91 |
Gelové polymerní elektrolyty s nanočásticemi oxidu hlinitého / Gel polymer electrolytes with nanoparticulars Al2O3Procházka, Jaroslav January 2008 (has links)
This work deals with electrolytic conductivity of gel polymer electrolytes. In the theoretical part of the work the methacrylates, the polymerization and the basic outlines of gel polymer electrolytes conductivity are described. The preparation and electrical conductivity of gels based on PMMA are described in the experimental part.
|
92 |
Fundamental and Applied Studies on Self-assembling of Polymer-brush-modified Nanoparticles in Ionic Liquid / イオン液体中におけるポリマーブラシ付与微粒子の自己組識化に関する基礎と応用研究Nakanishi, Yohei 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21124号 / 工博第4488号 / 新制||工||1697(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 辻井 敬亘, 教授 山子 茂, 教授 竹中 幹人 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
93 |
Study of highly conductive, flexible polymer electrolyte membranes and their novel flexoelectric effectRendon Piedrahita, Camilo January 2018 (has links)
No description available.
|
94 |
Fabrication of battery separator by coating with sulfonated cellulose nanofibrils on kraft paper and inkjet paper substrates : Tillverkning av batteriseparator genom bestrykning med sulfonerad cellulosananofibriller på kraft papper och bläckstråle papper substratAlshogran, Forat January 2023 (has links)
Modified nanocellulose have distinctive qualities and have drawn a lot of interest from a variety of fields. It is a natural, sustainable product that is manufactured from plant-based materials like wood and other renewable resources. It is also biodegradable. It is a possible material for battery separators because of its great mechanical strength, flexibility, and ability to create a stable and consistent membrane. Due to the cost of using it as a membrane, it has been investigated in this work to see if it can be coated onto a substrate and used as battery separator. In this work sulfonated cellulose nanofibrils (SCNF) has been used to be coated on kraft paper and inkjet paper using a rod coater. Parameters like concentration, thickness and substrates have been varied in this experiment. Viscosity was measured using Brookfield instrument to measure the viscosity for 0,5% SCNF and 1,5% SCNF. The coating was carried out using a rod coater and varying between two rods to influence the thickness, the coating used concentrations of 0,5% SCNF and 1,5% SCNF and two different substrates, kraft paper and inkjet paper. Thickness was determined to study the effect of the variation in rod. The mechanical strength was tested on the coated paper substrates and compared the results to the noncoated substrates as reference, the mechanical strength showed an improvement with the coated SCNF substrates. Permeance through the Gurley method was studied in order to understand how the coated substrates behaves compared to the noncoated. Contact angle was determined as well to understand the wettability of the coated substrates and how they would behave as separators in zinc ion batteries. The contact angle decreased with increasing concentration of the SCNF which is a result of the sulfonate groups. Cross sections were analyzed using SEM to study the influence of the coating to the substrates. Ionic conductivity was also tested to evaluate the possibility of the coated substrates as separators.
|
95 |
Impact of Processing and Operating Conditions on Argyrodite Solid Electrolyte Conductivity and Battery PerformanceDunham, Joshua 10 August 2023 (has links)
No description available.
|
96 |
Phase Diagram Approach to Fabricating Electro-Active Flexible Films: Highly Conductive, Stretchable Polymeric Solid Electrolytes and Cholesteric Liquid Crystal Flexible DisplaysEcheverri, Mauricio 11 December 2012 (has links)
No description available.
|
97 |
Phase Diagram Approach to Control of Ionic Conductivity and Electrochemical Stability of Solid Polymer Electrolyte Membrane for Li-ion Battery ApplicationCao, Jinwei 28 May 2014 (has links)
No description available.
|
98 |
Design and Characterization of Electrospun Mats with Tailored Morphologies for Enhanced Active Layer Performance in Energy Conversion and Energy Storage ApplicationsForbey, Scott 15 May 2014 (has links)
The goal of this research was to utilize the morphological control inherently imparted by the electrospinning process to improve the active layer performance in energy conversion devices as well as to better understand the relationship between morphology and performance in energy storage devices. Discrete control of the active layer morphology can promote exciton dissociation in organic photovoltaic cells (OPVs), whereas developing efficient ion diffusion pathways and beneficial polymer-ion interaction in polymer-gel electrolytes is demonstrated to result in enhanced battery performance.
We demonstrate the ability to develop unique morphologies in Poly(3-hexafluoro propylene) (P3HT) films with energy storage applications using various electrospinning techniques. Electrospinning in a solvent-saturated atmosphere allows for the design of ribbon architectures with polymer domains on the order of 5-10 um. These ribbon structures form what appear to be bi-continuous films, which could then be filled with an acceptor / fullerene type material to create a bulk heterojucton for OPV devices. Dropping chloroform onto the electrospinning needle during the spinning process results in P3HT fibers with porous surfaces. These fibers have diameters of ~ 2 um. Using a coaxial needle to electrospin a P3HT solution in the core, and a CHCl3 sheath solution created hybrid ribbon-fiber structures. These structures have even smaller domain sizes than the ribbons created using a solvent saturated atmosphere. Cospinning P3HT with sacrificial polymers results in P3HT fiber morphologies upon removal of the sacrificial template polymer. Additionally, introducing P3HT into an established fiber matrix results in fibrous P3HT architectures after the template fibers are removed.
Developing hybrid polymer-gel electrolytes using crosslinked PEO electrospun fibers results in membranes with high affinity for liquid electrolyte components. These electrospun PEO fiber mats exhibit excellent ionic conductivities at room temperature (12 mS/cm) exceeding an electrospun PVDF control. Furthermore, the PEO fiber mats can absorb nearly three times as much liquid electrolyte as the PVDF control. PEO has been show to interact with lithium salts to aid in dissociation and diffusion during battery cycling. Although the ionic conductivity data suggest PEO to be a superior electrolyte, pulsed-field-gradient NMR shows that lithium diffusion is faster in PVDF samples. From coin cell discharge experiments, PEO is believed to interact strongly with Li+ ions, inhibiting them from diffusing rapidly during fast charge/discharge rates. However, PEO/PETA fiber electrolytes show nearly 100% theoretical capacity discharge at C/100 and a capacity retention of ~ 35% at a C/5 discharge rate in contrast to a glass fiber separator which shows only a capacity that is approximately 85% of the theoretical value.
The unique mechanical properties of PEO/PETA electrospun mats could lead to interesting artificial skin and wound healing applications. Upon crosslinking at elevated temperatures (~40 degrees C), the fiber mats exhibit improved tensile strength and much higher ultimate stress at break. The porous nature of the materials lend to easy oxygen diffusion for wound healing, and the hydrophilicity promotes continued adhesion to existing tissue making these mats possible adhesive-less bandages. / Ph. D.
|
99 |
Structure and properties of MTiOXOâ†4 crystalsLatham, Tina Joy January 2000 (has links)
No description available.
|
100 |
Estudo de condutores protônicos a base de macromoléculas naturais / Study of protonic conductors based on natural macromoleculesMattos, Ritamara Isis de 02 September 2011 (has links)
Esta tese apresenta os resultados do estudo de eletrólitos poliméricos protônicos obtidos a base de gelatina e quitosana, modificadas através da adição de glicerol e formaldeído - ácidos acético ou clorídrico foram adicionados para promover a condutividade iônica dos filmes. Foram também preparadas blendas a partir de gelatina com quitosana, assim como filmes a base de gelatina e nanopartículas. Com exceção dos filmes com nanopartículas, todos eles possuem boa transparência, estabilidade térmica, maleabilidade, aderência ao vidro e apresentam uma superfície homogênea, sem trincas ou rachaduras. As temperaturas de transição vítrea (Tg) dos eletrólitos foram obtidas do estreitamento de linha de RMN. A taxa de relaxação spin-rede do \'ANTPOT. 1 H\' em função da temperatura mostrou um máximo bem definido cuja posição depende da concentração de ácido no caso da gelatina e da quantidade de glicerol no caso da quitosana, refletindo a alta mobilidade do próton nestes eletrólitos. As técnicas de RPE, onda contínua e pulsada, foram utilizadas para o estudo de eletrólitos dopados com \'CU\'CL\'O IND.4\'. Os valores de condutividade iônica dos eletrólitos são da ordem de \'10 POT.-5\' S/cm para os filmes de gelatina (com ácido acético ou clorídrico), quitosana e blendas e entre \'10 POT.-6\' a \'10 POT.-8\' para os eletrólitos de gelatina com nanopartículas. Estes estudos revelaram que a concentração de ácido acético ou clorídrico (na gelatina), influencia a condutividade iônica dos eletrólitos, mas, para o caso das blendas esta influência é pequena. No caso dos filmes de gelatina com nanopartículas, a condutividade diminui de forma significativa. Em relação aos eletrólitos de quitosana a condutividade iônica é influenciada pela quantidade de glicerol adicionado. Verificou-se que o aumento da temperatura até 80°C promove o aumento da condutividade iônica para todos os filmes estudados. / This thesis shows the results from the study of protonic polymer electrolytes obtained from gelatin and chitosan, modified by the addition of glycerol and formaldehyde - acetic and hydrochloric acids are added to promote the ionic conductivity of the films. Blends based on chitosan and gelatin were also prepared, as well as films based on gelatin and nanoparticles. With the exception of the films with nanoparticles, all samples presented good transparency, thermal stability, flexibility, adhesion to glass and homogeneous surface without cracks. The glass transition temperature (Tg) of the electrolytes were obtained from the NMR line narrowing. The spin-lattice relaxation rate of the \'ANTPOT. 1 H\' spin-network as a function of temperature showed a well-defined maximum whose position depends on the concentration of acid in the case of gelatin and on the glycerol content in the case of chitosan, reflecting the high mobility of the protons in the electrolytes. Continuous wave and pulsed EPR techniques were used to study the electrolytes doped with \'CU\'CL\'O IND.4\'. The values of the ionic conductivity of the electrolytes are of the order of \'10 POT.-5\' S/cm for the films of gelatin (with acetic or hydrochloric acids), chitosan and blends and from \'10 POT.-6\' to \'10 POT.-8\' for the electrolytes of gelatin with nanoparticles. These studies revealed that the concentration of acetic or hydrochloric acids (in gelatin), influences the ionic conductivity of the electrolytes but, in the case of blends, this influence is small. In the case of the films based on gelatin with nanoparticles, the ionic conductivity decreases significantly. In relation to the electrolyte based on chitosan, the ionic conductivity is influenced by the amount of glycerol added. It was found that increasing the temperature to 80°C promotes the increase of ionic conductivity for all films studied.
|
Page generated in 0.0413 seconds