• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 5
  • 2
  • 2
  • 2
  • Tagged with
  • 98
  • 98
  • 16
  • 15
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Doklady kontinentálního zalednění v reliéfu Moravské brány / Geomorphological evidence of the Scandinavian glaciation in the Moravian Gate

Pavurová, Zuzana January 2011 (has links)
Geomorphological evidence of the Scandinavian glaciation in the Moravian Gate Abstract This thesis is aimed at area in the Moravian Gate which was covered by continental ice sheets during the Quaternary. The goal of this thesis is to analyze relief and ice-margin landforms in the Moravian Gate. Main parts of this thesis are: current views on the extent of glaciated area, definition ice-marginal landforms, methods my fieldwork, results and discussion. Maps and graphs were created as a part of this thesis. Present relief is very different from pleistocene relief. It is difficult find ice-margin landforms. I agree with extent of pleistocene ice sheet glaciations from Tyráček (2006).
82

Reconstructing and Understanding How Past Warming Affected Sea Level, Ice Sheets, And Permafrost

Creel, Roger Cameron January 2024 (has links)
Natural climate variability over the past hundreds of thousands of years provides a uniquewindow into the drivers and processes that connect different parts of our climate system. This thesis investigates interactions between Earth’s mantle, its oceans, and ice sheets over the Quaternary. The dominant process that connects these spheres is glacial isostatic adjustment (GIA), which is the deformation of Earth’s mantle (and consequently its surface, gravity field, and sea level) in response to changes in ice and ocean mass loading. This dissertation focuses on time periods during which surface temperatures were warming or warmer than today to understand how these warm intervals affected ice sheets, permafrost, and sea level. I put my results in the context of current and future warming to improve predictions of future change and compare natural to anthropogenic variability. The thesis opens with an investigation of relative (i.e., local) sea level around Norway overthe last 16 thousand years (ka). Postglacial Norwegian sea level, though dominated by postglacial rebound and associated sea-level fall, is punctuated by two periods of sea-level rise. The causes of these episodes, named the ‘Tapes’ and ‘Younger Dryas’ transgressions, remain debated despite more than a century of study. I produce the first standardized and quality-controlled compilation of Norwegian sea-level data, then employ an ensemble of empirical Bayesian hierarchical statis- tical models to estimate relative sea level along the Norwegian coastline. The resulting model enables an examination of the relative contributions of isostatic rebound and global mean sea-level (GMSL) rise to the Tapes transgression, and lays the foundation for future applications such as in- version of sea-level data for Fennoscandian ice-sheet volume and the comparison of modern rates of Norwegian sea-level rise to pre-industrial rates. Chapter Two aims to better understand sea-level and Antarctic ice-sheet variability during the Holocene, which is the last time global temperatures may have exceeded early industrial (1850 CE) values. Both the Greenland and Antarctic ice sheets likely retreated inland of their present- day extents during the Holocene, yet previous GMSL reconstructions suggest that Holocene GMSL never surpassed early industrial levels. I use relative sea-level observations, GIA predictions, and new estimates of postglacial thermosteric sea-level and mountain glacier evolution to show that the available evidence is consistent with GMSL that exceeded early industrial levels in the mid- Holocene (8-4 ka) and an Antarctic Ice Sheet that was smaller than present at some time in the last 6000 years. I also demonstrate that Antarctic ice retreat lags Antarctic temperature by 250 years, which highlights the vulnerability of the future Antarctic ice sheet to 20th and 21st century warming. Comparing our reconstruction to projections for the future indicates that GMSL rise in the next 125 years will very likely (?>0.9) be faster than at any time in the last 5000 years, and that by 2080 GMSL will more likely than not be the highest of any time in the past 115,000 years. In Chapter Three, I explore the effect of GIA on subsea permafrost. Subsea permafrost forms when sea-level rise submerges terrestrial permafrost. Subsea permafrost underlies ∼1.8 million km² of Arctic continental shelf, with thicknesses in places exceeding 700 m. Sea-level variations over glacial–interglacial cycles control subsea permafrost distribution and thickness, yet no permafrost model has accounted for GIA, which leads to deviations of local sea level from the global mean. I incorporate GIA into a pan-Arctic model of subsea permafrost over the last 400,000 years. Including GIA significantly reduces estimates of present-day subsea permafrost thickness, chiefly because of hydro-isostatic effects and deformation related to Northern Hemisphere ice sheets. Additionally, I extend the simulation 1000 years into the future for emissions scenarios outlined in the Intergovernmental Panel on Climate Change’s sixth assessment report. I find that subsea permafrost is preserved under a low-emissions scenario but mostly disappears under a high-emissions scenario. In the final chapter, I turn to the Last Interglacial (LIG, 129–116 ka), a time interval considered a partial analogue for future warming due to its elevated temperatures. Observations of oscillations in LIG local sea level, combined with an assumption that the Laurentide Ice Sheet collapsed prior to the LIG, have been used to infer Antarctic and Greenland ice-sheet melt histories as well as oscillations in LIG global mean sea level. However, evidence of a Laurentide Ice Sheet outburst flood at ∼125 ka suggests that Laurentide Ice Sheet remnants may have persisted longer into the LIG than typically thought. Here we explore the effect on LIG sea level of a Laurentide collapse that occurred during rather than prior to the LIG and a West Antarctic Ice Sheet that collapsed in the early LIG. We find that due to GIA, this asynchronous ice-sheet evolution produces a global pattern of sea-level oscillations that is similar to field observations. We demonstrate that the oscillation pattern can be produced by the combination of ongoing GIA from the penultimate deglaciation with the fingerprint of West Antarctic collapse. By showing that LIG Laurentide persistence would lead to an RSL oscillation that accords with field evidence, we highlight the need for LIG climate simulations to consider Laurentide ice-sheet dynamics and for more constraints on the LIG history of the Laurentide Ice Sheet.
83

Evaluation of ice sheet vulnerability and landscape evolution using novel cosmogenic-nuclide techniques

Balter-Kennedy, Alexandra January 2023 (has links)
Effective coastal adaptation to sea-level rise requires an understanding of how much and how fast glaciers and ice sheets will melt in the coming decades, together with an understanding of the provenance of that ice melt. When land ice is lost to the oceans, sea-levels do not rise uniformly across the globe, but exhibit a “sea-level fingerprint” specific to the source of ice melt, posing an important question motivating this thesis: Which ice mass(es) will contribute the first 1m/3 feet of sea-level rise? The glacial-geologic record archives the vulnerability of ice sheets and their sub-sectors to past warming. To analyze this record of past glacial change, I develop and apply cosmogenic-nuclide techniques for investigating the climate sensitivity of four key ice sheets. The novel geochemical techniques described here also allow me to investigate processes of landscape evolution, including subglacial and subaerial erosion. Subglacial erosion dictates landscape development in glaciated and formerly glaciated settings, which in turn influences ice-flow dynamics and the climate sensitivity of ice masses, making it an important input in ice-sheet models. In Chapter 1, I use 10Be measurements in surficial bedrock and a 4-m-long bedrock near Jakobshavn Isbræ, to constrain the erosion rate beneath the Greenland Ice Sheet (GrIS) on historical and orbital timescales. 10Be concentrations measured below ~2 m depth in a 4-m-long bedrock core are greater than what is predicted by an idealized production-rate depth profile and I develop a model to utilize this excess 10Be at depth to constrain orbital-scale erosion rates. I find that erosion rates beneath GrIS were 0.4–0.8 mm yr-1 during historical times and 0.1–0.3 mm yr-1 on Pleistocene timescales. The broad similarity between centennial- and orbital-scale erosion rates suggests that subglacial erosion rates adjacent to Jakobshavn Isbræ have remained relatively uniform throughout the Pleistocene. In Chapter 2, I present cosmogenic 10Be and 3He data from Ferrar dolerite pyroxenes in surficial rock samples and a bedrock core from the McMurdo Dry Valleys, Antarctica, opening new opportunities for exposure dating in mafic rocks. I describe scalable laboratory methods for isolating beryllium from pyroxene, estimate a spallation production rate for 10Be in this mineral phase, referenced to 3He, of 3.6 ± 0.2 atoms g-1 yr-1, and present initial estimates for parameters associated with 10Be and 3He production by negative muon capture. I also demonstrate that the 10Be-3He pair in pyroxene can be used to simultaneously resolve exposure ages and subaerial erosion rates, and that the precision of my 10Be measurements in pyroxene enable exposure dating on Last Glacial Maximum to Late Holocene surfaces, including moraines, on a global scale. In Chapter 3, I apply exposure dating locally to investigate the Last Glacial Maximum (LGM) and initial deglaciation of the Laurentide Ice Sheet (LIS), the most dynamic continental ice sheet, in southern New England and New York City. I synthesize new and existing exposure age chronologies from moraines and other glacial deposits that span ~26 to 20.5 ka, and quantify retreat rates for the southeastern LIS margin. Initial retreat at <5 to 30 m yr-1 started within the canonical LGM period, representing the slowest LIS retreat rates of the entire New England deglacial record, which I relate to a slow rise in modeled local summer temperatures through the LGM. Employing similar exposure dating techniques in Chapter 4, I describe the first 10Be ages from nunataks of the Juneau Icefield (JIF), Alaska, that I collected through the Juneau Icefield Research Program (JIRP) in order to evaluate icefield thinning during the Late Glacial and Holocene. I find that the JIF was smaller-than-present under warm climate conditions during the early-to-mid Holocene, elucidating the sensitivity of the icefield to warming. Tackling the climate crisis more broadly and in turn, addressing pressing Earth science questions like those posed in this dissertation, requires diverse perspectives. Yet, the Earth sciences have historically been among the least diverse of the STEM disciplines. As one contribution to a comprehensive effort through JIRP to increase diversity in the geosciences pipeline, Chapter 5 details the curriculum for a two-week course titled ‘A Virtual Expedition to the Juneau Icefield’ that I co-designed and co-taught in 2021 to bring accessible polar science experiences to high school students.
84

Variations of Continental Ice Sheets Combining Satellite Gravimetry and Altimetry

Su, Xiaoli January 2015 (has links)
No description available.
85

A Numerical Model Investigation of the Role of the Glacier Bed in Regulating Grounding Line Retreat of Thwaites Glacier, West Antarctica

Waibel, Michael Scott 20 March 2017 (has links)
I examine how two different realizations of bed morphology affect Thwaites Glacier response to ocean warming through the initiation of marine ice sheet instability and associated grounding line retreat. A state of the art numerical ice sheet model is used for this purpose. The bed configurations used are the 1-km resolution interpolated BEDMAP2 bed and a higher-resolution conditional simulation produced by John Goff at the University of Texas using the same underlying data. The model is forced using a slow ramp approach, where melt of ice on the floating side of the grounding line is increased over time, which gently nudges the glacier toward instability. Once an instability is initiated, the anomalous forcing is turned off, and further grounding line retreat is tracked. Two model experiments are conducted. The first experiment examines the effect of different anomalous forcing magnitudes over the same bed. The second experiment compares the generation and progress of instabilities over different beds. Two fundamental conclusions emerge from these experiments. First, different bed geometries require different ocean forcings to generate a genuine instability, where ice dynamics lead to a positive feedback and grounding line retreat becomes unstable. Second, slightly different forcings produce different retreat rates, even after the anomalous forcing is shut off, because different forcing magnitudes produce different driving stresses at the time the instability is initiated. While variability in the retreat rate over time depends on bed topography, the rate itself is set by the magnitude of the forcing. This signals the importance of correct knowledge of both bed shape and ocean circulation under floating portions of Antarctic ice sheets. The experiments also imply that different ocean warming rates delivered by different global warming scenarios directly affects the rate of Antarctic contribution to sea level rise.
86

Scalable, adaptive methods for forward and inverse problems in continental-scale ice sheet modeling

Isaac, Tobin Gregory 18 September 2015 (has links)
Projecting the ice sheets' contribution to sea-level rise is difficult because of the complexity of accurately modeling ice sheet dynamics for the full polar ice sheets, because of the uncertainty in key, unobservable parameters governing those dynamics, and because quantifying the uncertainty in projections is necessary when determining the confidence to place in them. This work presents the formulation and solution of the Bayesian inverse problem of inferring, from observations, a probability distribution for the basal sliding parameter field beneath the Antarctic ice sheet. The basal sliding parameter is used within a high-fidelity nonlinear Stokes model of ice sheet dynamics. This model maps the parameters "forward" onto a velocity field that is compared against observations. Due to the continental-scale of the model, both the parameter field and the state variables of the forward problem have a large number of degrees of freedom: we consider discretizations in which the parameter has more than 1 million degrees of freedom. The Bayesian inverse problem is thus to characterize an implicitly defined distribution in a high-dimensional space. This is a computationally demanding problem that requires scalable and efficient numerical methods be used throughout: in discretizing the forward model; in solving the resulting nonlinear equations; in solving the Bayesian inverse problem; and in propagating the uncertainty encoded in the posterior distribution of the inverse problem forward onto important quantities of interest. To address discretization, a hybrid parallel adaptive mesh refinement format is designed and implemented for ice sheets that is suited to the large width-to-height aspect ratios of the polar ice sheets. An efficient solver for the nonlinear Stokes equations is designed for high-order, stable, mixed finite-element discretizations on these adaptively refined meshes. A Gaussian approximation of the posterior distribution of parameters is defined, whose mean and covariance can be efficiently and scalably computed using adjoint-based methods from PDE-constrained optimization. Using a low-rank approximation of the covariance of this distribution, the covariance of the parameter is pushed forward onto quantities of interest.
87

The mutual interaction between the time-mean atmospheric circulation and continental-scale ice sheets

Liakka, Johan January 2011 (has links)
Geomorphological evidence of glaciations exist for the Last Glacial Maximum (about 20 kyr ago). At this time, both North America and Eurasia were covered by extensive ice sheets which are both absent today. However, the temporal and spatial evolution of the ice sheets from the previous interglacial up to the fully-glaciated conditions at LGM is still unresolved and remains a vexing question in climate dynamics. The evolution of ice sheets is essentially controlled by the prevailing climate conditions. On glacial time-scales, the climate is shaped the by the orbital variations of the Earth, but also by internal feedbacks within the climate system. In particular, the ice sheets themselves have the potential to change the climate within they evolve. This thesis focuses on the interactions between ice sheets and the time-mean atmospheric circulation (stationary waves). It is studied how the stationary waves, which are forced by the ice-sheet topography, influence ice-sheet evolution through changing the near-surface air temperature. In this thesis, it is shown that the degree of linearity of the atmospheric response controls to what extent the stationary waves can reorganise the structure of ice sheet. Provided that the response is linear, the stationary waves constitute a leading-order feedback, which serves to increase the volume and deform the shape of ice sheets. If the stationary-wave response to ice-sheet topography is nonlinear in character, the impact on the ice-sheet evolution tends to be weak. However, it is further shown that the amplitude of the nonlinear topographical response, and hence its effect on the ice-sheet evolution, can be significantly enhanced if thermal cooling over the ice sheets is taken into account. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Submitted.
88

Modelling the dynamics and surface expressions of subglacial water flow

Stubblefield, Aaron Grey January 2022 (has links)
Ice sheets and mountain glaciers are critically important components of Earth'sclimate system due to societal and ecological risks associated with sea-level change, ocean freshening, ice-albedo feedback, glacial outburst floods, and freshwater availability. As Earth warms, increasing volumes of surface meltwater will access subglacial environments, potentially lubricating the base of the ice sheets and causing enhanced ice discharge into the ocean. Since subglacial water is effectively hidden beneath the ice, the primary ways to study subglacial hydrological systems are through mathematical modelling and interpreting indirect observations. Glaciers often host subglacial or ice-dammed lakes that respond to changes in subglacial water flow, thereby providing indirect information about the evolution of subglacial hydrological systems. While monitoring subaerial ice-dammed lakes is straightforward, the evolution of subglacial lakes must be inferred from the displacement of the overlying ice surface, posing additional challenges in modelling and interpretation. This dissertation addresses these challenges by developing and analyzing a series of mathematical models that focus on relating subglacial hydrology with observable quantities such as lake level or ice-surface elevation. The dissertation is divided into five chapters. Chapter 1 demonstrates how ageneralization of Nye's (1976) canonical model for subglacial water flow admits a wide class of solitary-wave solutions---localized regions of excess fluid that travel downstream with constant speed and permanent form---when melting at the ice-water interface is negligible. Solitary wave solutions are proven to exist for a wide range of material parameter values that are shown to influence the wave speed and wave profile. Melting at the ice-water interface is shown to cause growth and acceleration of the waves. To relate dynamics like these to observable quantities, Chapter 2 focuses on modelling water-volume oscillations in ice-dammed lakes during outburst flood cycles while accounting for the potential influence of neighboring lakes. Hydraulic connection between neighboring lakes is shown to produce a wide variety of new lake-level oscillations that depend primarily on the relative sizes and proximity of the lakes. In particular, the model produces lake-level time series that mirror ice-elevation changes above a well-known system of Antarctic subglacial lakes beneath the Whillans and Mercer ice streams even though the modelled ice-dammed lakes are not buried beneath the ice. The stability of lake systems with respect to variations in meltwater input is characterized by a transition from oscillatory to steady drainage at high water supply. To create a framework for extending these models of ice-dammed lakes to thesubglacial setting, variational methods for simulating the dynamics of subglacial lakes and subglacial shorelines are derived in Chapter 3. By realizing a direct analogy with the classical Signorini problem from elasticity theory, this chapter also furnishes a new, rigorous computational method for simulating the migration of oceanic subglacial shorelines, which are strongly tied to ice-sheet stability in response to climatic forcings. In Chapter 4, this newly developed model is used to highlight the challenge of accurately interpreting ice-surface elevation changes above subglacial lakes without relying on ice-flow models. The surface expression of subglacial lake activity is shown to depend strongly on the effects of viscous ice flow and basal drag, causing altimetry-derived estimates of subglacial lake size, water-volume change, and apparent highstand or lowstand timing to deviate considerably from their true values under many realistic conditions. To address this challenge, Chapter 5 introduces inverse methods for inferring time-varying subglacial lake activity or basal drag perturbations from altimetry data while accounting for the effects of viscous ice flow. Incorporating horizontal surface velocity data as additional constraints in the inversion is shown to facilitate reconstruction of multiple parameter fields or refinement of altimetry-based estimates. In sum, this dissertation constitutes several novel approaches to understanding ice-water interaction beneath glaciers while laying the foundation for future work seeking to elucidate the role of subglacial processes in the changing climate.
89

A Gcm Comparison of Plio-Pleistocene Interglacial-Glacial Periods in Relation to Lake El’gygytgyn, Ne Arctic Russia

Coletti, Anthony J 01 January 2013 (has links) (PDF)
Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stage (MIS) 1 (9ka), 5e (127 ka), 11c (409 ka), and 31 (1072 ka) with new proxy climate data recovered from Lake El’gygytgyn, NE Russia. Climate reconstructions of the Mean Temperature of the Warmest Month (MTWM) indicate conditions 2.1, 0.5 and 3.1 ºC warmer than today during MIS 5e, 11c, and 31 respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer orbital forcing, the extraordinary warmth of MIS 11c relative to the other interglacials in the proxy records remain difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El’gygytgyn, we isolated the influence of vegetation, sea ice, and circum-Arctic land ice feedbacks on the climate of the Beringian interior. Vegetation-land surface feedback simulations during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on Northeast Asian temperature during the warmth of stage 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic ocean has some effect on Beringian climate, suggesting intrahemispheric coupling seen in comparisons between Lake El’gygytgyn and Antarctic sediment records might be related to linkages between Antarctic ice volume and ocean circulation. The exceptional warmth of MIS 11c remains enigmatic however, relative to the modest orbital and greenhouse gas forcing during that interglacial. Large Northern Hemisphere ice sheets during Plio-Pleistocene glaciation causes a substantial decrease in Mean Temperature of the Coldest Month (MTCM) and Mean Annual Precipitation (PANN) causing significant Arctic aridification. Aridification and frigid conditions can be linked to a combination of mechanical forcing from the Laurentide and Fennoscandian ice sheets on mid-tropospheric westerly flow and expanded sea-ice cover causing albedo-enhanced feedback.
90

Origin of surface undulations at the Kamb Ice Stream grounding line, West Antarctica

Seifert, Fiona Bronwyn 01 January 2012 (has links)
The West Antarctic Ice Sheet is drained primarily by five major ice streams, which together control the volume of ice discharged into the ocean across the grounding line. The grounding line of Kamb Ice Stream (KIS) is unusual because the ice stream upstream of it is stagnant. Here, a set of surface features--shore-parallel, long wavelength, low amplitude undulations--found only at that grounding line are examined and found to be "pinch and swell" features formed by an instability in the viscous deformation of the ice. When a relatively competent layer is surrounded by lower strength materials, particular wavelength features within the layer may be amplified under certain layer thickness and strain rate conditions. The undulations at KIS grounding line are possible due to the relatively large strain rates and particular ice thickness at that location. Several data sets are used to characterize the surface features. High resolution surface profiles are created using kinematic GPS carried on board a sled that was used to tow ice penetrating radar equipment. The radar data are used to examine the relationship between surface shape and basal crevasses. Additional surface profiles are created using ICESat laser altimeter observations. Repeat GPS surveys of a strain grid across the grounding line yields strain rate information. Analysis of repeat observations over tidal cycles and multi-day intervals shows that the features are not standing or traveling waves. Together, these observations are then used to evaluate the contributions of elastic and viscous deformation of the ice in creating the grounding line undulations.

Page generated in 0.0752 seconds