• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 44
  • 37
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 10
  • 7
  • 5
  • 2
  • Tagged with
  • 334
  • 334
  • 124
  • 57
  • 40
  • 39
  • 39
  • 38
  • 38
  • 35
  • 32
  • 31
  • 31
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Modularni sistem za projektovanje alata za injekciono presovanje plastike / Modular system for plastic injection molding

Matin Ivan 15 May 2014 (has links)
<p>U disertaciji se prikazuje modularni sistem za projektovanje alata za<br />injekciono presovanje plastike. Analizirani su različiti prilazi u<br />projektovanu alata. Prikazana je koncepcija i funkcionisanje<br />razvijenog sistema. Verifikacija sistema je izvr&scaron;ena na konkretnim<br />plastičnim proizvodima. Na kraju su dati odgovarajući zaključci i<br />mogući pravci budućih istraživanja.</p> / <p>The dissertation shows the development of the modular system for<br />mold design for plastic injection molding. Different approaches were<br />analyzed in the field of mold design. The concept and functioning of<br />the developed modular system is presented. Validation of the<br />proposed system is made with the specific plastic parts. At the end<br />the appropriate conclusions and possible directions for future<br />research are given.</p>
132

Relations entre la microstructure et le comportement mécanique de matrices polyamide 66 injectées / Relationship between microstructure and mechanical behaviour of injection-molded polyamide 66 matrices

Giraudeau, Joan 05 December 2016 (has links)
Cette étude se focalise sur des matrices polyamide 66 vierges, mises en œuvre sous la forme de plaques injectées. Son objectif est la mise en évidence des corrélations qui existent entre l’organisation microstructurale de ces matrices et leur comportement mécanique.L’étude se limite dans un premier temps à l’analyse d’une seule plaque. Une cartographie des états microstructuraux a été réalisée, et dévoile une organisation typique du procédé d’injection moulage, avec des évolutions dans l’épaisseur ainsi que dans la direction de l’écoulement. Ainsi, on peut différencier les régions superficielles, en contact avec le moule, dans lesquelles la cristallisation a été impactée par des gradients thermiques et des contraintes de cisaillement relativement élevés, a l’inverse des régions profondes qui ont pu cristalliser dans des conditions plus stables. Les évolutions dans la direction de l’écoulement sont plus subtiles et semblent relever du transport de matière ou des différences de pression durant le procédé d’injection.Ces différences sur la microstructure se traduisent sur le plan du comportement mécanique et des évolutions dans les mêmes directions ont pu être observées. Il apparait que la dimension des entités cristallines, leur degré de perfectionnement, le niveau de contrainte de l’amorphe ou encore le taux de cristallinité impactent tous les propriétés mécaniques, même s’il les interrelations sont complexes et difficiles à discriminer.L’influence de l’humidité sur le matériau polyamide 66 a été observée et discutée. En conditionnant le positionnement du matériau par rapport à sa transition vitreuse, la teneur en eau pilote la façon dont la microstructure intervient dans les mécanismes de déformation du polymère. Sa prise en compte est donc essentielle.Enfin une extension de l’étude à des plaques de conditions de mise en œuvre différentes a été menée. Bien que leur impact sur les propriétés étudiées se sont avérées minimes, les évolutions observées ont permis d’affiner l’analyse et de confirmer certains points. / This study focuses on polyamide 66 matrices, formed as injection molded plates. The aim of the study is to highlight existing interrelations between microstructural organization and mechanic behavior.At first, the analysis is limited to one plate. A microstructural mapping has been done, and shows a typical injection molded organization, with evolutions in thickness and injection directions. Therefore, some areas can be differentiated, the superficial ones, those in contact with the mold, where the crystallization is induced by thermal gradient and shear stresses quite important, contrary to bulk areas which have known more stable conditions. Evolutions along the injection direction are more subtle and seem to be induced by the transportation of matter or different pressure conditions during the injection process.These microstructural differences are reflected on the mechanical plan and evolutions in the same directions have been observed. It appears that crystallites dimensions, perfection levels, constraint of amorphous phase or crystallinity ratio all impact on mechanical properties, even if interrelations are complex and not easy to discriminate.The influence of humidity on polyamide 66 material has been observed and discussed. This parameter controls the position of the material relatively to its glass transition and determines the way microstructure is implicated in deformation mechanisms.Finally, the study has been extended to different processing conditions. Although the evolutions that have been noticed were very small, they have helped to refine the analysis and confirm some points.
133

A method for precision injection molding

Rinderle, James R January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by James R. Rinderle. / M.S.
134

Ferro puro moldado por injeção para aplicação em Stents biodegradáveis

Mariot, Paulo January 2016 (has links)
Na presente pesquisa, produziu-se amostras de ferro puro poroso como biomaterial degradável visando a aplicação em stents, pelo processo de moldagem por injeção de pós metálicos (MPI). Os efeitos da fração volumétrica de ferro puro na mistura de injeção e da temperatura de sinterização na porosidade, microestrutura, propriedades mecânicas, propriedades de superfície, de degradação in vitro e de biocompatibilidade, foram investigados. Os resultados obtidos foram comparados com o ferro puro fabricado por fusão e com o aço inoxidável AISI 316-L. Encontrou-se que o grau de porosidade remanescente nas amostras sinterizadas foi o principal fator influenciando as propriedades mecânicas e de superfície, influenciando indiretamente os demais resultados. O ferro puro produzido por MPI exibiu valores de limite de escoamento entre 59 e 114 MPa e limite de resistência máximo de 210 MPa, com alongamento entre 10 e 50 %. A alta ductilidade é uma propriedade especialmente requerida em materiais para potencial aplicação em stents. Suas taxas de degradação em solução de Hank foram superiores às do ferro puro fabricado por fusão. O material fabricado com mistura de injeção contendo fração de ferro de 66 % (acima da fração crítica) mostrou o maior alongamento e boa taxa de degradação, um resultado interessante, pois segundo a literatura, valores acima da fração volumétrica crítica não são amplamente explorados. Os testes de biocompatibilidade mostraram excelente hemocompatibilidade do ferro puro fabricado por MPI com as células do sangue. Todas as condições testadas mostraram um nível de citotoxicidade abaixo do recomendado pela norma vigente, mas este dependendo da concentração de íons de ferro empregada e do grau de porosidade. Entre todas as condições de ensaio investigadas, as amostras contendo fração volumétrica de ferro de 62 % inicialmente na mistura de injeção e sinterizadas a 1120 oC, apresentaram a melhor combinação de propriedades para aplicação em stents. Concluiu-se que a MPI é um método tecnicamente viável como rota de produção de tubos de parede fina precursores para fabricação de stents biodegradáveis. / In the present research, an attempt was made to produce porous pure iron, as a metallic degradable biomaterial potentially for stent application, via the MIM route. The effects of iron powder loading and sintering temperature on the porosity, microstructure, mechanical properties, surface properties and in vitro degradation behavior of MIM iron were investigated. The results obtained were compared to those of cast iron. It was found that the amount of porosity remained in the as-sintered specimens had a major effect on their surface and mechanical properties. The MIM pure iron showed yield strength values between 59 and 114 MPa and maximum tensile strength of 210 MPa, with elongation values between 10 and 50 %. A high ductility is a specially required property of stent materials. Its degradation rates in Hank’s solution were superior to the degradation rate of cast iron. The material made from the feedstock containing 66 % of iron powder, above the critical powder loading, showed the highest elongation and a good in vitro degradation rate. This result is interesting, once according to the literature, powder loadings above the critical value are not well explored. The biocompatibility tests showed excellent hemocompatibility of MIM pure iron with blood cells. All conditions tested showed toxicity level below the values determined by current standards, but depending of Fe ions concentration and porosity level. Between all the conditions tested in the present investigation, the 62 % powder loading sample, sintered at 1120 oC, showed the best combination of properties for stent application. In conclusion, MIM is a promising method to be developed as a new route to produce thin-wall tubes for biodegradable stents.
135

Single-Molecule Detection and Optical Scanning in Miniaturized Formats

Melin, Jonas January 2006 (has links)
<p>In later years polymer replication techniques have become a frequently employed fabrication method for microfluidic and micro-optical devices. This thesis describes applications and further developments of microstructures replicated in polymer materials. </p><p>A novel method for homogenous amplified single-molecule detection utilizing a microfluidic readout format is presented. The method enables enumeration of single biomolecules by transforming specific molecular recognition events at nanometer dimensions to micrometer-sized DNA macromolecules. This transformation process is mediated by target specific padlock probe ligation, followed by rolling circle amplification (RCA) resulting in the creation of one rolling circle product (RCP) for each recognized target. Throughout this transformation the discrete nature of the molecular population is preserved. By hybridizing a fluorescence-labeled DNA detection oligonucleotide to each repeated sequence of the RCP, a confined cluster of fluorophores is generated, which makes optical detection and quantification possible. Spectral multiplexing is also possible since the spectral profile of each RCP can be analyzed separately. The microfluidic data acquisition process is characterized in detail and conditions that allow for quantification limited only by Poisson sampling statistics is established. The molecular characteristics of RCPs in solution are also investigated.</p><p>Furthermore a novel thermoplastic microfluidic platform is described. The platform allows for observation of the microchannels using high magnification optics and also offers the possibility of on-chip cell culture and the integration of mechanical actuators.</p><p>A novel fabrication process for the integration of polymer micro-optical elements on silicon is presented. The process is used for fabrication of a micro-optical system consisting of a laser and a movable microlens making beam steering possible. Such a micro-scanning system could potentially be used for miniaturized biochemical analysis.</p>
136

CAE-based process designing of powder injection molding for thin-walled micro-fluidic device components

Urval, Roshan 06 December 2004 (has links)
Powder injection molding (PIM) is a net fabrication technique that combines the complex shape-forming ability of plastic injection molding, the precision of die-casting, and the material selection flexibility of powder metallurgy. For this study, the design issues related to PIM for fabrication of thin-walled high-aspect ratio geometries were investigated. These types of geometries are typical to the field of microtechnology-based energy and chemical systems (MECS). MECS are multi-scale (sizes in at least two or more different length scale regimes) fluidic devices working on the principle of heat and mass transfer through embedded micro and nanoscale features. Stainless steel was the material chosen for the investigations because of its high-thermal resistance and chemical inertness necessary for typical microfluidic applications. The investigations for the study were performed using the state-of-the-art computer aided engineering (CAE) design tool, PIMSolver��. The effect of reducing part thickness, on the process parameters including melt temperature, mold temperature, fill time and switch over position, during the mold-filling stage of the injection molding cycle were investigated. The design of experiments was conducted using the Taguchi method. It was seen that the process variability generally increased with reduction in thickness. Mold temperature played the most significant role in controlling the mold filling behavior as the part thickness reduced. The effects of reducing part thickness, process parameters, microscale surface geometry and delivery system design on the occurrence of defects like short shots were also studied. The operating range, in which the mold cavity was completely filled, was greatly reduced as the part thickness was reduced. The single edge gated delivery system designs, with single or branched runners, resulted in a completely formed part. The presence of microchannel features on the part surface increased the possibility of formation of defects like short shots and weld-lines when compared to a featureless part. The study explored some typical micro-fluidic geometries for fabrication using PIM. The final aspect of this study was the PIM experiments performed using a commercial stainless steel feedstock. Experiments were performed to study the mold-filling behavior of a thin, high aspect ratio part and also to study the effect of varying processing conditions on the mold-filling behavior. These experiments also provided correspondence to the mold filling behavior simulated using PIMSolver��. The PIMSolver�� closely predicted the mold-filling patterns as seen in the experiments performed under similar molding conditions. The study was successful in laying down a quantitative framework for using PIM to fabricate micro-fluidic devices. / Graduation date: 2005
137

Closed-loop flow control approaches for VARTM

Nalla, Ajit R. January 2006 (has links)
Thesis (M.S.M.E.)--University of Delaware, 2006. / Principal faculty advisor: James Glancey, Dept. of Bioresources Engineering. Includes bibliographical references.
138

Single-Molecule Detection and Optical Scanning in Miniaturized Formats

Melin, Jonas January 2006 (has links)
In later years polymer replication techniques have become a frequently employed fabrication method for microfluidic and micro-optical devices. This thesis describes applications and further developments of microstructures replicated in polymer materials. A novel method for homogenous amplified single-molecule detection utilizing a microfluidic readout format is presented. The method enables enumeration of single biomolecules by transforming specific molecular recognition events at nanometer dimensions to micrometer-sized DNA macromolecules. This transformation process is mediated by target specific padlock probe ligation, followed by rolling circle amplification (RCA) resulting in the creation of one rolling circle product (RCP) for each recognized target. Throughout this transformation the discrete nature of the molecular population is preserved. By hybridizing a fluorescence-labeled DNA detection oligonucleotide to each repeated sequence of the RCP, a confined cluster of fluorophores is generated, which makes optical detection and quantification possible. Spectral multiplexing is also possible since the spectral profile of each RCP can be analyzed separately. The microfluidic data acquisition process is characterized in detail and conditions that allow for quantification limited only by Poisson sampling statistics is established. The molecular characteristics of RCPs in solution are also investigated. Furthermore a novel thermoplastic microfluidic platform is described. The platform allows for observation of the microchannels using high magnification optics and also offers the possibility of on-chip cell culture and the integration of mechanical actuators. A novel fabrication process for the integration of polymer micro-optical elements on silicon is presented. The process is used for fabrication of a micro-optical system consisting of a laser and a movable microlens making beam steering possible. Such a micro-scanning system could potentially be used for miniaturized biochemical analysis.
139

Production and Analysis of Polymeric Microcantilever Parts

McFarland, Andrew W. 24 November 2004 (has links)
This dissertation presents work involving the manufacture and analytic modeling of microcantilever parts (length-width-thickness of roughly 500-100-10 microns). The manufacturing goals were to devise a means for and demonstrate repeatable production of microcantilevers from techniques not used in the integrated-circuit field, which are the exclusive means of current microcantilever production. The production of microcantilevers was achieved via a solvent casting approach and with injection molding, which produced parts from various thermoplastic polymeric materials (amorphous, semi-crystalline, fiber- and nanoclay-filled) in a repeatable fashion. Limits of the injection molding process in terms of the thinnest cantilevers possible were examined with 2 microns being the lower bound. Subsets of the injection-molded parts were used in a variety of sensing applications, some results were successful (e.g., vapor-phase, resonance- and deflection-based sensing), while others showed poor results, likely due to experimental shortcomings (e.g., fluid-phase, deflection-based sensing). Additionally, microcantilever parts with integrated tips were injection-molded and showed to function at the same level as commercial, tipped, silicon-nitride parts when imaging an optical grating; this experimental work was the first demonstration of injection-molded parts for chemical sensing and force spectroscopy. The scientific results were (i) the derivation of a length scale dependent bending stiffness and experimental evidence showing that such an effect was observed, (ii) the development of a new microcantilever experimental mode (surface stress monitoring via microcantilever bending resonant frequencies) and experimental validation of the technique, and (iii) a new method for determining microcantilever geometry based upon measurement of a bending, lateral, and torsional mode and experimental validation of the procedure.
140

Effects Of Injection Molding Conditions On The Mechanical Properties Of Polyamide / Glass Fiber Composites

Cansever, Cahit Can 01 June 2007 (has links) (PDF)
In this study, effect of injection molding process parameters on fiber length and on mechanical properties of Polyamide-6 / glass fiber composite were investigated to produce higher performance composites. Polyamide-6 was first compounded with an E-grade glass fiber in a co-rotating intermeshing twin screw extruder. Then, by using this composite, twenty-five types of experiments were performed by injection molding by changing the barrel temperature, injection pressure, hold pressure, mold temperature, cooling time and screw speed. Izod notched impact, tensile, viscosity, heat deflection temperature, differential scanning calorimetry tests were performed on injection molded samples. By performing these tests, the effects of process parameters on mechanical properties and on fiber length were observed. In order to understand the variation in mechanical properties, thermal tests were also conducted. Also, fiber length distributions of the samples were measured.Experimental data show that fiber breakage decreases with increasing screw speed, injection pressure, however, fiber length increases with increasing barrel temperature, mold temperature and cooling time. Fiber length is almost not affected with the hold pressure. It is assumed in this study that crystallinity is not affected with injection pressure, hold pressure and screw speed. As barrel temperature and cooling time increase, crystallinity increases, however, as mold temperature increases, crystallinity decreases. Impact strength, tensile modulus and tensile strength increase, whereas elongation at break decreases with the average fiber length. Crystallinity affects the tensile strength and modulus positively. The tensile strength and modulus increase with increasing crystallinity.

Page generated in 0.0194 seconds