• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolving subglacial water systems in East Antarctica from airborne radar sounding

Carter, Sasha Peter, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
2

Investigations into the Regional and Local Timescale Variations of Subglacial Drainage Networks

Hiester, Justin 04 June 2013 (has links)
Subglacial water plays an important role in the regulation of an ice sheet's mass balance. It may be the dominant control on the velocities of ice streams and outlet glaciers on scales of months to millennia. Recent satellite observations of ice surface elevation changes have given researchers new insights into how subglacial water is stored and transported. Localized uplift and settling of the ice surface implies that lakes exist beneath the ice sheet that are being filled and drained on relatively short time scales. %At the base of an ice sheet water can be transported through a variety of drainage networks or stored in subglacial lakes. Here, a numerical investigation of the mechanisms of transport and storage of subglacial water and the associated time scales is presented. Experiments are carried out using a finite element model of coupled ice and water flow. The first experiment seeks to understand the relationship between the depth of a basal depression and the area over which the feature affects basal water flow. It is found that as the perturbation to a topographic depression's depth is increased, water is rerouted in response to the perturbation. Additionally it is found that the relationship between perturbation depth and the extent upstream to which its effects reach is nonlinear. The second experiment examines how the aspect ratio of bed features (prolate, oblate, or equidimensional) influences basal water flow. It is found that the systems that develop and their interactions are mediated by both the topography and the feedbacks taken into account by the coupling of the systems in the model. Features oriented parallel to ice and water flow are associated with distributed fan systems that develop branches which migrate laterally across the domain and interact with one another on monthly and yearly timescales. Laterally oriented features develop laterally extensive ponds. As the ratio of longitudinal to lateral dimension of the topography is increased, a combination of these two water distributions is seen.
3

Grounding Zone Processes: Ice Mechanics and Margin Lakes, Kamb Ice Stream and Whillans Ice Stream, West Antarctica

Fried, Mason Joseph 23 July 2013 (has links)
The lateral "corners" where Kamb and Whillans Ice Streams (KIS and WIS) discharge into the Ross Ice Shelf share common geometries and ice mechanical settings. At both corners of the now-stagnant KIS outlet, shear margins of apparently different ages confine regions with a relatively flat, smooth surface expression. These features are called the "Duckfoot" on the northern, right-lateral side and the "Goosefoot" on the other. It has been suggested, on evidence found in ice internal layers, that the flat ice terrains on KIS were afloat in the recent past, at a time when the ice stream grounding line was upstream of its present location. The overdeepening in the bed just upstream of the KIS grounding line supports this view of the past geometry. The right-lateral margin at the outlet of the currently active WIS, the location of Subglacial Lake Englehardt (SLE), appears to have many similarities with the right lateral margin of KIS, though with a less developed looking inboard margin. This paper presents a mechanical analysis using surface and bed topography and velocity datasets comparing the Duckfoot flat ice terrain with the terrain around Subglacial Lake Englehardt. At both locations mechanical thinning along shear margins and lows in the bed topography redirects basal water routing towards the features. Here, I consider the history of these features and their role in ice stream variability by comparison of the relict and modern features and via numerical modeling of ice shelf grounding and ungrounding in response to variations in ice flow. We propose two scenarios for the development of flat ice terrains/subglacial lakes at the outlets of ice streams. In the first, development of a lake in the hydraulic potential low along a shear margin forces a margin jump as shearing develops along the inboard shore of the margin lake. This thesis presents evidence for an inboard (relative to the main outboard shear margin) zone of shear along the inboard shoreline of SLE, suggesting that subglacial lakes along shear margins are capable of facilitating shear margin jumps. In the second, grounding line advance around a relative low in the bed, creating adjacent margins along the lakeshores, forms a remnant lake. Discerning which of these scenarios is appropriate at the KIS outlet has implications for understanding the history of the ice stream grounding line. An ice flow model is used to place these local conditions in a regional context by studying the effect of internal perturbations, such as ice rise stagnation or inward margin jumps, on grounding line position. Bathymetry is important in determining ice stream flow in the ways that might not be otherwise realized in 1-D flow model studies. In the numerical modeling experiments, grounding line advance across the KIS outlet is mediated by the overdeepening in the bed and proceeds not in the direction of ice flow but transverse to flow. This finding adds complexity to both a flowline view of grounding line migration and the theory that grounding lines are unstable in the presence of inward sloping bed topography.
4

Evolving subglacial water systems in East Antarctica from airborne radar sounding

Carter, Sasha Peter, 1977- 06 September 2012 (has links)
The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than --10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution. In the bedrock trough of Adventure Subglacial Trench, analysis of satellite altimetry is combined with radar sounding data to calculate a mass budget and infer a flow mechanism for a two cubic kilometer discharge reported to have traveled between two lakes in the region from 1996 -1998. The volume released from the source lake exceeded the volume received by the destination lakes by one and a tenth cubic kilometers, indicating that some water must have escaped downstream from the lowest destination lake over the course of the event. Release of water from the source lake preceded arrival of the water at the destination lakes, 260 kilometers away, by about three months. Water continued draining from the destination lakes for several years after surface subsidence at the source lake had ceased. By 2003, a total of one and a half cubic km or nearly 75% of the water released by the source lake had traveled downstream from the destination lakes. Hydraulic modeling work indicates that the initial release of water from the source lake could have been accommodated by a self-enlarging semicircular channel. Subsequent evolution of the discharge and the three-month delay between release of water from the source lake and arrival of that water at the destination lakes indicates that a shallower and broader distributed water system is responsible for the transport of subglacial water in this region. Such a system would be more stable for the given icebedrock geometry and may explain the observations of intermittent flat bright bedrock reflections in radar data acquired upstream from the destination lake in 2000. For the purpose of better understanding the long-term water budget of the Dome C region, an area upstream of Adventure Trench, eleven dated isochronal internal layers within the ice penetrating radar data were tracked. An age-depth relationship, derived from the European ice core through Dome C is used to calculate strain, estimate melt, model ice temperature, and determine absolute basal reflectivity for the entire region which covers over 28,000 square kilometers. The two largest subglacial lakes within the survey, Concordia and Vincennes, are both associated with enhanced basal melting on their upstream shores at rates locally greater than two millimeters per year. Widely distributed melt rates in the major topographic valleys upstream of these lakes are generally less than one millimeter per year throughout the region with slightly higher melts in the basin draining into Vincennes Subglacial Lake. Although published estimates for geothermal flux are capable of explaining the behavior of ice and water in most of the area, an additional source of basal heat is required to explain melt anomalies and subglacial lakes along the Concordia Ridge. Lake Concordia is expected to discharge water on a similar scale and duration as that observed in Adventure Trench, with a repeat cycle of a few hundred years. / text
5

Modelling the dynamics and surface expressions of subglacial water flow

Stubblefield, Aaron Grey January 2022 (has links)
Ice sheets and mountain glaciers are critically important components of Earth'sclimate system due to societal and ecological risks associated with sea-level change, ocean freshening, ice-albedo feedback, glacial outburst floods, and freshwater availability. As Earth warms, increasing volumes of surface meltwater will access subglacial environments, potentially lubricating the base of the ice sheets and causing enhanced ice discharge into the ocean. Since subglacial water is effectively hidden beneath the ice, the primary ways to study subglacial hydrological systems are through mathematical modelling and interpreting indirect observations. Glaciers often host subglacial or ice-dammed lakes that respond to changes in subglacial water flow, thereby providing indirect information about the evolution of subglacial hydrological systems. While monitoring subaerial ice-dammed lakes is straightforward, the evolution of subglacial lakes must be inferred from the displacement of the overlying ice surface, posing additional challenges in modelling and interpretation. This dissertation addresses these challenges by developing and analyzing a series of mathematical models that focus on relating subglacial hydrology with observable quantities such as lake level or ice-surface elevation. The dissertation is divided into five chapters. Chapter 1 demonstrates how ageneralization of Nye's (1976) canonical model for subglacial water flow admits a wide class of solitary-wave solutions---localized regions of excess fluid that travel downstream with constant speed and permanent form---when melting at the ice-water interface is negligible. Solitary wave solutions are proven to exist for a wide range of material parameter values that are shown to influence the wave speed and wave profile. Melting at the ice-water interface is shown to cause growth and acceleration of the waves. To relate dynamics like these to observable quantities, Chapter 2 focuses on modelling water-volume oscillations in ice-dammed lakes during outburst flood cycles while accounting for the potential influence of neighboring lakes. Hydraulic connection between neighboring lakes is shown to produce a wide variety of new lake-level oscillations that depend primarily on the relative sizes and proximity of the lakes. In particular, the model produces lake-level time series that mirror ice-elevation changes above a well-known system of Antarctic subglacial lakes beneath the Whillans and Mercer ice streams even though the modelled ice-dammed lakes are not buried beneath the ice. The stability of lake systems with respect to variations in meltwater input is characterized by a transition from oscillatory to steady drainage at high water supply. To create a framework for extending these models of ice-dammed lakes to thesubglacial setting, variational methods for simulating the dynamics of subglacial lakes and subglacial shorelines are derived in Chapter 3. By realizing a direct analogy with the classical Signorini problem from elasticity theory, this chapter also furnishes a new, rigorous computational method for simulating the migration of oceanic subglacial shorelines, which are strongly tied to ice-sheet stability in response to climatic forcings. In Chapter 4, this newly developed model is used to highlight the challenge of accurately interpreting ice-surface elevation changes above subglacial lakes without relying on ice-flow models. The surface expression of subglacial lake activity is shown to depend strongly on the effects of viscous ice flow and basal drag, causing altimetry-derived estimates of subglacial lake size, water-volume change, and apparent highstand or lowstand timing to deviate considerably from their true values under many realistic conditions. To address this challenge, Chapter 5 introduces inverse methods for inferring time-varying subglacial lake activity or basal drag perturbations from altimetry data while accounting for the effects of viscous ice flow. Incorporating horizontal surface velocity data as additional constraints in the inversion is shown to facilitate reconstruction of multiple parameter fields or refinement of altimetry-based estimates. In sum, this dissertation constitutes several novel approaches to understanding ice-water interaction beneath glaciers while laying the foundation for future work seeking to elucidate the role of subglacial processes in the changing climate.
6

The hydrostatic control of load-induced height changes above subglacial Lake Vostok

Richter, Andreas, Schröder, Ludwig, Scheinert, Mirko, Popov, Sergey V., Groh, Andreas, Willen, Matthias, Horwath, Martin, Dietrich, Reinhard 21 May 2024 (has links)
Lake Vostok, East Antarctica, represents an extensive water surface at the base of the ice sheet. Snow, ice and atmospheric pressure loads applied anywhere within the lake area produce a hydrostatic response, involving deformations of the ice surface, ice–water interface and particle horizons. A modelling scheme is developed to derive height changes of these surfaces for a given load pattern. It is applied to a series of load scenarios, and predictions based on load fields derived from a regional climate model are compared to observational datasets. Our results show that surface height changes due to snow-buildup anomalies are damped over the lake area, reducing the spatial standard deviation by one-third. The response to air pressure variations, in turn, adds surface height variability. Atmospheric pressure loads may produce height changes of up to 4 cm at daily resolution, but decay rapidly with integration time. The hydrostatic load response has no significant impact neither on ICESat laser campaign biases determined over the lake area nor on vertical particle movements derived from GNSS observations.
7

Antarctic Subglacial Lakes as Environmental Analogues for Possible Hidden Biospheres on the Moons Europa and Enceladus / Subglaciära sjöar på Antarktis som analoga miljöer till möjliga biosfärer på månarna Europa och Enceladus

Fahlman, Jonas January 2023 (has links)
The evolving science of astrobiology for the search for life beyond Earth has put focus on the possibility of subsurface bodies of liquid water beneath the surface of icy moons within our Solar System. Specifically, the Jovian moon of Europa and the Saturnian moon of Enceladus show telling characteristics of endogenous heating through their complex tidal resonances with their parent planets – suggesting the presence of oceans of liquid water and therefore a potential for astrobiology. Today, the planning of upcoming satellite missions to guarantee the identification of completely unknown, possibly habitable environments has become an intriguing task for space agencies worldwide. A method of guidance, ground-truthing, debugging and testing of the viability of planned satellite missions is to utilize relatively accessible analogue environments on the Earth. Fortunately, the research of Antarctic subglacial water environments has been acknowledged as the most suitable analogues to the environments of Europa and Enceladus. Given its recorded motions of ice dynamics, erosion, complex thermal systems, and occasions of sampled microbes within – these sensitive, exotic environments beneath the Antarctic ice bed are currently assessed for their suitability as habitats for extremophilic microorganisms, which may provide important insights into the potential existence of habitats, perhaps even life, on icy moons. Ultimately, viable lessons can be drawn from the research of Antarctic subglacial environments given the uncovering of reliable sanitary methodologies that are going to be required during future approaches and sampling of natural systems of extraterrestrial subglacial environments in order to minimize irreparable anthropogenic disturbances on any potential astrobiology. Regardless of the question if the future investigation of Europa’s and Enceladus environments is going to reveal astrobiology within beneath their icy surfaces; this investigation is going to be of invaluable information for the improving familiarity of physical systems beyond Earth. / Sedan länge har forskare vetat att flytande/rinnande vatten är en av de viktigaste förutsättningar för allt liv på Jorden. Under de senaste decennierna har frågan om liv på Jupiters måne Europa, och Saturnus måne Enceladus aktualiserats, efter upptäckten av frusna islager på deras månytor. Evidens från respektive månars omloppsbanor, gör att forskare idag tror att månarnas djupa islager hettas upp inifrån av en aktiv, inre geologi, vilket i sin tur kan tyda på större mängder av flytande vatten. I och med omvandlingen av is till flytande vatten, får detta forskare att tro att cirkulationen av vatten, ihop med den aktiva geologin, möjligtvis har skapat och upprätthåller beboliga förutsättningar för mikroskopiskt liv. I dagsläget planeras ett flertal satelliter skjutas upp till månarna med uppdrag att bekräfta fallet om flytande vatten och beboliga miljöer på månarna, och därmed även undersöka frågan om månarna möjligtvis bär på liv. På den frusna kontinenten Antarktis har ett flertal motsvarande subglaciala miljöer undersökts för att fastställa deras kvalifikationer att upprätthålla liv under extrema levnadsförhållanden. Under dessa undersökningar har ett flertal mikroorganismer påträffats i prover från iskärnor från två subglaciala sjöar (Vostoksjön och Whillanssjön), varav några blivit omstritt påstådda som inhemska extremofiler. Ifall detta stämmer, betyder det att de två subglaciala sjöarna underhålls av ett unikt samspel av drivande faktorer som upprätthåller de nödvändigaste levnadsförutsättningarna för att mikroorganismer kan överleva, även frodas i uppenbart extrema miljöförhållanden. Med forskningen av Antarktis subglaciala sjöar som rapporterar ett unikt samspel mellan is, vatten och underliggande geologi; kan den fortsatta fastställningen av detta fysiska samspel, samt vidare identifikationer av inhemska mikroorganismer att bli en viktig lärdom för framtida satelliters datainsamling av subglaciala vattenmiljöer på Europa och Enceladus. För att underlätta och effektivisera sökandet efter potentiella livsmiljöer, samt möjligtvis hitta utomjordiskt liv på isiga månar bör framtidens satellituppdrag dra stor lärdom och väga in de erfarenheter och resultat som gjorts på subglaciala sjöar i Antarktis.

Page generated in 0.0569 seconds