• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 5
  • 2
  • 2
  • 2
  • Tagged with
  • 98
  • 98
  • 16
  • 15
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Assimilation de données pour l'initialisation et l'estimation de paramètres d'un modèle d'évolution de calotte polaire / Data assimilation for initialisation and parameter estimation of an ice sheet evolution model

Bonan, Bertrand 15 November 2013 (has links)
L'évolution des calottes polaires est régie à la fois par une dynamique d'écoulement complexe et par des mécanismes tel le glissement à la base, la température de la glace ou le bilan de masse en surface. De plus, de nombreuses boucles de rétroactions sont constatées entre les différents phénomènes impliquées. Tout ceci rend la modélisation de cette évolution complexe. Malgré tout, un certain nombre de modèles ont été développés dans cette optique. Ceux-ci font tous intervenir des paramètres influents qui dans certains cas sont peu ou pas connus. Ils nécessitent donc d'être correctement spécifiés. L'assimilation de données peut permettre une meilleure estimation de ces paramètres grâce à l'utilisation d'observations qui sont peu nombreuses en glaciologie. Dans cette thèse, nous nous intéressons à la mise en place de systèmes d'assimilation performants pour deux problèmes inverses concernant l'évolution des calottes polaires. Pour mieux nous concentrer sur ce point, nous avons travaillé avec un modèle d'évolution de calotte simplifié (appelé Winnie) qui, cependant, représente bien la plupart des processus complexes de la dynamique de la glace, et permet de travailler à différentes échelles de temps. Dans un premier temps, nous mettons en place une approche 4D-Var pour la reconstruction de l'évolution d'un paramètre climatique influant sur l'évolution d'une calotte sur une échelle de temps typique de 20 000 ans. Elle nécessite notamment l'écriture du code adjoint du modèle. Dans un second temps, nous nous intéressons au problème du spin-up. Ce problème de calibration du modèle pour des simulations à échelle de temps courtes (pas plus de 100 ans) consiste plus particulièrement en la reconstruction conjointe de l'état initial, de la topographie du socle rocheux et des paramètres de glissement basal. Nous développons ici une approche filtre de Kalman d'ensemble pour résoudre ce problème. / Ice sheet evolution is both driven by a complex flow dynamics and by physical mechanisms such as basal sliding, ice temperature or surface mass balance. In addition to those, many feedback loops are observed between the different implicated phenomena. That explains how complex is to model this evolution. However several models have been developed in that purpose. These models depend on influential parameters, which often are unfortunately poorly known. So they need to be correctly specified. Data assimilation can give a better estimation of these parameters thanks to observations which are quite rare in glaciology. In this thesis, we work on the setup of efficient data assimilation systems for two inverses problems involving ice sheet evolution. We work with a simplified ice sheet evolution model called Winnie in order to focus on the setup. Nevertheless Winnie takes into account the major complex processes of ice dynamics and can be used for studies with different time scales. The first part of the thesis focuses on developing a 4D-Var approach in order to retrieve the evolution of a climatic parameter for a typical time scale of 20 000 years. This approach require the implementation the adjoint code of the evolution model. In a second part, we focus on the spin-up problem. This calibration problem for short term (maximum 100 years) simulations involve retrieving jointly the initial state, the bedrock topography and basal sliding parameters. In order to solve this problem we develop an Ensemble Kalman Filter approach.
92

Dynamics of the British Ice Sheet and prevailing hydrographic conditions for the last 175,000 years : an investigation of marine sediment core MD04-2822 from the Rockall Trough

Hibbert, Fiona Danielle January 2011 (has links)
This study presents a stratigraphic investigation of the marine sediment core MD04-2822 from the Rockall Trough (56° 50.54' N, 11° 22.96' W; 2344 m water depth). This core is currently the only available high resolution record for the calibration of Late Quaternary sedimentary sequences of the British (Hebridean) margin. It therefore offers an unprecedented archive of changing sedimentological and climatological conditions for the last 175,000 years. The high resolution, multi-proxy records have enabled surface and deep water conditions within the Rockall Trough to be reconstructed. In addition, the fluctuating nature of ice-rafted debris (IRD) inputs to the MD04-2822 site allows a first order attempt of BIS dynamics for the entirety of the last glacial period (i.e. from the demise of the last interglacial to the decay of the Devensian/Weichselian ice sheet) as well as the majority of the penultimate (Saalian/MIS 6) glaciation. Sediment core MD04-2822 is ideally located to capture the dynamics of the British Ice Sheet (BIS) via a continuous record of IRD and fine-grained terrigenous inputs. Fundamental to this is the construction of a robust chronology. This was achieved via: the correlation of the benthic δ¹⁸O record to a global δ¹⁸O stack (SPECMAP); the correlation of the surface proxies (% N. pachyderma (sinistral) and XRF Ca) to the Greenland δ¹⁸O and Antarctic methane ice core records; and radiocarbon dating. This chronology was validated using both radiocarbon dating and tephra horizons. An evaluation of the event stratigraphy approach used in the construction of the MD04-2822 chronology is presented. The marine record provides a valuable archive of past ice sheet dynamics as much terrestrial evidence is removed or obscured by subsequent ice sheet oscillations MD04-2822 provides the first evidence for the expansion of the BIS onto the Hebridean Margin during MIS6 (thereby confirming previous long-range seismic correlations). The continuous sedimentation at MD04-2822 enabled the first insights into the early dynamics of the last BIS. Increases in IRD and fine grained terrigenous material delivered to the MD04-2822 at ca. 72 kyr represent the first significant delivery of material from the BIS across the continental shelf to the core site. The BIS would therefore have attained a marine calving margin by this time. A multi-proxy investigation of provenance was undertaken, however unequivocal provenance determinations remain problematic. The location of the core suggest the proximal BIS as the most likely source of terrigenous inputs. The expanded nature of the MD04-2822 sediments during the penultimate deglacial (Termination II) provides the first details of BIS dynamics for this period: the interplay of large inputs of freshwater from the decay of the Saalian (MIS 6) ice sheets (including the BIS) upon the surface and deep water circulation of the North Atlantic is investigated. In addition, sub-orbital climatic variability is documented at this location throughout the last interglacial (MIS 5e) and appears to be an intrinsic feature of both the N.E. Atlantic surface and deep water circulation of the last 175 kyr.
93

Impact of improved basal and surface boundary conditions on the mass balance of the Sr Rondane Mountains glacial system, Dronning Maud Land, Antarctica

Callens, Denis 06 November 2014 (has links)
Mass changes of polar ice sheets have an important societal impact, because they affect global sea level. Estimating the current mass budget of ice sheets is equivalent to determining the balance between the surface mass gain through precipitation and the outflow across the grounding line. In Antarctica, the latter is mainly governed by oceanic processes and outlet glacier dynamics.<p>In this thesis, we assess the mass balance of a part of eastern DronningMaud Land via an input/output method. Input is given by recent surface accumulation estimations of the whole drainage basin. The outflow at the grounding line is determined from the radar data of a recent airborne survey and satellite-based velocities using a flow model of combined plug flow and simple shear. We estimate the regional mass balance in this area to be between 1.88±8.50 and 3.78±3.32 Gt a−1 depending on the surface mass balance (SMB) dataset used. This study also reveals that the plug flow assumption is acceptable at the grounding line of ice streams.<p>The mass balance of drainage basins is governed by the dynamics of their outlet glaciers and more specifically the flow conditions at the grounding line. Thanks to an airborne radar survey we define the bed properties close to the grounding line of the West Ragnhild Glacier (WRG) in the Sør Rondane Mountains. Geometry and reflectivity analyses reveal that the bed of the last 65 km upstream of the grounding line is sediment covered and saturated with water. This setting promotes the dominance of basal motion leading to a change in the flow regime: in the interior flow is governed by internal deformation while its relative importance decreases to become driven by basal sliding.<p>Subsequently we present the results of the reconstruction of the SMB across an ice rise through radar data and inverse modelling. The analysis demonstrates that atmospheric circulation was stable during the last millennium. Ice rises induce an orographic uplift of the atmospheric flow and therefore influence the pattern of the SMB across them, resulting in an asymmetric SMB distribution. Since the geometry of the internal reflection horizons observed in radar data depends on the SMB pattern, the asymmetry observed in radar layers reveals the trajectories of air masses at the time of deposit. We present an original and robust method to quantify this SMB distribution. Combining shallow and deep radar layers, SMB across Derwael Ice Rise is reconstructed. Two methods are employed as a function of the depth of the layers: i.e. the shallow layer approximation for the surface radar layers and an optimization technique based on an ice flow model for the deeper ones. Both methods produce similar results. We identify a difference in SMB magnitude of 2.5 between the flanks and the ice rise divide, as well as a shift of ≈4 km between the SMB maximum and the crest. Across the ice rise, SMB exhibits a very large variability, ranging from 0.3 to 0.9 mw.e. a−1. This anomaly is robust in time.<p>Finally we draw a comprehensive description of the Sør Rondane Mountains sector. The glacial system is close to the equilibrium and seems stable but evidences suggest that it is a fragile equilibrium. The proximity of the open ocean certainly favours the interaction between warm water and the ice shelf cavity conducting to potential important melting. The thinning associated with this melting can detach the ice shelf from pinning points. This will reduce the buttressing from the ice shelf, outlet glaciers will accelerate and mass transfer toward the ocean will increase. Therefore, the future of Antarctic Ice Sheet directly depends on the changes affecting its boundaries and assessing the sensitivity of the ice sheets is essential to quantify and anticipate the future variation of mass balance. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
94

On the quantification of ice sheet mass changes and glacial isostatic adjustment effects by combining satellite data

Willen, Matthias Oskar 06 March 2023 (has links)
The satellite gravimetry mission Gravity Record And Climate Experiment (GRACE), which was operational from 2002 to 2017, and its follow-on mission GRACE-Follow-On (GRACE-FO), which has been active since 2018, revolutionized the observation of temporal changes of the Earth's gravitational field. The measurement data from these missions enable the nuanced quantification of mass redistributions on Earth. Water redistributions between continents and oceans caused by climate change are of particular research interest because of their relevance for mankind. These are, for example, the ice mass changes (IMC) of the ice sheets in Antarctica and Greenland, which this work focuses on. IMC estimates derived from satellite gravimetry data, like from other quantification methods, confirm that both the Greenland Ice Sheet (GIS) and the Antarctic Ice Sheet (AIS) have been losing mass over the last two decades. However, these estimates are subject to large uncertainties, which is particularly the case for the AIS. If the mass balance is obtained from gravimetric observations, a major source of uncertainty is the consideration of effects due to glacial isostatic adjustment (GIA). The uncertainty of the present-day gravitational field changes caused by the isostatic adjustment of the solid Earth to IMC during the last centuries and millennia propagates into estimates of the recent IMC. According to results of the Ice sheet Mass Balance Inter-comparison Exercise (IMBIE), the spread of different modelling results predicting the GIA-induced mass effect in Antarctica is almost as large as the estimated rate of the IMC itself. In Greenland, the spread of the mass effect from different GIA modelling results is approximately 20 % of the rate of IMC. Alternatively, the IMC can be determined using surface elevation changes derived from satellite altimetry observations. In this case, any GIA error hardly affects the results, but there is a significant source of uncertainty in the conversion of volume changes into mass changes. It is possible to combine data from satellite gravimetry and satellite altimetry to jointly estimate IMC and GIA mass effects, e.g. by solving an inverse problem (joint data inversion). This is an alternative to the use of GIA modelling results in processing satellite gravimetry data. Results from data combination methods are not only a means to an end to improve the estimation of IMC. They also can contribute to answer geodynamic questions. However, previous estimation strategies for combining satellite gravimetry and satellite altimetry data are subject to some limitations. Many approaches only allow to estimate GIA in a regional framework and not in global framework. Other approaches strongly depend on a priori information from geophysical modelling which are subject to large uncertainties. Furthermore, limitations are due to processing choices, e.g. the use of deterministic parameters over defined time intervals or, e.g. due to the consideration of errors in the applied data sets. This work investigates advancements of data combination methods that allow to quantify IMC and present-day GIA effects. Specifically, the approaches investigated here combine measured gravitational field changes from satellite gravimetry, measured surface elevation changes from satellite altimetry, modelled surface mass balances from regional climate modelling, and modelled firn thickness changes from firn modelling. This cumulative dissertation comprises three publications that investigated three aspects of data combination approaches. The first publication analysed a regional combination approach in Antarctica and results therein demonstrated a significant dependence of the estimated GIA effect on the input data sets and applied processing choices. A bias correction can significantly reduce an initial bias in the determined GIA effect associated to the spherical harmonic coefficients of degree-1 and c₂₀. However, this bias correction regionally constrains the GIA estimate and prevents to implement such an approach in a global framework. The second publication infers long-term mass trends with their temporal changes jointly observed from satellite gravimetry and satellite altimetry data. To do so, a state-space filtering framework was applied to the data sets allowing to estimate temporal changes of the parameters over time while accounting for temporal correlation of short-term fluctuations. Thereby, an accelerating ice-dynamically induced ice mass loss is found for drainage basins in West Antarctica. In contrast, the temporal variability of long-term trends in East Antarctica is low. Noteworthy, the trends in Dronning Maud Land and Enderby Land are positive. The third publication presents a global approach to jointly estimate IMC, GIA effects and firn thickness changes, while accounting for spatial error covariances of the input data sets. The intention of the utilized GIA parametrization in Antarctica is to spatially resolve GIA effects that were not predicted by GIA models. Simulation experiments demonstrated the feasibility of the approach under the presence of realistic limitations of satellite observations and model products. This framework paper also reports a first application of the inversion method of Publication~3 to real data. The focus of this application is on Antarctcia over the time interval January 2011 to December 2020. Results for the AIS are: (i) an IMC of (−150 ± 5) Gt a⁻¹, (ii) a change of the firn air content of (40 ± 5) km³ a⁻¹, and (iii) an integrated GIA-induced mass effect of (72 ± 4) Gt a⁻¹. These results are promising with regard to the application of this methodology, as they are similar to previously published estimates. But they are estimated in a globally consistent framework and without applying conventional filtering strategies. Future work should further improve the methodology and eventually implement it in a global inversion framework that allows to jointly estimate all sea-level contributions.:1 Introduction 2 Processes over ice sheets inducing changes in Earth’s gravity and geometry 3 Data sets 4 Data combinations over ice sheets 5 Publications 6 Inversion of real data for glacial isostatic adjustment and ice mass changes in Antarctica 7 Outlook 8 Conclusions / Die Satellitengravimetriemission Gravity Record And Climate Experiment (GRACE), die von 2002 bis 2017 aktiv war, sowie die seit 2018 aktive Nachfolgemission GRACE-Follow-On (GRACE-FO) revolutionierten die Beobachtung zeitlicher Änderungen des Gravitationsfeldes der Erde. Die Messdaten dieser Missionen ermöglichen die differenzierte Quantifizierung von Massenumverteilungen auf der Erde. Von besonderen Forschungsinteresse, aufgrund ihrer Relevanz für die Menschheit, sind dabei durch den Klimawandel verursachte Umverteilungen von Wasser zwischen den Kontinenten und dem Ozean. Das sind beispielsweise die Eismassenänderungen der Eisschilde in Antarktika sowie Grönland, die im Fokus dieser Arbeit stehen. Aus Messdaten der Satellitengravimetrie ermittelte Eismassenänderungen bestätigen, wie auch andere Quantifizierungsmethoden, dass der Grönländische Eisschild sowie der Antarktische Eisschild während der letzten zwei Jahrzehnte an Masse verloren haben. Allerdings sind diese Schätzungen mit großen Unsicherheiten behaftet, was insbesondere auf den Antarktischen Eisschild zutrifft. Wird die Massenbilanz mit gravimetrischen Beobachtungen ermittelt, ist eine wesentliche Quelle für die Unsicherheit die Berücksichtigung der Effekte aufgrund des glazial-isostatischen Ausgleichs (GIA). Die Unsicherheit über die gegenwärtigen Änderungen des Gravitationsfeldes, aufgrund des isostatischen Ausgleichs der festen Erde an Eismassenänderungen während der letzten Jahrhunderte und Jahrtausende, pflanzt sich in die Schätzung rezenter Massenänderungen fort. Laut Ergebnissen von vergleichenden Untersuchungen zu Eisschildmassenbilanzen (Ice sheet Mass Balance Inter-comparison Exercise, IMBIE) ist in Antarktika die Bandbreite unterschiedlicher Modellierungen des GIA-induzierten Masseneffekts fast so groß wie die ermittelte Rate der Eismassenänderung selbst. In Grönland beträgt die Bandbreite des Masseneffekts unterschiedlicher GIA-Modellierungen ungefähr 20 % der Eismassenänderungsrate. Alternativ lassen sich die Eismassenänderungen mittels Oberflächenhöhenänderungen bestimmen, die aus Beobachtungen der Satellitenaltimetrie abgeleitet werden. Dabei beeinflussen GIA Fehler die Ergebnisse kaum, allerdings besteht dabei eine wesentliche Quelle der Unsicherheit bei der Konversion von Volumenänderungen in Massenänderungen. Es besteht die Möglichkeit, Daten der Satellitengravimetrie sowie der Satellitenaltimetrie zu kombinieren und somit die Eismassenänderungen sowie GIA-Masseneffekte gemeinsam zu bestimmen, z. B. als Lösung eines inversen Problems (gemeinsame Dateninversion). Dies ist eine Alternative zur Verwendung von Ergebnissen der GIA-Modellierung in der Datenprozessierung der Satellitengravimetrie. Ergebnisse von Datenkombinationsmethoden sind dabei nicht nur ein Mittel zum Zweck, um die Schätzung von Eismassenänderungen zu verbessern. Sie können auch zur Beantwortung geodynamischer Fragestellungen beitragen. Allerdings unterliegen bisherige Schätzverfahren, die Daten der Satellitengravimetrie und Satellitenaltimetrie kombinieren, Limitierungen. Viele Ansätze ermöglichen die GIA Schätzungen nur in einem regionalen Rahmen und nicht in einem globalen Rahmen. Andere Ansätze hängen stark von Vorinformationen der geophysikalischen Modellierung ab, die aber große Unsicherheiten aufweisen. Außerdem ergeben sich Limitierungen durch gewählte Prozessierungsentscheidungen, wie z. B. durch die Verwendung deterministischer Parameter über definierte Zeitintervalle oder z. B. durch die Berücksichtigungen der Fehler der verwendeten Datensätze. Diese Arbeit untersucht Weiterentwicklungen von Datenkombinationsmethoden, welche die Quantifizierung von Eismassenänderungen und des gegenwärtigen GIA-induzierten Masseneffekts ermöglichen. Konkret kombinieren die hier untersuchten Ansätze: gemessene Gravitationsfeldänderungen der Satellitengravimetrie, gemessene Oberflächenhöhenänderungen der Satellitenaltimetrie, modellierte Oberflächenmassenbilanzen sowie modellierte Firndickenänderungen der regionalen Klimamodellierung. Diese kumulative Dissertation umfasst drei Publikationen, die drei Aspekte von Datenkombinationsansätzen untersuchten. Die erste Publikation analysierte einen regionalen Kombinationsansatzes in Antarktika und die Ergebnisse zeigten eine bedeutende Abhängigkeit des ermittelten GIA-Effekts von den verwendeten Eingangsdatensätzen und Prozessierungsentscheidungen. Ein ursprünglicher Bias im ermittelten GIA-Effekt, aufgrund der sphärisch-harmonischen Koeffizienten vom Grad-1 sowie c₂₀, kann durch eine Biaskorrektur erheblich reduziert werden. Dadurch sind die GIA-Schätzungen allerdings regional beschränkt und es wird verhindert, dass ein solcher Ansatz in einem globalen Rahmen implementiert werden kann. Die zweite Publikation ermittelt Langzeitmassentrends zusammen mit deren zeitlichen Änderungen, die von der Satellitengravimetrie und Satellitenaltimetrie gemeinsam beobachtet werden. Hierfür wurde ein Zustandsraumfilterverfahren auf die Datensätze angewandt, das es ermöglicht, die zeitlichen Veränderungen der Parameter über die Zeit zu bestimmen, unter der Berücksichtigung zeitlicher Korrelation kurzfristiger Fluktuationen. Dabei zeigt sich für Abflussbecken in der Westantarktis ein sich beschleunigender eisdynamisch induzierter Eismassenverlust. Dagegen ist die zeitliche Variabilität der Langzeittrends in der Ostantarktis gering. Bemerkenswert ist, dass die Trends im Dronning Maud Land und Enderby Land positiv sind. Die dritte Publikation präsentiert einen globalen Ansatz, der die gemeinsame Schätzung von Eismassenänderung, der GIA-Effekte sowie Änderungen der Firndicke ermöglicht, unter der Berücksichtigung räumlicher Fehlerkovarianzen. Bei der Wahl der GIA-Parametrisierung in Antarktika wurde die Intention verfolgt, GIA-Effekte räumlich aufzulösen, die bisher nicht von GIA-Modellen vorhergesagt wurden. Mit Simulationsexperimenten konnte die Machbarkeit des Ansatzes unter realistischer Limitierungen der Satelliten- und Modellprodukte demonstriert werden. Diese Rahmenschrift präsentiert auch eine erste Anwendung der Inversionsmethode aus Publikation 3 unter Verwendung echter Daten. Der Fokus dieser Anwendung liegt auf Antarktika über das Zeitintervall Januar 2011 bis Dezember 2020. Ergebnisse für den Antarktischen Eisschild sind: (i) eine Eismassenänderung von (−150 ± 5) Gt a⁻¹, (ii) eine Änderung des Luftgehalts der Firnschicht von (40 ± 5) km³ a⁻¹ und (iii) ein integrierter GIA-induzierter Masseneffekt von (72 ± 4) Gt a⁻¹. Diese Ergebnisse sind vielversprechend mit Hinblick auf die Anwendbarkeit der Methode, da sie vergleichbar zu bereits publizierten Ergebnissen sind. Dabei wurden sie in einem global-konsistenten Rahmen ohne die Anwendung konventioneller Filterungen ermittelt. Im Zuge zukünftigen Arbeiten soll die Methodik weiter verbessert werden und schließlich in einem globalen Inversionsrahmen implementiert werden, der die Bestimmung aller Meeresspiegelbeiträge gemeinsam ermöglicht.:1 Introduction 2 Processes over ice sheets inducing changes in Earth’s gravity and geometry 3 Data sets 4 Data combinations over ice sheets 5 Publications 6 Inversion of real data for glacial isostatic adjustment and ice mass changes in Antarctica 7 Outlook 8 Conclusions
95

Elevation Changes in Greenland over Two Decades from Cross-Platform LIDAR Analysis

Wheelock-Davis, Emily J. 08 August 2013 (has links)
No description available.
96

Feasibility of a global inversion for spatially resolved glacial isostatic adjustment and ice sheet mass changes proven in simulation experiments

Willen, Matthias O., Horwath, Martin, Groh, Andreas, Helm, Veit, Uebbing, Bernd, Kusche, Jürgen 19 April 2024 (has links)
Estimating mass changes of ice sheets or of the global ocean from satellite gravimetry strongly depends on the correction for the glacial isostatic adjustment (GIA) signal. However, geophysical GIA models are different and incompatible with observations, particularly in Antarctica. Regional inversions have resolved GIA over Antarctica without ensuring global consistency, while global inversions have been mostly constrained by a priori GIA patterns. For the first time, we set up a global inversion to simultaneously estimate ice sheet mass changes and GIA, where Antarctic GIA is spatially resolved using a set of global GIA patterns. The patterns are related to deglaciation impulses localized along a grid over Antarctica. GIA associated with four regions outside Antarctica is parametrized by global GIA patterns induced by deglaciation histories. The observations we consider here are satellite gravimetry, satellite altimetry over Antarctica and Greenland, as well as modelled firn thickness changes. Firn thickness changes are also parametrized to account for systematic errors in their modelling. Results from simulation experiments using realistic signals and error covariances support the feasibility of the approach. For example, the spatial RMS error of the estimated Antarctic GIA effect, assuming a 10-year observation period, is 31% and 51%, of the RMS of two alternative global GIA models. The integrated Antarctic GIA error is 8% and 5%, respectively, of the integrated GIA signal of the two models. For these results realistic error covariances incorporated in the parameter estimation process are essential. If error correlations are neglected, the Antarctic GIA RMS error is more than twice as large.Highlights We present a globally consistent inversion approach to co-estimate glacial isostatic adjustment effects together with changes of the ice mass and firn air content in Greenland and Antarctica. The inversion method utilizes data sets from satellite gravimetry, satellite altimetry, regional climate modelling, and firn modelling together with the full error-covariance information of all input data. The simulation experiments show that the proposed GIA parametrization in Antarctica can resolve GIA effects unpredicted by geophysical modelling, despite realistic input-data limitations.
97

The deglaciation of the northwest sector of the last British-Irish ice sheet : integrating onshore and offshore data relating to chronology and behaviour

Small, David January 2013 (has links)
It is now accepted that the last British-Irish Ice Sheet (BIIS) was highly dynamic and drained by numerous fast flowing ice streams. This dynamic nature combined with its maritime location made the BIIS sensitive to the rapid climate change that characterised the Last Glacial Interglacial Transition. Gaining an understanding of the behaviour of the BIIS at this time is important to explore the nature of forcing between ice sheets and climate. This thesis presents new chronological data relating to the deglaciation of the northwest sector of the BIIS (NW-BIIS) from onshore dating of moraines using cosmogenic exposure dating. This improved chronological framework is supported by offshore data in the form of a newly constructed Ice Rafted Detritus (IRD) record from the offshore sediment core MD95-2007. These data suggest that deglaciation commenced sometime after 18 ka and that the NW-BIIS was located close to the present day shoreline by 16 ka. Further provenance analysis of the IRD using U-Pb dating of detrital minerals demonstrates that during the Last Glacial-Interglacial Transition MD95-2007 was being supplied distal IRD from a source(s) to the west. The absence of diagnostic Scottish material suggests that after retreat to the coastline at 16 ka calving margins were not re-established during Greenland Interstadial 1. By combining these results with existing data relating to the deglaciation of the NW-BIIS it is possible to summarise the deglaciation history of the NW-BIIS from the continental shelf to mountainous source regions and compare this to numerical models of BIIS behaviour during this time. With a better understanding of the chronology of NW-BIIS retreat it is possible to relate the timing of initial deglaciation to possible forcing factors and gain a better understanding of the response of a marine based sector of an ice sheet to rapid climate change.
98

Double dating detrital zircons in till from the Ross Embayment, Antarctica

Welke, Bethany Marie 21 May 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / U/Pb and (U-Th)/He (ZHe) dating of detrital zircons from glacial till samples in the Ross Embayment, Antarctica records cooling after the Ross/Pan-African orogeny (450-625 Ma) followed by a mid-Jurassic to mid-Cretaceous heating event in the Beacon basin. Zircons were extracted from till samples from heads of major outlet glaciers in East Antarctica, one sample at the mouth of Scott Glacier, and from beneath three West Antarctic ice streams. The Ross/Pan-African U/Pb population is ubiquitous in these Antarctic tills and many Beacon Supergroup sandstones, thus 83 grains were analyzed for ZHe to subdivide this population. Two ZHe age populations are evident in East Antarctic tills, with 64% of grains 115-200 Ma and 35% between 200-650 Ma. The older population is interpreted to be associated with the Ross/Pan-African orogeny including cooling of the Granite Harbour Intrusives and/or exhumation of the older basement rocks to form the Kukri Peneplain. The lag time between zircon U/Pb, ZHe and 40Ar/39Ar ages from K-bearing minerals show cooling over 200 My. Grains in East Antarctic tills with a ZHe age of 115-200 Ma likely reflects regional heating following the breakup of Gondwana from the Ferrar dolerite intrusions, subsidence within the rift basin, and a higher geothermal gradient. Subsequent cooling and/or exhumation of the Transantarctic Mountains brought grains below the closure temperature over a span of 80 My. This population may also provide a Beacon Supergroup signature as most of the tills with this age are adjacent to nunataks mapped as Beacon Supergroup and contain an abundance of vi Beacon pebbles within the moraine. Nine zircons grains from three Beacon Supergroup sandstones collected from moraines across the Transantarctic Mountains yield ages from 125-180 Ma. West Antarctic tills contain a range of ZHe ages from 75-450 Ma reflecting the diverse provenance of basin fill from East Antarctica and Marie Byrd Land. ZHe and U/Pb ages <105 Ma appear to be distinctive of West Antarctic tills. The combination of U/Pb, ZHe and 40Ar/39Ar analyses demonstrates that these techniques can be used to better constrain the tectonic evolution and cooling of the inaccessible subglacial source terrains beneath the Antarctic Ice Sheet.

Page generated in 0.0788 seconds