• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 488
  • 254
  • 177
  • 45
  • 39
  • 34
  • 33
  • 24
  • 24
  • 18
  • 14
  • 8
  • 8
  • 5
  • 5
  • Tagged with
  • 1342
  • 245
  • 227
  • 199
  • 195
  • 162
  • 156
  • 152
  • 139
  • 109
  • 108
  • 106
  • 94
  • 94
  • 88
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Effect of IL-13 on Serotonin mediated Airway Smooth Muscle Contraction

Ekstedt, Sandra January 2013 (has links)
Introduction: Asthma is a disease that occurs worldwide and approximately 300 million people carry this disease. It is characterized by chronic inflammation, airway obstruction and airway hyper-responsiveness (AHR). This T-lymphocyte controlled disease has symptoms such as coughing, wheezing, and chest tightness. In addition to chronic inflammation, asthma is also caused by overproduction of mucus and airway wall remodelling. The chronic inflammation and airway wall remodelling are suggested to contribute to the AHR and airway obstruction. AHR is a way to measure the reactivity in the airways in asthmatics. IL-13 has been shown to play an important role in the development of AHR, and biopsies from bronchial submucosa and air way smooth muscle (ASM) in humans have shown an increased concentration of IL-13 in severe asthma. Aim: The aim of this work was to evaluate if IL-13 is able to enhance the 5-HT response in mouse tracheal segments, which had been cultured for 2 days and, if so, try to unravel the underlying mechanism for this phenomenon. Literature reports that IL-13 enhanced contractions in mouse trachea in presence of KCl and CCH. Earlier work within this project did not find any clear proof for this observation. However, in this work this observation will be evaluated in a more controlled fashion by correcting for size and location of the trachea. Methods: The trachea was removed from Balp/c mice and cultured in small wells for two days in DMEM medium and various additions were performed to the medium for understanding the effect of e.g. IL-13 on the cells. The contractility change due to IL-13 and various additions in segments challenged with KCL, CCH and 5-HT were measured in a tissue-organ bath. Results and Conclusion: A more enhanced CCH induced contraction of IL-13 treated segments was obtained for the lower part compared to the upper part of the trachea. IL-13 enhanced the response in the ASM to 5-HT after two days of culturing. An increased concentration of the cytokine IL-13 in the airways from TH2-cells enhances the reactivity to 5-HT in the ASM. The underlying mechanism might involve JNK and ERK but more experiments are needed to statistically ensure this claim.
142

IL-6-engineered DC stimulate efficient antitumor immunity via enhanced and prolonged T cell cytotoxicity and survival

Zhang, Bei 06 March 2009 (has links)
Dendritic cells (DCs) modified by some immunomodulatory genes can stimulate a strong antitumor immunity and improve the treatment of tumor cells on the condition that the sources of tumor-associated antigens (TAAs) are available. IL-6, a pleotropic cytokine, has been found to inhibit CD4+25+ regulatory T (Treg)-cell-mediated immune suppression and decrease activation-induced cell death (AICD) without interfering the process of T-cell activation. To enhance DC-based cancer vaccine, we engineered DCs to express transgene IL-6.<p> We constructed a fiber-modified recombinant adenovirus vector AdVIL-6 expressing IL-6, infected DCs with AdVIL-6, and then investigated the efficacy of antitumor immunity induced by vaccination with DCs engineered to express IL-6 transgene. We demonstrated that DCs infected with the recombinant adenovirus AdVIL-6 induced DC maturation by up-regulation of the expression of MHC class U (Iab), CD40, CD54 and CD80 expression. We also demonstrated that vaccination of OVA-pulsed AdVIL-6-infected DCs (DCOVA/AdVIL-6) was able to stimulate a stronger OVA-specific effector CD8+ cytotoxic T lymphocyte (CTL) response than vaccination with the control virus AdVpLpA-infected DCs (DCOVA/AdVpLpA). More importantly, vaccination of mice with DCOVA/AdVpLpA could protect 100% mice from intravenous (i.v.) challenge of a low dose (0.5~105 cells per mouse, 8/8 mice protected) of OVA-expressing BL6-10OVA tumor cells, but only 63% mice from i.v. challenge of a high dose (1~105 cells per mouse, 5/8 mice protected) of BL6-10OVA tumor cells. However, vaccination of DCOVA/AdVIL-6 induced an augmented antitumor immunity in vivo by complete protection of mice (8/8) from challenge of both low and high doses of BL6-10OVA tumor cells.<p> To study the immune mechanism underlying the result of IL-6 engineered-DC vaccine, we generated the DCOVA/AdVIL-6-activated OTI CD8+ T cells and DCOVA/AdVpLpA-activated OTI CD8+ T cells. We demonstrated that DCOVA/AdVIL-6-activated CD8+ T cells displayed a higher level of CD62L, FasL and perforin than DCOVA/AdVpLpA-activated CD8+ T cells. DCOVA/AdVIL-6-activated CD8+ T cells had a prolonged T cell survival after they were transferred into C57BL/6 mice. Furthermore, the results of the animal study showed that 100% of mice bearing OVA-expressing EG7 tumors (8mm in diameter, 8 mice per group) were tumor-free after they were i.v. treated with DCOVA/AdVIL-6-activated CD8+ T cells (2~106 cells per mouse). However, the control DCOVA/AdVpLpA-activated CD8+ T cells failed in eradication of EG7 tumors in all 8/8 mice.<p> Taken together, Adenovirus-mediated IL-6 transgene engineered DC vaccine stimulates efficient CD8+ T cell responses and antitumor immunity via enhanced T cell cytotoxicity and prolonged T cell survival. DCs engineered to express IL-6 by adenovirus-mediated IL-6 gene transfer may offer a new strategy in production of DC cancer vaccines.
143

Expansion regulatorischer T-Zellen mittels eines IL-2/anti-IL-2-Antikörperkomplexes

Klein, Emanuela 05 July 2012 (has links) (PDF)
Regulatorische Foxp3+CD4+ T-Zellen sind essentiell für das Gleichgewicht des intestinalen Immunsystems. Eine Einschränkung ihrer Suppressionsfunktion wird bei Patienten mit Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX)-Syndrom beobachtet und führt im Tiermodell zu lymphoproliferativen Erkrankungen und intestinalen Entzündungen. Von entscheidender Bedeutung für Homöostase und Suppressionsfunktion regulatorischer T-Zellen ist das Signalmolekül Interleukin-2 (IL-2). Im Gegensatz zu Effektor-T-Zellen exprimieren Foxp3+CD4+ T-Zellen den hochaffinen IL-2-Rezeptor αβγ konstitutiv. IL-2 wird von regulatorischen T-Zellen nicht in relevanten Mengen exprimiert. Sie sind somit auf von anderen Zellen sezerniertes IL-2 angewiesen. In der vorliegenden Arbeit wird gezeigt, dass im Tiermodell regulatorische Foxp3+CD4+ T-Zellen durch Applikation eines IL-2/anti-IL-2-Antikörperkomplex nicht nur in mesenterialen Lymphknoten und Milz, sondern auch lokal in der Lamina propria mucosae des Kolons der Versuchstiere expandiert werden. Als relevante Quelle von IL-2 in situ könnten aktivierte proliferierende T-Zellen dienen. Um dies näher zu untersuchen, wurde die Proteinexpression proliferierender Einzelzellen mittels Matrix assisted laser desorption/ionisation-Time of flight-Massenspektrometrie-Imaging (MALDI-Imaging) analysiert. Es gelang die Identifikation präferentiell in lymphoiden Geweben exprimierter Peptidmassen. Obwohl die Einzelzellanalyse mittels MALDI-Imaging prinzipiell möglich erscheint, ist ein Nachweis von Zytokinen wie IL-2 derzeit aufgrund fehlender Sensitivität im Proteinmassebereich zwischen 10kDa und 20kDa nicht möglich. Die therapeutischen Möglichkeiten der Expansion regulatorischer Foxp3+ T-Zellen durch stabile IL-2-Rezeptor-Agonisten und die Rolle von IL-2 für die intestinale Immunregulation sollten weiter untersucht werden.
144

Role of nuclear factor-£eB¡Vinterleukin-6 signaling pathway in ventilator-induced lung injury in mice

Ko, Yi-An 05 July 2011 (has links)
Although mechanical ventilator is a life-saving intervention, longer ventilation time and excessive tidal volume contribute to lung injury and increased incidence of infection which is associated with higher mortality. IL-6, a pleiotropic cytokine, participates in both pro- and anti-inflammatory responses. Till now, opinions of the role of IL-6 are widely divided. To study the pathogenesis mechanism of ventilator-induced lung injury (VILI), C57BL/6 mice (WT), IL-6 knockout mice (IL6-/-), chimera (IL6-/- ¡÷ WT) and deletion of I£eB kinase in the myeloid (IKK¡µmye) mice were placed on ventilator for 6 hr. WT mice were also given the IL-6-blocking antibody just before ventilation to evaluate the role of IL-6 signaling in VILI. The results revealed that the pulmonary capillary permeability, neutrophil sequestration, macrophage drifting and protein concentration in bronchoalveolar lavage fluid, and the proinflammatory cytokine levels were significantly increased in ventilated WT mice but not in those pretreated with IL-6-blocking antibody as well as IL6-/-, IKK¡µmye, and IL6-/- ¡÷ WT chimera mice, suggesting that NF-£eB¡VIL-6 signaling could induce inflammation which contributes to the VILI. Furthermore, the antibacterial ability of alveolar macrophages was impaired by ventilation that subsequently increased the danger of developing to ventilator-associated pneumonia.
145

Role of type IV secretion systems in trafficking of virulence determinants of Burkholderia cenocepacia

Engledow, Amanda Suzanne 02 June 2009 (has links)
Type IV secretion systems have been identified in several human pathogens including Bordetella pertussis, Helicobacter pylori, and Legionella pneumophila. These systems are responsible for the translocation of virulence proteins and/or DNA, thereby playing an important role in the pathogenesis of infection and plasticity of genomes. Burkholderia cenocepacia is an important opportunistic human pathogen, particularly in persons with cystic fibrosis (CF). Respiratory tract infection by B. cenocepacia in CF patients is often associated with a decline in respiratory function, and can result in acute systemic infection. Burkholderia cenocepacia strain K56-2 is part of the epidemic and clinically problematic ET12 lineage. Two type IV secretion systems have been identified in this strain; one system is plasmid encoded (designated the Ptw type IV secretion system) whereas the other is chromosomally encoded (designated the VirB/D type IV secretion system) and shows homology to the Agrobacterium tumefaciens VirB/D4 type IV secretion system. It was determined that the plasmid encoded Ptw system is a chimeric type IV secretion system composed of VirB/D4-like elements and F-specific subunits. More recently, it was found that this system translocates a protein effector (PtwE1) that is cytotoxic to plant cells. It was also determined that the positively charged C-terminal region of PtwE1 is important for translocation via the Ptw type IV secretion system. Strains of the epidemic B. cenocepacia PHDC lineage contain only a chromosomal VirB/D4-like type IV secretion system (designated BcVirB/D); and a putative effector protein associated with this system has been identified that has C-terminal transport signal and sequences different from the effectors of the Ptw type IV secretion system. It has also been shown that a competing plasmid substrate and a plasmid fertility inhibition factor act to render B. cenocepacia of the PHDC lineage incapable of expressing a plant phenotype. Thus, three type IV secretion systems have been identified in epidemic B. cenocepacia lineages. From two of these, an effector has been identified that has cytotoxic effects on eukaryotic cells, and at least one of these type IV secretion systems is able to translocate DNA substrates.
146

The role of interleukin-1 receptor in intestinal damage induced by burn in mice

Hsu, Wei-hon 31 August 2004 (has links)
Burn induces the inflammation response, and causes the intestinal barrier failure. The failure of intestinal barrier may cause organ damage. Pervious studies have shown that the increase of iNOS activity is closely related to the organ damage after burn. The expression of iNOS is regulated by the activation of NF-£eB, and that is regulated by MAPKs. The pro-inflammatory cytokines play important roles to promote the inflammation through activating a series of signal transduction cascade, via binding to their receptors on cell membrane. The signal transduction cascades are turn on, MAPKs and NF-£eB are activated and the expression of iNOS is promoted. In this study, the role of pro-inflammatory cytokine interleukin-1 receptor (IL-1R) in burn induced intestinal damage was focused on. In experiments, the animals (C57BL/6 mice) were undergone 30~35 % total body surface area (TBSA) burn. The change of intestinal permeability was examined, and intestinal mucosa was assayed for the activation of iNOS and MAPKs by immunoblotting, and the activation of NF-£eB was detected by EMSA. The results reveal that activation of NF-£eB, intestinal permeability and expression of iNOS were increased after burn in wild type mice (WT). ERK MAPK plays an important role to regulate the activation of NF-£eB and expression of iNOS. Surprisingly, the permeability had no change after burn in IL-1R knock out mice (KO). The activation of ERK, NF-£eB and the expression of iNOS were also measured in KO. The levels of p-ERK, NF-£eB activation and iNOS expression were low in KO. When WT mice were treated with U0126 (5 mg/kg i.p.) right after burn to block the activation of ERK, the activation of ERK and NF-£eB, the expression of iNOS, and the intestinal permeability were all decreased significantly. To sum up, the changes in iNOS expression, NF-£eB activation, and intestinal permeability increase are mostly related to the activation of ERK after burn. IL-1 R plays a promotion role in ERK, NF-£eB activation, and iNOS expression that lead to the increase in intestinal permeability and promote damage in intestine.
147

Longitudinal relationships between family routines and biological profiles in youth with asthma

Schreier, Hannah Milena Caroline 11 1900 (has links)
While numerous studies have linked family routines to pediatric asthma outcomes, it remains unclear how family routines come to be associated with these outcomes on a biological level. The current study investigated whether longitudinal trajectories of inflammatory markers of asthma could be predicted by levels of family routines in youth with asthma. Family routines were assessed at baseline through parent questionnaires and peripheral blood samples obtained from youth every 6 months (total number of assessments = 4) over the course of an 18 month study period. Youth with more family routines in their home environment showed decreases in mitogen-stimulated production of a cytokine implicated in asthma, IL-13, over the course of the study period. In turn, within-person analyses indicated that at times when stimulated production of IL-13 was high, asthma symptoms were also high, pointing to the clinical relevance of changes in IL-13 over time. A variety of potential explanations for this effect were probed. Parental depression, stress, and general family functioning could not explain these effects, suggesting that family routines are not just a proxy for parent psychological traits or family relationship quality. However, medication use eliminated the relationship between family routines and stimulated production of IL-13. This suggests that family routines do impact asthma outcomes at the biological level, possibly through influencing medication adherence. Considering daily family behaviors when treating asthma may help improve both biological and clinical profiles in youth with asthma.
148

Études sur le rôle d’IL-18 dans l’immunopathogénèse du SIDA

Samarani, Suzanne 08 1900 (has links)
Le virus de l’immunodéficience humaine ou VIH est l’agent qui cause le SIDA. Le VIH donne lieu à une dérégulation dans la production de certaines cytokines qui ont un rôle immunologique très important chez les patients infectés. L’IL-18, autrement nommé facteur inducteur d’IFN-γ, est une cytokine pro-inflammatoire qui affecte le système immunitaire de façon importante. Son activité est régulée par l’"IL-18 Binding Protein" (IL-18BP), une autre cytokine qui se lie avec l’IL-18 et inhibe son activité biologique. Des études ultérieures ont montré des niveaux élevés d’Il-18 chez les patients infectés par le VIH par rapport aux personnes saines. Cependant, aucune étude n’a été réalisée concernant la production d’IL-18BP chez ces patients. Due à sa relevance dans la régulation de l’IL-18, nous avons étudié l’effet de l’infection par le VIH sur l’équilibre entre ces deux facteurs et l’impact de cet équilibre sur l’homéostasie des cellules NK. Nous avons mesuré les taux de l’IL-18 et de l’IL-18BP circulantes dans les sérums des patients infectés par le VIH en les comparants avec le même nombre de personnes saines et séronégatives. Nous avons aussi déterminé le nombre total des différents sous-types de cellules NK et analysé l’activité des cellules NK (Natural Killer). Finalement nous avons cherché à déterminer si l’IL-18 pouvait induire l’apoptose des cellules NK en activant l’expression de Fas ligand. Nos résultats nous démontrent que les patients infectés par le VIH ont trois fois plus d’IL-18 que les donneurs sains. Cependant les niveaux d’IL-18BP sont plus bas chez les patients infectés comparés aux donneurs sains. Alors, le ratio IL-18/IL-18BP est augmenté chez les patients infectés, ce qui entraîne une grande quantité d’IL-18 libre et biologiquement active circulante dans leur organisme. Nos études démontrent que chez ces patients, les concentrations d’IL-18 sont en corrélation négative avec l’activité cytotoxique de leurs cellules NK. Nos études in vitro démontrent que le traitement des cellules NK par l’IL-18 induit de façon fratricide leur apoptose en augmentant l’expression de Fas ligand. Finalement, cette production non coordonnée de ces deux facteurs pourrait contribuer à une immunopathologie induite par l’IL-18 en entraînant une apoptose fratricide des cellules NK qui possèdent un rôle important dans la réponse antivirale. Le dérèglement de l’homéostasie des cellules NK pourrait donc contribuer à la pathogenèse induite par le VIH. / HIV-1, the causative agent of AIDS, induces a deregulated production of several immunologically important cytokines in the infected persons. One of these cytokines is IL-18: a powerful proinflammatory cytokine that can regulate both innate and adaptive immune responses. In vivo, its activity is tightly regulated by IL-18 Binding Protein (IL-18BP), another cytokine that specifically binds and neutralizes IL-18 with high affinity. Previous studies have shown that IL-18 concentrations are significantly increased in the circulation of HIV-infected AIDS patients compared to those in healthy people. However, it is not yet clear how the increased levels of this cytokine affect the development of AIDS in HIV infected persons. Furthermore, little is known concerning the production of IL-18 antagonist (IL-18BP) in these patients. These issues were addressed in the studies presented in this thesis. We measured levels of IL-18 and IL-18BP in the sera of HIV-infected patients by using commercial ELISA kits and compared them with the values obtained from a similar number of healthy HIV-seronegative persons. We also determined the absolute and total number of different NK cell subsets and NK cell activity in the peripheral blood mononuclear cells (PBMC) of these individuals. Finally we determined the effects of recombinant human IL-18 as well as of IL-18-rich sera from AIDS patients on cytolytic activity and survival of human NK cells. Our results show that sera from HIV- infected patients contain up to 3 fold higher levels of IL-18 compared to the sera from healthy people. However, levels of IL-18BP were lower in the infected individuals compared to the healthy ones. Consequently, IL-18/IL-18BP ratio is increased in the patients resulting in a further increase in the concentrations of biologically active IL-18 in the circulation of these patients. Our results show that the concentrations of IL-18 correlated inversely with NK cell numbers as well as with their cytolytic activity in the infected persons. These results suggested the involvement of IL-18 in the disappearance of NK cells that prompted us to determine the potential cytocidal effects of this cytokine on human NK cells. The results from our in vitro experiments show that recombinant human IL-18 and IL-18-rich sera from AIDS patients caused apoptosis in a human NK cell line as well as in primary human NK cells. Anti-FasL antagonist antibodies inhibited this cell death. In a series of experiments, we found that IL-18 enhances expression of FasL but does not affect the expression of Fas on human NK cells. In vitro IL-18 also stimulated transcription from human FasL promoter. Furthermore, the cytokine also enhanced susceptibility of NK cells to Fas-mediated death, as it decreased the expression of an anti-apoptotic protein Bcl-XL. Our study shows that enhanced IL-18 bioactivity in HIV-infected patients may contribute to the pathogenesis of AIDS by disrupting NK cell homoeostasis.
149

Lipopolysaccharide-Mediated Regulation of IL-17 Receptor Levels in Human Monocytes

ZHANG, Xiubo 22 June 2011 (has links)
IL-17 promotes inflammation through the recruitment of monocytes and induction of various chemokines and inflammatory cytokines. Monocytes respond to IL-17 through the heteromeric IL-17 receptor (IL-17R) composed of subunits IL-17RA and IL-17RC. Together, monocytes and IL-17 amplify inflammation. Controlling the cellular response to IL-17 is crucial to prevent hyperactivation of inflammatory responses, which could lead to chronic inflammatory diseases. The cellular response to increased IL-17 levels may be limited by controlling the receptor levels. Before we understand how monocytes respond to IL-17 during infection, we must first characterize the expression of IL-17R in these cells in response to LPS, a well-characterized pro-inflammatory signal. The aim of this study is to understand the mechanisms which regulate IL-17R levels in human monocytes. IL-17R mRNA and protein levels were measured in response to LPS by RT-PCR and Western blot analysis in primary human monocytes, peripheral blood mononuclear cells (PBMC), and the human monocytic cell line, THP-1. LPS enhanced IL-17RA and RC transcript levels in monocytes and PBMC. In contrast, IL-17RA protein levels decreased with LPS treatment in these cells. Investigation into mechanisms regulating IL-17RA protein levels lead to the observation that IL-17RA undergoes receptor degradation in response to LPS. This work identifies for the first time that 1) LPS enhances transcript levels of IL-17R and 2) after LPS treatment, IL-17RA protein levels are reduced via an endosome-dependent degradation pathway. / Thesis (Master, Microbiology & Immunology) -- Queen's University, 2011-06-21 11:53:28.706
150

Molecular Signaling Mechanisms and Effector Functions of the Interleukin-17 Receptor in Human Airway Smooth Muscle Cells and Polymorphonuclear Neutrophils

DRAGON, Stephane 09 April 2010 (has links)
Immunopathological disorders are no longer defined by dysregulated T-helper (Th) type 1/ Th2 responses but account for modulatory cell types such as regulatory and Th17 cells. The newly defined Th17 subset is an effector memory subtype which regulates mucosal host defense responses. A distinctive feature of interleukin (IL)-17 is its ability to invoke neutrophilic responses and to synergize cytokine responses in proximal structural cells. This effect is most evident for proinflammatory cytokines and neutrophil-mobilizing chemokines which are under the regulatory control of the canonical, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. The uniqueness of the IL-17A receptor (IL-17RA) signal transduction pathway however has been a limiting factor in uncovering IL-17-mediated effector functions since the receptor bears little homology to other known receptors and contains a unique cytoplasmic consensus binding motif. Hence, the composition, dynamics and subunit interactions of the IL-17R complex have become an emerging area of research where novel recruitment motifs and adaptor proteins are actively being explored. Our study sought to uncover the signal transduction and molecular mechanisms mediating the initiation and amplification responses induced by IL-17. We hypothesize that (i) IL-17 represents a key cytokine which initiates inflammatory responses by acting on proximal structural cells to rapidly release neutrophil-mobilizing chemokines and myeloid growth factors and that (ii) IL-17 directly promotes survival responses of immune effector cells. Genomic analysis of stimulated human airway smooth muscle cells support the proinflammatory nature of IL-17 as NF-κB associated genes and chemokines were most significantly upregulated within 2 hours. However, IL-17 induced a modest fold increase in gene expression levels whereby only 4 genes achieved greater than 2 fold increases. This, along with the observation that IL-17 enhanced IL-1β-mediated CXCL8 expression via transcriptional promoter activation levels and post-transcriptional mRNA stabilization mechanisms suggests that IL-17 cooperatively functions with secondary cytokines to mediate inflammatory responses. Despite activating the p38-mitogen-activated protein kinase (MAPK) signaling pathway in peripheral blood neutrophils, IL-17 did not directly affect the apoptotic capacity of these cells but unexpectedly antagonized the survival response mediated by the granulocyte-macrophage colony stimulating factor (GM-CSF). Collectively, our results suggest that IL-17 is a potent synergistic cytokine which signals via the MAPK-NF-κB pathway to indirectly recruit neutrophils via CXC-chemokines produced by non-hematopoietic cells and that IL-17 may potentially dampen inflammatory responses by directly antagonizing inflammatory effector cells.

Page generated in 0.0321 seconds