• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Iterative Enhancement of Non-Exact Reconstruction in Cone Beam CT / Iterativ förbättring av icke-exakt rekonstruktion för konstråletomografi

Sunnegårdh, Johan January 2004 (has links)
<p>Contemporary algorithms employed for reconstruction of 3D volumes from helical cone beam projections are so called non-exact algorithms. This means that the reconstructed volumes will contain artifacts irrespective of the detector resolution and number of projections angles employed in the process.</p><p>It has been proposed that these artifacts can be suppressed using an iterative scheme which comprises computation of projections from the already reconstructed volume as well as the non-exact reconstruction itself.</p><p>The purpose of the present work is to examine if the iterative scheme can be applied to the non-exact reconstruction method PI-original in order to improve the reconstruction result. An important part in this implementation is a careful design of the projection operator, as a poorly designed projection operator may result in aliasing and/or other artifacts in the reconstruction result. Since the projection data is truncated, special care must be taken along the boundaries of the detector. Three different ways of handling this interpolation problem is proposed and examined.</p><p>The results show that artifacts caused by the PI-original method can indeed be reduced by the iterative scheme. However, each iteration requires at least three times more processing time than the initial reconstruction, which may call for certain compromises, smartness and/or parallelization in the innermost loops. Furthermore, at higher cone angles certain types of artifacts seem to grow by each iteration instead of being suppressed.</p>
22

Iterative Enhancement of Non-Exact Reconstruction in Cone Beam CT / Iterativ förbättring av icke-exakt rekonstruktion för konstråletomografi

Sunnegårdh, Johan January 2004 (has links)
Contemporary algorithms employed for reconstruction of 3D volumes from helical cone beam projections are so called non-exact algorithms. This means that the reconstructed volumes will contain artifacts irrespective of the detector resolution and number of projections angles employed in the process. It has been proposed that these artifacts can be suppressed using an iterative scheme which comprises computation of projections from the already reconstructed volume as well as the non-exact reconstruction itself. The purpose of the present work is to examine if the iterative scheme can be applied to the non-exact reconstruction method PI-original in order to improve the reconstruction result. An important part in this implementation is a careful design of the projection operator, as a poorly designed projection operator may result in aliasing and/or other artifacts in the reconstruction result. Since the projection data is truncated, special care must be taken along the boundaries of the detector. Three different ways of handling this interpolation problem is proposed and examined. The results show that artifacts caused by the PI-original method can indeed be reduced by the iterative scheme. However, each iteration requires at least three times more processing time than the initial reconstruction, which may call for certain compromises, smartness and/or parallelization in the innermost loops. Furthermore, at higher cone angles certain types of artifacts seem to grow by each iteration instead of being suppressed.
23

On Critique Of Architectural Image:reading Jean Baudrillard Through Jean Nouvel

Uslu, Irem 01 January 2011 (has links) (PDF)
The aim of this study is to question the relationality between conception of image, social condition of an era and architecture. With acceptance of a transition to a new kind of relationality in contemporary era, a trialectical analysis is carried on, in order to understand changes in this relationality and its effects on contemporary architecture. Image, mainly depicted as the tool for communication, loses its transcendental and ideal status and degrades to an artificial and tricky state under the contemporary social condition. Likewise, current state of both image and social condition manipulates architecture, architectural production and the position of architect. Therefore, in this study, for understanding the new social condition, it is referred to the world constituted as a system of sign in philosophy of French thinker, Jean Baudrillard which originates from new status of image. For comprehension of contemporary architecture, it is referred to the practice of French architect, Jean Nouvel who features special value to image in his architecture. Finally, for consequences of this collision and effects on architecture, it is referred to the analysis of the book of &ldquo / The Singular Objects of Architecture&rdquo / which is composed of dialogues between Jean Baudrillard and Jean Nouvel.
24

Roll, Duck, &amp; Cover! : A collaboratively produced, critical game that generates a discussion around the visual representation of nuclear warfare in media

Selimi, Fitim January 2018 (has links)
This research project explores how we can apply Emerging Design Landscapes such as Critical Design and Collective Creativity, in combination with traditional fields of visual communication to address societal challenges in cooperation with society. In particular, this paper aims to question the visual representation of nuclear warfare, and how we could utilize Peircean Semiotics to better understand set representation. The design outcome is a critical board game that at its core aims to create a discussion around the visual representation of nuclear warfare today and act as a learning platform that would help its user better understand the practice of semiosis.
25

Language Image Transformer

January 2020 (has links)
abstract: Humans perceive the environment using multiple modalities like vision, speech (language), touch, taste, and smell. The knowledge obtained from one modality usually complements the other. Learning through several modalities helps in constructing an accurate model of the environment. Most of the current vision and language models are modality-specific and, in many cases, extensively use deep-learning based attention mechanisms for learning powerful representations. This work discusses the role of attention in associating vision and language for generating shared representation. Language Image Transformer (LIT) is proposed for learning multi-modal representations of the environment. It uses a training objective based on Contrastive Predictive Coding (CPC) to maximize the Mutual Information (MI) between the visual and linguistic representations. It learns the relationship between the modalities using the proposed cross-modal attention layers. It is trained and evaluated using captioning datasets, MS COCO, and Conceptual Captions. The results and the analysis offers a perspective on the use of Mutual Information Maximisation (MIM) for generating generalizable representations across multiple modalities. / Dissertation/Thesis / Masters Thesis Computer Engineering 2020
26

Optimierung und Auswirkungen von ikonischen Bildfusionsverfahren zur Verbesserung von fernerkundlichen Auswerteverfahren

Klonus, Sascha 10 February 2012 (has links)
Die Verfügbarkeit von Fernerkundungsdaten ist in den letzten Jahren stark gestiegen. Spätestens seit der Entwicklung von Google Earth wächst auch das Interesse der Allgemeinheit an Fernerkundungsdaten. Aktuell ist eine Vielzahl von Satelliten- und flugzeuggestützten Fernerkundungssystemen operationell verfügbar. Neue Techniken in der Fernerkundung erbringen immer höhere räumliche und zeitliche Auflösungen. Daten, die von den verschiedenen Sensoren aufgenommen werden, unterscheiden sich daher in spektraler, räumlicher sowie temporaler Auflösung. Eines haben die meisten dieser Sensoren aber gemeinsam, nämlich, dass die höchste räumliche Auflösung nur im panchromatischen Modus erzeugt werden kann. Das Verhältnis zwischen der hoch aufgelösten panchromatischen und der niedrig auflösenden multispektralen Aufnahme eines Sensors liegt dabei zwischen 1:2 (SPOT 4) und 1:8 (DMC - Beijing-1). Diese werden in der Regel auf Bilddaten angewandt, die vom gleichen Sensor zur gleichen Zeit aufgenommen wurden (unisensorale, unitemporale Fusion). Einige Sensoren erzeugen allerdings nur panchromatische Bilder, andere, wie das neue deutsche System RapidEye, nur multispektrale Daten. Zur Erzeugung von hoch bzw. höchst aufgelösten multispektralen Bildern müssen hier sensorübergreifend Bilddaten fusioniert werden, die zu verschiedenen Zeitpunkten aufgenommen wurden (multisensorale, multitemporale Fusion). Benutzt man Daten von unterschiedlichen Sensoren, so kann das Verhältnis zwischen der hoch aufgelösten panchromatischen und der niedrig auflösenden multispektralen Aufnahme sogar 1:30 (Ikonos-Panchromatisch : Landsat-Multispektral) oder höher betragen. Neben dem Verhältnis der panchromatischen Komponente zu der multispektralen Komponente ist die Veränderung der spektralen Werte bei der Fusion aber noch entscheidender. Die Mehrzahl der entwickelten Fusionsverfahren weist dabei Farbveränderungen auf. Zudem beeinflussen diese Farbveränderungen auch anschließende Analysen. Das allgemeine Ziel der Daten- bzw. auch der Bildfusion ist: verschiedene Daten zusammenzuführen und mehr Informationen aus diesen Daten zu erhalten als aus jedem der einzelnen Sensoren allein (1+1=3). Die Fragestellung, die auch dieser Arbeit zugrunde liegt, lautet: Kann man mehr Informationen aus den fusionierten Datensätzen extrahieren als aus den einzelnen Datensätzen allein? Und wenn ja, wie viel mehr Informationen können extrahiert werden? Das erste Ziel dieser Arbeit ist ein Verfahren zu finden, welches die zu untersuchenden Merkmale so verbessert, dass der Informationsgehalt maximiert wird und damit höher ist als in den einzelnen originalen Datensätzen. In Bezug auf die Fusion von hochaufgelösten panchromatischen mit niedriger aufgelösten multispektralen Daten bedeutet dies, dass die fusionierten Daten die gleich hohe Auflösung der panchromatischen Daten besitzen, ohne dass Farbveränderungen auftreten. Diese fusionierten Daten sollten sich nicht von einem Bild unterscheiden, das mit einem multispektralen Sensor in der räumlichen Auflösung der panchromatischen Eingangsdaten aufgenommen wurde. Um dieses Ziel zu erreichen, wurde die Fusion auf der Pixelebene ausgewählt, da diese für die Fernerkundung von höchster Relevanz ist, weil die ikonischen Bildfusionsverfahren am weitesten entwickelt sind und die Eingangsdaten am wenigsten vor der Anwendung der Fusionsmethode verändert werden. Da es eine große Anzahl an Verfahren im Bereich der Bildfusion gibt, wurde zunächst auf Basis einer Literaturrecherche eine Auswahl von Verfahren getroffen. Zur Beurteilung dieser Verfahren ist es notwendig, quantitativ-statistische Verfahren auszuwählen, da eine rein visuelle Auswertung, zu subjektiv ist. Um das zweite Ziel dieser Arbeit zu erreichen wurde eine Literaturrecherche durchgeführt. Die ausgewählten Evaluierungsverfahren sollten soweit wie möglich automatisch ablaufen und nur wenig manuellen Input benötigen. Das sichert eine erhöhte Objektivität. Das Endergebnis sollte ein Wert für jeden Kanal oder das Bild sein, so dass eindeutige Rückschlüsse auf die Qualität des Bildes möglich sind. Bei der Auswahl dieser Verfahren ist darauf zu achten, dass sowohl Evaluierungsverfahren ausgewählt werden, welche die spektrale Veränderung messen, aber auch solche, welche die räumliche Verbesserung messen. Die Evaluierungsverfahren wurden für 7 Kategorien ausgewählt. Für die Kategorie 1 wird der ERGAS eingesetzt. In der zweiten Kategorie sollen die Bilddifferenzen berechnet werden. Da die einfache Differenz zweier Bilder große Datenmengen produziert und nicht ein einzelner Wert verfügbar ist, wird die Grauwertabweichung pro Pixel als Kriterium ausgewählt. Mit der dritten Kategorie sollen Ähnlichkeiten im Bildaufbau gemessen werden. Dazu eignet sich am besten der Korrelationskoeffizient. In der vierten Kategorie werden die Ähnlichkeiten der räumlichen Details gemessen. Da es hier wieder um Ähnlichkeiten geht, bietet es sich erneut an, den Korrelationskoeffizienten auch hier einzusetzen. Diesmal allerdings die Korrelation nach Hochpassfilterung zwischen den panchromatischen Eingangsdaten und den fusionierten Bildern. Kategorie 5 betrifft die Qualität der lokalen räumlichen Verbesserungen. Dazu wird die Kantendetektion mit dem Canny Kantenoperator für diese Arbeit ausgewählt. Bei der sechsten Kategorie geht es um die Messung von Unstimmigkeiten in den Spektren. Der SAM wurde daher ausgewählt. Die siebte Kategorie beschreibt die globalen Unterschiede in den Bildern. Dazu wird der SSIM verwendet. Nachdem die Evaluierungsverfahren in den sieben Kategorien ausgewählt wurden, zeigte die Anwendung dieser Evaluierungsmethoden, dass die Ehlers Fusion das beste Fusionsverfahren ist. Die uantitativstatistischen Untersuchungen präsentierten die besten Ergebnisse für die Ehlers Fusion. Die Werte zur spektralen Untersuchung unterschieden sich nur im geringem Maße von den orginalen Werten. Aus diesem Grund wurde die Ehlers Fusion für weitere Untersuchungen in dieser Arbeit ausgewählt und optimiert. Um den Mehrwert von fusionierten Daten zu ermitteln, wurde die Interpretation der fusionierten Fernerkundungsdaten durchgeführt. Bei der unisensoralen Bildfusion hat sich gezeigt, dass die Mehrzahl der Verfahren eine Verbesserung bei der Interpretation der Daten erreicht. Objekte können genauer erkannt werden und auch die Farben bleiben erhalten. Bei den multitemporalen Datensätzen und insbesondere bei der Fusion von Radardaten erreicht dieses Ziel nur ein einziges Verfahren: die Ehlers Fusion. Die Interpretation der Daten wird auch bei den multitemporalen Daten erleichtert. Es werden nicht nur die Kanten von Objekten geschärft, wie beim Brovey Verfahren, sondern auch die spektralen Werte bleiben erhalten. Die Werterhaltung ist besonders wichtig, da durch Veränderung der Farbwerte die genaue Feldfrucht nicht mehr bestimmt werden kann und eine Interpretation dadurch erschwert bzw. unmöglich wird. Bei der CAPI (Computer Assisted Photo Interpretation) konnten durch die Ehlers Fusion vor allem zwei Faktoren der Interpretation deutlich verbessert werden: Zum einen gab es eine schärfere Abgrenzung der Flächengrenzen von unterschiedlich genutzten landwirtschaftlichen Flächen im Vergleich mit den originalen spektralen Daten und zum anderen können Pflanzen, z.B. Weinberge, die nur einen Teil des Bodens bedecken, besser erkannt werden. Bei der unitemporalen Klassifikation stellte sich heraus, dass die fusionierten Daten eine höhere Genauigkeit haben, wenn für die Klassifikation nur die multispektralen Daten verwendet werden. Werden zusätzlich noch die panchromatischen Daten als weiterer Kanal für die Klassifikation herangezogen, so ist die Genauigkeit gleich. Bei der multitemporalen Klassifikation zeigte sich dagegen, dass fusionierte Daten genauer klassifiziert werden können als die Daten mit einem zusätzlichen panchromatischen Kanal. Da bei der Klassifikation mit einem panchromatischen Kanal, der Aufnahmetermin nicht mit den multispektralen Daten übereinstimmt. Bei der Klassifikation mit fusionierten Radardaten zeigte sich, dass die fusionierten Daten eine detailliertere und damit verbesserte Klassifikation erzeugen. Fusionierte Daten können also dabei helfen, mehr Informationen aus den Eingangsdaten zu extrahieren als aus jeden der einzelnen Datensätze. Diese Arbeit hat gezeigt, dass die Genauigkeiten der Klassifikation sich erhöhen kann, wenn die Daten vorher fusioniert werden. Auch die Interpretation kann deutlich dadurch erleichtert werden, dass nicht der panchromatische Kanal und die multispektralen Kanäle getrennt voneinander betrachtet werden müssen. Man kann sich auf ein fusioniertes Bild konzentrieren und seine Interpretation durchführen.
27

Odraz stáří v seriálech pro děti / The image of eldery people in children programmes

Charvátová, Denisa January 2016 (has links)
The subject of the thesis is the problem of portrayal of the elderly in Vecernicek animated cartoons for children. Content analysis is conducted on twenty-two selected animated Vecernicek stories that portrayed older characters (371 cartoons for a total of 2974 minutes). The objective of this paper is to examine the depiction of the elderly in Vecernicek cartoons and to point out age stereotypes. The first part of the paper consists of a theoretical framework necessary for the subsequent analysis, particularly media depiction, media representation, construction of reality, the relationship between media depiction, reality and stereotyping, which are then accompanied by characterization of the stories, their meaning and also by definition of old age. Next, all twenty-two analyzed cartoons are briefly introduced. Quantitative content analysis is conducted to examine the frequency and context of depiction of male and female elderly characters, and the overall message. Using qualitative content analysis, six coherent groups of media depiction of the elderly are created, then using semiotic analysis, six specific examples of age portrayal in Vecernicek cartoons are introduced.
28

Méthodes de reconstruction d'images à partir d'un faible nombre de projections en tomographie par rayons x / X-ray CT Image Reconstruction from Few Projections

Wang, Han 24 October 2011 (has links)
Afin d'améliorer la sûreté (dose plus faible) et la productivité (acquisition plus rapide) du système de la tomographie par rayons X (CT), nous cherchons à reconstruire une image de haute qualitée avec un faible nombre de projections. Les algorithmes classiques ne sont pas adaptés à cette situation et la reconstruction est instable et perturbée par des artefacts. L'approche "Compressed Sensing" (CS) fait l'hypothèse que l'image inconnue est "parcimonieuse" ou "compressible", et la reconstruit via un problème d'optimisation (minimisation de la norme TV/L1) en promouvant la parcimonie. Pour appliquer le CS en CT, en utilisant le pixel/voxel comme base de representation, nous avons besoin d'une transformée parcimonieuse, et nous devons la combiner avec le "projecteur du rayon X" appliqué sur une image pixelisée. Dans cette thèse, nous avons adapté une base radiale de famille Gaussienne nommée "blob" à la reconstruction CT par CS. Elle a une meilleure localisation espace-fréquentielle que le pixel, et des opérations comme la transformée en rayons-X, peuvent être évaluées analytiquement et sont facilement parallélisables (sur plateforme GPU par exemple). Comparé au blob classique de Kaisser-Bessel, la nouvelle base a une structure multi-échelle : une image est la somme des fonctions translatées et dilatées de chapeau Mexicain radiale. Les images médicales typiques sont compressibles sous cette base. Ainsi le système de representation parcimonieuse dans les algorithmes ordinaires de CS n'est plus nécessaire. Des simulations (2D) ont montré que les algorithmes TV/L1 existants sont plus efficaces et les reconstructions ont des meilleures qualités visuelles que par l'approche équivalente basée sur la base de pixel-ondelettes. Cette nouvelle approche a également été validée sur des données expérimentales (2D), où nous avons observé que le nombre de projections en général peut être réduit jusqu'à 50%, sans compromettre la qualité de l'image. / To improve the safety (lower dose) and the productivity (faster acquisition) of an X-ray CT system, we want to reconstruct a high quality image from a small number of projections. The classical reconstruction algorithms generally fail since the reconstruction procedure is unstable and the reconstruction suffers from artifacts. The "Compressed Sensing" (CS) approach supposes that the unknown image is in some sense "sparse" or "compressible", and reoncstructs it through a non linear optimization problem (TV/$llo$ minimization) by enhancing the sparsity. Using the pixel/voxel as basis, to apply CS framework in CT one usually needs a "sparsifying" transform, and combine it with the "X-ray projector" applying on the pixel image. In this thesis, we have adapted a "CT-friendly" radial basis of Gaussian family called "blob" to the CS-CT framework. It have better space-frequency localization properties than the pixel, and many operations, such as the X-ray transform, can be evaluated analytically and are highly parallelizable (on GPU platform). Compared to the classical Kaisser-Bessel blob, the new basis has a multiscale structure: an image is the sum of dilated and translated radial Mexican hat functions. The typical medical objects are compressible under this basis, so the sparse representation system used in the ordinary CS algorithms is no more needed. Simulations (2D) show that the existing TV/L1 algorithms are more efficient and the reconstructions have better visual quality than the equivalent approach based on the pixel/wavelet basis. The new approach has also been validated on experimental data (2D), where we have observed that the number of projections in general can be reduced to about 50%, without compromising the image quality.
29

Image analysis and representation for textile design classification

Jia, Wei January 2011 (has links)
A good image representation is vital for image comparision and classification; it may affect the classification accuracy and efficiency. The purpose of this thesis was to explore novel and appropriate image representations. Another aim was to investigate these representations for image classification. Finally, novel features were examined for improving image classification accuracy. Images of interest to this thesis were textile design images. The motivation of analysing textile design images is to help designers browse images, fuel their creativity, and improve their design efficiency. In recent years, bag-of-words model has been shown to be a good base for image representation, and there have been many attempts to go beyond this representation. Bag-of-words models have been used frequently in the classification of image data, due to good performance and simplicity. “Words” in images can have different definitions and are obtained through steps of feature detection, feature description, and codeword calculation. The model represents an image as an orderless collection of local features. However, discarding the spatial relationships of local features limits the power of this model. This thesis exploited novel image representations, bag of shapes and region label graphs models, which were based on bag-of-words model. In both models, an image was represented by a collection of segmented regions, and each region was described by shape descriptors. In the latter model, graphs were constructed to capture the spatial information between groups of segmented regions and graph features were calculated based on some graph theory. Novel elements include use of MRFs to extract printed designs and woven patterns from textile images, utilisation of the extractions to form bag of shapes models, and construction of region label graphs to capture the spatial information. The extraction of textile designs was formulated as a pixel labelling problem. Algorithms for MRF optimisation and re-estimation were described and evaluated. A method for quantitative evaluation was presented and used to compare the performance of MRFs optimised using alpha-expansion and iterated conditional modes (ICM), both with and without parameter re-estimation. The results were used in the formation of the bag of shapes and region label graphs models. Bag of shapes model was a collection of MRFs' segmented regions, and the shape of each region was described with generic Fourier descriptors. Each image was represented as a bag of shapes. A simple yet competitive classification scheme based on nearest neighbour class-based matching was used. Classification performance was compared to that obtained when using bags of SIFT features. To capture the spatial information, region label graphs were constructed to obtain graph features. Regions with the same label were treated as a group and each group was associated uniquely with a vertex in an undirected, weighted graph. Each region group was represented as a bag of shape descriptors. Edges in the graph denoted either the extent to which the groups' regions were spatially adjacent or the dissimilarity of their respective bags of shapes. Series of unweighted graphs were obtained by removing edges in order of weight. Finally, an image was represented using its shape descriptors along with features derived from the chromatic numbers or domination numbers of the unweighted graphs and their complements. Linear SVM classifiers were used for classification. Experiments were implemented on data from Liberty Art Fabrics, which consisted of more than 10,000 complicated images mainly of printed textile designs and woven patterns. Experimental data was classified into seven classes manually by assigning each image a text descriptor based on content or design type. The seven classes were floral, paisley, stripe, leaf, geometric, spot, and check. The result showed that reasonable and interesting regions were obtained from MRF segmentation in which alpha-expansion with parameter re-estimation performs better than alpha-expansion without parameter re-estimation or ICM. This result was not only promising for textile CAD (Computer-Aided Design) to redesign the textile image, but also for image representation. It was also found that bag of shapes model based on MRF segmentation can obtain comparable classification accuracy with bag of SIFT features in the framework of nearest neighbour class-based matching. Finally, the result indicated that incorporation of graph features extracted by constructing region label graphs can improve the classification accuracy compared to both bag of shapes model and bag of SIFT models.
30

Are You Creating Socially Responsible Visual Communication? : An Exploratory Study of Fashion Companies’ External Social Responsibility on Instagram: A Marketer’s Perspective

Diliwi, Avesta, Bäcker, Josefin January 2019 (has links)
Background: Following the development of digitalization and the emergence of social media a lot of attention has been drawn upon how these platforms are influencing the fashion industry and fashion marketing. As society is becoming more ethics and health conscious, fashion companies’ visual representations in social media are drawing more attention - who is represented and how are these representations portrayed. Previous research has shown that white and thin models are a recurrent over-representation in media, consumers through these see the ‘ideal’ or stereotypical body types or norms, and not an actual or full representation of society. The issue is, however, not that white or thin people are represented in media. The problem is how companies portray these representations and how the portrayals lead to the exclusion and misrepresentation of other groups in society. Purpose: The purpose of this study is to investigate the CSR practice of fashion companies regarding the body image representations in social media marketing communications, with specific focus on the marketer’s perspective. Methodology: For this study an exploratory cross-sectional case-study research design approach was applied. Four corporate cases of fashion companies were analyzed using data triangulation methods on the basis of content analysis and semi-structured interviews. First, case analysis of social media contents and interviews were conducted, followed by cross- sectional analysis to find out if fashion companies’ practiced social responsibility is aligned with the verbally expressed social responsibility. Findings: The findings of this study demonstrate that fashion companies consider external social responsibility as an important issue, however, a gap between the companies practiced social responsibility and verbally expressed social responsibility remains. The study shows that two of the companies’ practiced social responsibility on their Instagram channel is in alignment with their verbally expressed social responsibility, when it comes to representing diversity in terms of body size, ethnicity and skin color. However, when it comes to the representational conventions it was noted that all the companies are lacking in external responsibility due to the continuous signs of idealization and body-ism on all the companies’ Instagram channels. Conclusion: This study contributes to the research field regarding companies’ external social responsibility on Instagram. The findings provide companies and researchers with awareness of which representational conventions/key social aspects are currently lacking in corporate marketing activities and should become the focus for further improvement. Based on obtained results, a modified framework for image analysis and criteria for image/content creation are suggested. The framework and criteria can assist future researchers, help content creators and other practitioners to understand the complexity of external social responsibility and how to implement it in practice.

Page generated in 0.1477 seconds