Indigenous scholars who employ storytelling and other culturally-relevant knowledge mobilization practices are engaging a distinct Indigenous Research Method. This work ultimately progresses in a non-linear fashion and incorporates extra-intellectual knowledge including poetry, music, and photography. The use of multiple fonts and other formatting devices including right justification are used to underline shifts in voice and perspective throughout the work. These pedagogical choices valourize the ways of knowing of Indigenous women and honour the author’s Métis worldview, including her understanding that all things are interrelated. The author examines, and ultimately eschews, notions of neutral objectivity in research as colonial constructs that undermine Indigenous Knowledge Systems and contribute to the ongoing colonization of Indigenous peoples in post-secondary education. Following an introduction to the legal and social history of Forced Assimilative Education of Indigenous Peoples in Canada, the author reviews recent research into ongoing colonialism, racism, and ethno-stress experienced by Indigenous Learners in post-secondary education. The ii author subsequently explores the specific concern of the subjugation and erasure of Indigenous women’s knowledge in academia. She conducts a review of existing literature in the sphere of Feminist Legal Theory, examining and ultimately rejecting intersectionality and conceptualizations of sisterhood as possible remedies to discrimination faced by Indigenous women legal scholars. She argues that the lived experience of Indigenous women is situated not at an intersection, but rather in the centre of a colonialism collision. As a consequence, the author argues that existing Feminist Legal Theory does not create adequate space for Indigenous difference, experiences, or worldviews. Offering insight into legal education, legal ethics, and professionalization processes, the author also explores questions of lived experience of Indigenous lawyers beyond the legal academy. She argues that learning the language of law is but the first element in a complex professionalization process that engages structures of patriarchal hierarchy in addition to the other forces, including colonialism and racism, that shape the legal profession. She further argues that, for Indigenous peoples, learning to speak the linear, official language of legal education represents a collision of even more complex systems of dominance, with the regulated approach to learning and problem-solving standing in direct opposition to Indigenous ways of knowing. Consequently, Indigenous law Learners frequently experience an intellectual rupture when engaging in the professional assimilation process. The author offers an overview of Calls to Action 27, 28, 42, and 50 of the Truth and Reconciliation Commission of Canada and an introductory environmental scan of ongoing efforts to decolonize and indigenize law schools including land-based learning and the development of Indigenous Course Requirements (ICRs). The author subsequently considers the process of decolonizing the legal academy through the analytical lenses of Therapeutic Jurisprudence and Therapeutic Jurisprudence+. She ultimately positions the act of decolonizing legal education as an act grounded in decolonial love with the potential for healing individuals and communities struggling with ongoing colonialism and racism in the academy. Building on the work of the late Professor Patricia Monture-Angus and contemporary Indigenous legal scholars including Drs. Tracey Lindberg, Darcy Lindberg, Val Napoleon, and John Burrows, the author considers possibilities for reimaging legal education through the development and use of Indigenous Legal Pedagogies. The author argues that Beadwork Practice holds a distinctive language of possibility as an Indigenous Legal Pedagogical practice as a result of deeply entrenched links between beads and law. The author explores the social and legal history of beads as a tool for legal knowledge production and mobilization in the context of wampum belts and beyond, including the use of Métis beadwork as a mnemonic device to facilitate intergenerational knowledge transfer of stories and songs that carry law. Further, she examines colonial law and policy that served to undermine the legal value of beads, and canvases emerging trends in the revitalization of community beadwork practice. Finally, the author positions Beadwork Practice as a holistic Indigenous Legal Pedagogy to support not only the revitalization of Indigenous Legal Orders and the development of cross-cultural competency as required under Calls to Action 27 and 28, but also therapeutic objectives of individual and community healing.
67

Development aid - a perspective on the World Bank performance: Calculating the social return on investment for the least developed countries

Schäfer, Dominik 02 March 2016 (has links)
This doctoral thesis focuses on the evaluation of the World Bank (WB) performance in delivering development aid to the Least Developed Countries (LDCs). For this purpose, an extensive research was performed to analyze a set of 790 Implementation Completion and Results reports for key economic and financial indicators. Results of this research provide various insights for the appraisal and the results stage of project delivery of the LDCs in different continents. In the final part of the economic and financial analysis the minimum Social Return on Investment (SROI) of the LDCs including all project costs was calculated. This SROI ratio outcome of 1 and 1.06 in the weighted and 1.3 and 1.72 in the unweighted case indicate that projects delivered by the WB have a positive effect on the poor countries. In the second part of this research project the data set of the ICR reports was qualitatively researched for negative ratings according to 3 core assessment categories for the overall project performance: Sustainability, bank performance and borrower performance. As a result the most critical categories respectively risks were outlined. In conclusion, the research analyses and findings support the general demand to provide even more development assistance to poor countries.:Table of Tables and Figures List of Equations List of Abbreviations 1 Introduction 1.1 Introduction to the Topic 1.2 Assessing Poverty Problems and Achieving Economic Growth 1.3 Millennium Development Goals 1.4 Development Aid 2 Research Approach 2.1 Objective 2.2 Structure 2.3 Least Developed Countries 2.4 World Bank 2.5 Data Access and Relevance 2.5.1 Data Basis 2.5.2 Implementation Completion and Results Reports 2.5.3 Project Types 2.6 Term “Performance” 2.7 Study and Research Questions 2.8 Challenges of this Doctoral Thesis 2.9 Contribution of this Thesis 3 Economic and Financial Analysis 3.1 SROI Concept 3.1.1 SROI Definition 3.1.2 SROI Process and Impact Map 3.1.3 Cost-Benefit-Analysis 3.1.4 SROI Calculation 3.2 SROI of World Bank Projects 3.2.1 Purpose of the Cost-Benefit-Analysis 3.2.2 Indicators of the SROI Calculation 3.2.2.1 Net Present Value 3.2.2.2 Capital and Recurring Costs 3.2.2.3 Project Dates and Duration 3.2.2.4 NPV-horizon 3.2.2.5 Discount Rate 3.2.3 Types of NPV-Cost-Ratios 3.2.3.1 Pro-Rata-Capital-Costs Ratio 3.2.3.2 Total-Capital-Costs Ratio 3.2.3.3 Pro-Rata-Capital plus Recurring-Costs Ratio 3.2.3.4 Total-Capital plus Recurring-Costs Ratio 3.2.4 Calculation of the proper SROI Ratio 3.2.5 Portfolio Analysis 3.2.6 Sensitivity Analysis 3.3 Additional Economic and Financial Indicators 3.3.1 Economic Rate of Return 3.3.2 Benefit-Cost-Ratio 3.3.3 Net Benefit 3.3.4 Financial Net Present Value 3.3.5 Financial Rate of Return 4 Results of the Economic and Financial Analysis 4.1 Analysis Approach and Setup 4.2 NPV Outcomes at the Appraisal Stage 4.2.1 Appraisal NPVs of the LDCs 4.2.2 Appraisal NPV Continent Comparison 4.3 NPV Outcomes of the Result Stage 4.3.1 Result NPVs of the LDCs 4.3.2 Result NPV Continent Comparison 4.4 Appraisal vs. Result NPVs 4.4.1 Results of the LDCs 4.4.2 Continent Comparison 4.5 Economic Rate of Return Result Values 4.5.1 Results of the LDCs 4.5.2 Continent Comparison 4.6 Additional Economic and Financial Indicator Result Values 4.6.1 Benefit-Cost-Ratio and Net Benefit 4.6.2 Financial Net Present Value and Financial Rate of Return 4.7 Overall Project Performance 4.7.1 Definition 4.7.2 Overall Project Performance Ratings 4.7.3 Outcome Calculation for Non-Financial Indicator Projects 4.7.4 Verification of Outcomes and Conclusion 4.8 NPV-Cost-Ratios and SROI Calculation 4.8.1 NPV-Cost-Ratios of the ICR Reports 4.8.1.1 Overall Results 4.8.1.2 Continent Comparison 4.8.2 Standardized NPV-Cost-Ratios 4.8.2.1 Overall Results 4.8.2.2 Continent Comparison 4.8.3 Calculating the Minimum SROI Ratio 4.8.3.1 Overall Results of the Capital SROI Ratio 4.8.3.2 Continental Comparison of the Capital SROI Ratio 4.8.3.3 Overall Results of the Minimum SROI Ratio 4.8.3.4 Continental Comparison of the Minimum SROI Ratio 4.8.4 Making Meaning of the Results 4.9 Summary and Conclusion 5 Qualitative Data Analysis 5.1 Content Analysis 5.2 Sustainability 5.2.1 Sustainability Rating Definition 5.2.2 Sustainability Rating Categories 5.3 Bank Performance 5.3.1 Bank Performance Definition 5.3.2 Bank Performance Categories 5.4 Borrower Performance 5.4.1 Borrower Performance Definition 5.4.2 Borrower Performance Categories 6 Results of the Qualitative Data Analysis 6.1 Sustainability 6.1.1 Quantitative Assessment of Sustainability Ratings 6.1.2 Outcome of the Content Analysis 6.1.2.1 Types of Reasons 6.1.2.2 Overall Results 6.1.2.3 Results in Haiti 6.1.2.4 Continent Comparison 6.1.3 Excursus: Positive NPV Projects 6.1.4 Summary and Conclusion 6.2 Bank Performance 6.2.1 Quantitative Assessment of Bank Performance Ratings 6.2.2 Outcome of the Content Analysis 6.2.2.1 Types of Reasons 6.2.2.2 Overall Results 6.2.2.3 Results in Haiti 6.2.2.4 Continent Comparison 6.2.3 Summary and Conclusion 6.3 Borrower Performance 6.3.1 Quantitative Assessment of Borrower Performance Ratings 6.3.2 Outcome of the Content Analysis 6.3.2.1 Types of Reasons 6.3.2.2 Overall Results 6.3.2.3 Results in Haiti 6.3.2.4 Continent Comparison 6.3.3 Summary and Conclusion 7 Overall Summary and Conclusion 8 Critical Acclaim and Recommendations 9 Outlook and Future Research List of Appendices Appendix References

Page generated in 0.0155 seconds