151 |
The role of thermal processing and protein oxidation in peanut allergyHillson, William Rawstron January 2013 (has links)
Food allergies are an increasing health problem throughout the developed world. Among these, peanut allergy is particularly significant, due to its exceptional severity and frequent lifelong duration. Much of its aetiology remains unclear. In particular, it remains unknown why, unlike other food allergies, peanut allergy incidence correlates poorly with average dietary peanut consumption. A popular explanation for this discrepancy is that peanut allergy is more common in regions where predominantly dry-roasted (DR) peanuts are consumed, leading to speculation that DR-induced chemical modifications may contribute to pathological T<sub>h</sub>2 responses in humans. Yet to date, no research group has demonstrated an enhanced immunogenicity of DR peanuts relative to raw in a murine model of sensitisation. This thesis begins with the hypothesis that dry-roasting does indeed alter the chemical composition of peanut proteins in such a way as to increase immunogenicity and allergenicity. To test this hypothesis robustly, I have first addressed flaws in previous studies by developing a methodology to thoroughly characterise samples of raw and DR peanut protein, as well as purifying samples of individual peanut allergens. Using these samples, I have demonstrated an enhanced immunogenicity of DR peanut protein relative to raw, in intragastric, subcutaneous and epicutaneous models of mouse sensitisation, and furthermore, that such enhanced responses feature a pronounced T<sub>h</sub>2 bias and functional IgE production. I will present evidence that this difference is not caused by either protein aggregation or the presence of other non-protein substances, but is due to an intrinsic property of the DR peanut proteins. I will go on to clarify candidate molecular mechanisms of this effect, examining several putative receptors and probing the effects of roasting on dendritic cell binding and interactions of peanut proteins. I conclude in light of these investigations that the dry-roasting hypothesis remains the most plausible explanation for the epidemiological distribution of peanut allergy, although many additional questions remain regarding the nature of the chemical modifications produced by roasting and the molecular basis of their recognition by the immune system.
|
152 |
Ribonuclease H2, RNA:DNA hybrids and innate immunityRigby, Rachel Elizabeth January 2011 (has links)
The activation of the innate immune system is the first line of host defence against infection. Nucleic acids can potently stimulate this response and trigger a series of signalling cascades leading to cytokine production and the establishment of an inflammatory state. Mutations in genes encoding nucleases have been identified in patients with autoimmune diseases, including Aicardi-Goutières syndrome (AGS). This rare childhood inflammatory disorder is characterised by the presence of high levels of the antiviral cytokine interferon-α in the cerebrospinal fluid and blood, which is thought to be produced as a consequence of the activation of the innate immunity by unprocessed self-nucleic acids. This thesis therefore aimed to define the role of one of the AGS nucleases, the Ribonuclease H2 (RNase H2) complex, in innate immunity, and to establish if nucleic acid substrates of this enzyme were able to induce type I interferon production in vitro. The AGS nucleases may function as components of the innate immune response to nucleic acids. Consistent with this hypothesis, RNase H2 was constitutively expressed in immune cells, however, its expression was not upregulated in response to type I interferons. RNase H2-deficient cells responded normally to a range of nucleic acid PAMPs, which implied that a role for RNase H2 as a negative regulator of the immune response was unlikely, in contrast to the reported cellular functions of two other AGS proteins, TREX1 and SAMHD1. Therefore, no clear evidence was found for the direct involvement of RNase H2 in the innate immune response to nucleic acids. An alternative model for the pathogenesis of disease hypothesises that decreased RNase H2 activity within the cell results in an accumulation of RNA:DNA hybrids. To investigate the immunostimulatory potential of such substrates, RNA:DNA hybrids with different physiochemical properties were designed and synthesised. Methods to purify the hybrids from other contaminating nucleic acid species were established and their capacity as activators of the innate immune response tested using a range of in vitro cellular systems. A GU-rich 60 bp RNA:DNA hybrid was shown to be an effective activator of a pro-inflammatory cytokine response exclusively in Flt3-L bone marrow cultures. This response was completely dependent on signalling involving MyD88 and/or Trif, however the specific receptor involved remains to be determined. Reduced cellular RNase H2 activity did not affect the ability of Flt3-L cultures to mount a cytokine response against the RNA:DNA hybrid. These in vitro studies suggested that RNA:DNA hybrids may be a novel nucleic acid PAMP. Taken together, the data in this thesis suggest that the cellular function of RNase H2 is in the suppression of substrate formation rather than as a component of the immune response pathways. Future studies to identify endogenous immunostimulatory RNA:DNA hybrids and the signalling pathways activated by them should provide a detailed understanding of the molecular mechanisms involved in the pathogenesis of AGS and related autoimmune diseases.
|
153 |
Interaction of PfEMP1 with the Human Immune System and the Prospect of PfEMP1-based Vaccine for MalariaMagale, Hussein Issak January 2016 (has links)
Malaria is a leading cause of death in some developing countries. The malaria parasite has been around for over a century, and has coevolved with humans. Coming up with an effective vaccine for P. falciparum will save millions of lives and reduce the morbidity and mortality of malaria globally. Understanding the role of exported parasite proteins i.e PfEMP1 a virulence factor and major cause of malarial pathogenesis, has been of great interest to vaccine researchers in the last decade. The focus of this review is to provide a literature review on PfEMP1s, their interaction with the human immune system, and their role in helping P. falciparum parasite to evade the immune system. This review will primarily focus on the intra-erythrocytic stage, which is the stage that results in the symptoms of malaria. A review is necessary to understand the antigenic variation of PfEMP1s, and how PfEMP1s challenge the different arms of the immune response, both the innate and adaptive. This review is unique in touching on the major parts of the immune system's interaction with the PfEMP1 antigen. Furthermore, the review explores the discussion of future research and therapeutic opportunities based on our knowledge of PfEMP1 antigens.
|
154 |
Differences in innate immune response between man and mouseZschaler, Josefin, Schlorke, Denise, Arnhold, Jürgen 20 June 2016 (has links) (PDF)
Mouse strains are frequently used to model human disease states, to test the efficiency of drugs and therapeutic principles. However, the direct translation of murine experimental data to human pathological events often fails due to sufficient differences in the organization of the immune system of both species. Here we give a short overview of the principle differences between mice and humans in defense strategies against pathogens and mechanisms involved in response to pathogenic microorganisms and other activators of the immune system. While in human blood mechanisms of immune resistance are highly prevailed, tolerance mechanisms dominate for the defense against pathogenic microorganisms in mouse blood. Further on, species-related differences of immune cells mainly involved in innate immune response as well as differences to maintain oxidative homeostasis are also considered. A number of disease scenarios in mice are critically reflected for their suitability to serve as a model for human pathologies. Due to setbacks in these studies, novel mouse models were created to bridge the immune system of both species: humanized mice. Accordingly, a special section of this review is devoted to new results applying humanized mouse models taking limitations and prospects into account.
|
155 |
Salmonella Suppress Innate Immunity by Targeting Mast CellsChoi, Hae Woong January 2014 (has links)
<p>Mast cells (MCs) are increasingly recognized as powerful sentinel cells responsible for modulating the early immune responses to a wide range of infectious agents. This protective role is attributable in part to their preponderance at the host-environment interface and their innate capacity to rapidly release modulators of immune cell trafficking which promotes the early recruitment of pathogen-clearing immune cells from the blood. However, host-adapted pathogens had been a critical threat to human for a long time because they have evolved mechanisms directed at overcoming protective immunity. </p><p>In this work, we outline <italic>Salmonella enterica</italic> serovar Typhimurium has evolved a novel mechanism to inactivate peripheral MCs resulting in limited neutrophil responses at infection sites in early stage of infection. Because of the delay in bacterial clearance at the point of entry, <italic>Salmonella</italic> are able to multiply and rapidly disseminate to distal sites. Suppression of local MCs' degranulation restricted outflow of vascular contents into infection sites, thus facilitating bacterial spread. </p><p>We discover MC suppression is mediated by the Salmonella Protein Tyrosine Phosphatase (SptP), which shares structural homology with <italic>Yersinia</italic> YopH. Interestingly, SptP, not only shares homology with phosphatases found in MCs, they are also homologous to YopH an effector protein expressed by plague causing <italic>Yersinia pestis</italic>. We show that YopH had MC suppressing abilities as SptP suggesting that this activity is shared among some of the more virulent bacterial pathogens. The functionally relevant domain in SptP is its enzymatic site and that it works by dephosphorylating the vesicle fusion protein N-ethylmalemide-sensitive factor (NSF) and by blocking phosphorylation of Syk, which is located in downstream and upstream of tyrosine phosphorylation signaling pathway in MCs. </p><p>Without SptP, orally challenged <italic>S.</italic> Typhimurium failed to suppress MC degranulation and exhibited limited colonization of the mesenteric lymph nodes. Administration of SptP to sites of Escherichia coli infection markedly enhanced its virulence. Thus, SptP-mediated inactivation of local MCs is a powerful mechanism utilized by <italic>S.</italic> Typhimurium to impede early innate immunity. This finding provides a logical explanation for why previous attempts by others to demonstrate a protective role for MCs against <italic>Salmonella</italic> infections have resulted in equivocal results. </p><p>Taken together, this work highlights an overlooked virulence mechanism possessed by certain host adapted pathogens to avoid the host's innate immune system. Additionally, this innate immune-quelling property of SptP may hold future promise in tempering harmful inflammatory disorders in the body of an immune competent host.</p> / Dissertation
|
156 |
ANGIOTENSIN II INDUCTION OF REGIONAL EFFECTS IN MURINE VASCULATUREOwens III, Albert Phillip 01 January 2009 (has links)
The renin angiotensin system (RAS) exerts many diverse physiological functions throughout the body, mediated by its effector peptide, angiotensin II (AngII). AngII has been linked with a variety of different functions ranging from the initiation of severe vascular pathologies, such as atherosclerosis and abdominal aortic aneurysm (AAA), to mundane physiological processes of fluid homeostasis, vascular contraction, and regulation of blood pressure. To provide a potential link between these functions, an in-depth analysis of regional effects of AngII on aortic vasculature was performed.
The studies presented in this dissertation tested the overall hypothesis of whether regional changes exist in the vasculature in response to angiotensin II (AngII). We first infused AngII into C57BL/6 animals and studied the aortic morphology in detail. On first glance, we detected a thickening throughout the aorta, with no overt changes from region to region. However, upon further analysis, it was demonstrated that there was a region-specific aortic arch hyperplasia, versus the hypertrophy in the remainder of the aorta. Through a series of experiments, this hyperplasia was linked to the redox-mediated protein Id3. Further analysis of the vasculature demonstrated AngII exerted aortic contractions which were limited to the infrarenal aorta. These contractions were mediated by the AT1b receptor subtype in the RAS. We also demonstrate that AngII leads to suprarenal specific formation of AAA, which can be attenuated by the deletion of specific innate immune mediator proteins, such as MyD88 and TLR4. Overall, these data suggest many region-specific roles for AngII in the aortic vasculature and provide many novel findings as to the cause of these effects.
|
157 |
Hematopoiesis in a CrustaceanLin, Xionghui January 2010 (has links)
Hemocytes (blood cells) play an important role in the immune response in invertebrates, and thus the regulation of hemocyte homeostasis (hematopoiesis) is essential for the host survival against pathogens. Astakine 1, a homologue to vertebrate prokineticins, was first identified in the freshwater crayfish Pacifastacus leniusculus as a cytokine, and was found to be necessary for new hemocyte synthesis and release in vivo, and also to induce spreading and proliferation of Hematopoietic tissue cells (Hpt cells, precursor of hemocytes) in vitro. The work of this thesis is aimed to further our understanding of the molecular mechanisms involved in astakine 1 induced hematopoiesis. Crayfish transglutaminase (Tgase) has been identified in the hemocytes, and is essential for the coagulation reaction. Interestingly this enzyme is exceedingly abundant in the Hpt cells, and the spreading of Hpt cells induced by astakine 1 was accompanied by sequential loss of TGase activity from the surface of these cells. This loss of TGase activity may be an important effect of astakine 1, resulting in recruiting new hemocytes into the circulatory system. Although astakine 1 contain a prokineticin domain, it lacks the conserved N-terminal AVIT motif present in its vertebrate homologues. This motif is important for vertebrate prokineticins to interact with their receptors, indicating a different receptor interaction for crayfish astakine 1. Astakine 1 was indeed found to interact with a completely different receptor, the β-subunit of ATP synthase, on a portion of Hpt cells, and subsequently block its extracellular ATP formation. Surface ATP synthase has been reported on numerous mammalian cells, but now for the first time in an invertebrate. The activity of ATP synthase on the Hpt cells may be important for the survival and proliferation of Hpt cells, but the underlying mechanisms remain further study. With the finding of a second type of astakine in crayfish, invertebrate astakines can be divided into two groups: astakine 1 and astakine 2. The properties of astakine 2 are different from those of astakine 1 both in structure and function. In primary cell culture of Hpt cells, only astakine 1 can promote proliferation as well as differentiation into semigranular cells, whereas astakine 2 may play a potential role in the maturation of granular cells. Moreover, a novel cysteine rich protein, Pacifastacus hematopoiesis factor (PHF), was found to be one target gene of astakine 1 in Hpt cells. Down regulation of PHF results in increased apoptosis in Hpt cells in vitro, and in vivo silencing PHF leads to a severe loss of hemocytes in the animal. Therefore astakine 1 acquires the anti-apoptosis ability by inducing its downstream gene PHF in the Hpt cells. With its ability to promote the survival, proliferation and differentiation of Hpt cells, astakine 1 is proven to be an important hematopoietic growth factor.
|
158 |
Mechanisms of NKG2D ligand regulationMcCarthy, Michael Thomas January 2013 (has links)
Background: The NKG2D ligands are a set of cell surface proteins, the expression of which can make cells susceptible to immunity mediated by NKG2D receptor expressing cells, which include NK cells, CD8<sup>+</sup> αβ T cells and γδ T cells. The NKG2D ligands are known to be expressed in distinct settings, including viral infection, cancer, T cell activation, and cellular proliferation, settings also tightly associated with Warburg metabolism. The molecular events which determine NKG2D ligand expression status are unknown. Aims: We aim to enhance understanding of the deterministic molecular events that control NKG2D ligand expression. Specifically, to explore the relationship between Warburg metabolism and NKG2D ligand expression in cell line and physiological models, and second, to identify open chromatin elements at NKG2D ligand loci, and develop computational methods to analyse this data. Methods: We use a range of molecular biology techniques to delineate the role of glucose metabolism in NKG2D ligand expression in a HEK293T cell model. We develop a physiological CMV-primary fibroblast model of NKG2D ligand induction to validate our key findings. We adapt, optimise and validate a DNaseI-seq protocol, to define open chromatin sites at the NKG2D ligand loci. We develop a data analysis `pipeline', including our own peak-finding software (“PeakHunter"), to identify open chromatin sites in the data. Key results: Glucose drives NKG2D ligand expression. This effect requires cellular uptake and metabolism of glucose. Purine nucleotides are a key glucose metabolite for this effect, and purine nucleosides are sufficient to induce NKG2D ligand expression in our HEK293T model. We have identified the open chromatin sites at the NKG2D loci in MCF7 breast cancer cells, and optimised and validated this protocol. Finally we have developed “PeakHunter" a multifunctional software tool for mapped DNaseI-seq data analysis. Conclusions: Glucose and its contribution to purine metabolism play a central role in the induction of NKG2D ligand expression in physiological settings. The influence of glucose leads to significant alterations in cellular NKG2D-dependent immunogenicity. PeakHunter is a useful tool for analysis of mapped DNaseI-seq data.
|
159 |
Effecteurs moléculaires de lassociation Crassostrea gigas / Vibrio splendidus. Rôle de la porine OmpU dans les mécanismes de résistance et déchappement à la réponse immunitaire de lhôte. / Molecular effectors of the Crassostrea gigas / Vibrio splendidus interaction. Role of the OmpU porin in resistance and evasion to the immune response.Duperthuy, Marylise 04 November 2010 (has links)
Vibrio splendidus LGP32 est une bactérie pathogène associée aux épisodes de mortalités estivales qui affectent la production d'huître Crassostrea gigas depuis des décennies. Nous avons montré ici que la porine OmpU était un effecteur majeur de l'interaction V. splendidus / C. gigas. Nous avons pour cela construit un mutant ΔompU de V. splendidus. Celui-ci nous a permis de mo ntrer l'implication de OmpU (i) dans la résistance de V. splendidus aux antimicrobiens, incluant ceux de l'huître, (ii) dans la « fitness » chez l'huître, et (iii) dans la virulence en infections expérimentales (mortalités de 56 % pour le sauvage versus pour le 11% mutant). En accord avec ces résultats, nous avons montré que la délétion de ompU modifiait la sécrétion de protéines dont l'expression est contrôlée par les voies de régulation de la virulence (ToxR) et de l'intégrité membranaire (SigmaE). Par ailleurs, nous avons montré que OmpU jouait un rôle essentiel dans la reconnaissance par les hémocytes. En effet, (i) in vivo, les gènes hémocytaires répondent différemment à l'infection par le Vibrio sauvage ou ΔompU, et (ii) in vitro, OmpU est nécessaire à l'invasion hémocytaire par V. splendidus. Cette invasion utilise la phagocytose dépendante de l'intégrine b et la SOD extracellulaire du plasma d'huître comme opsonine qui lie OmpU. Ainsi, OmpU est un facteur de virulence majeur qui permet l'infection des hémocytes dans lesquels il est capable de survivre en inhibant la formation de radicaux oxygénés et de vacuoles acides. La résistance du Vibrio aux antimicrobiens hémocytaires de l'huître, elle-même dépendante de OmpU, est probablement un élément supplémentaire favorable à la survie intra-cellulaire. / Vibrio splendidus LGP32 is a bacterial pathogen associated to the summer mortality outbreaks that have affected the production of Crassostrea gigas oysters over the past decades. We showed here that the OmpU porin is a major effector of the V. splendidus / C. gigas interaction. For that, we have constructed a ΔompU mutant of V. splendidus, and shown that the OmpU porin is implicated (i) in the resistance of V. splendidus to antimicrobials, including those of oyster, (ii) in its in vivo fitness, and (iii) in its virulence in oyster experimental infections (mortalities have been reduced from 56 % to 11 % upon mutation). In agreement, we have shown that the ompU deletion modified the expression of secreted proteins controlled by the virulence (ToxR) and the membrane integrity (SigmaE) regulation pathways. Furthermore, we have shown that OmpU has a major role in the recognition of V. splendidus by oyster hemocytes. Indeed, (i) in vivo, hemocyt e genes displayed differential responses to an infection with the wild-type or the ΔompU mutant, and (ii) in vitro, OmpU was necessary for hemocyte invasion by V. splendidus. This invasion process required the hemocyte b-integrin and the oyster plasma extracellular SOD, which was found to act as an opsonin recognizing OmpU. Thus, OmpU is a major virulence factor that allows infection of hemocytes in which V. splendidus is able to survive by inhibiting the production of reactive oxygen species and the formation of acidic vacuoles. Resistance of V. splendidus to hemocyte antimicrobials, which is also OmpU-dependant, is probably an additional determinant of V. splendidus intracellular survival.
|
160 |
Innate immunity in human atherosclerosis and myocardial infarction : Role of CARD8 and NLRP3Paramel Varghese, Geena January 2017 (has links)
Atherosclerosis is complex inflammatory disease of the arterial wall with progressive accumulation of lipids and narrowing of the vessel. Increasing evidence suggest that inflammation plays an important role in plaque stability and often accelerate cardiovascular events such as myocardial infarction (MI). Among the vast number of inflammatory cytokines, IL-1β is known to be a key modulator in vessel wall inflammation and acceleration of the atherosclerotic process. The biologically active IL-1β is regulated by a multiprotein complex known as the NLRP3 inflammasome complex. In this thesis, we have focused on polymorphisms in the NLRP3 and CARD8 genes and their possible association to atherosclerosis and/or MI. We have also investigated the expression of inflammasome components NLRP3 and CARD8 in atherosclerosis and the role of genetic variants for the expression of these genes. The expression of NLRP3, CARD8, ASC, caspase-1, IL-1β, and IL-18 were found significantly upregulated in atherosclerotic lesions compared to normal arteries. Human carotid plaques not only express the NLRP3 inflammasome, but also release IL-1β upon exposure to lipopolysaccharide (LPS), adenosine triphosphate (ATP) and cholesterol crystals, which suggest NLRP3 inflammasome activation in human atherosclerotic lesions. Also, CARD8 was found to be important in the regulation of several inflammatory markers in endothelial cells, like RANTES, IP10 and ICAM-1. We further assessed the potential association of a CARD8 polymorphism and polymorphisms located downstream of the NLRP3 gene to the risk of MI in two independent Swedish cohorts. The CARD8 variant exhibited no association to risk of MI in either of the two cohorts. Some of the minor alleles of NLRP3 variants were associated with increased IL-1β levels and to NLRP3 mRNA levels in peripheral blood monocytic cells (PBMC). Taken together, the present thesis shows that NLRP3 inflammasome activation and increased expression of CARD8 in the atherosclerotic plaque might be possible contributors to the enhanced inflammatory response and leukocyte infiltration in the pathophysiology of atherosclerosis.
|
Page generated in 0.0294 seconds