• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 22
  • 3
  • Tagged with
  • 55
  • 55
  • 34
  • 16
  • 14
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Imagerie nanométrique ultra-rapide par diffraction cohérente de rayonnement XUV produit par génération d'harmoniques d'ordre élevés / Ultrafast Nanoscale Imaging Using Coherent Diffraction of XUV Produced HHG

Cassin, Rémy 21 December 2017 (has links)
L'objectif de ce mémoire est dedévelopper de nouvelles méthodes d'imageriesans lentille en simple tir 2D et 3D avec dessources harmoniques XUV. Un intérêt particulierest porté aux techniques d'imageries permettantl'imagerie des objets biologiques et de phase.Dans un premier temps, on introduit la théorie del'imagerie dans lentille et on détaille lesméthodes utilisées au cours de cette thèse pourreconstruire le champ diffracté par l'objet quel'on souhaite imager. Les techniques d'imageriessont séparées en deux catégories : itératifs etholographiques. On discute des conditionsexpérimentales nécessaires à la reconstruction del'image de l'objet et on compare les avantagesrespectifs des deux types de méthodes. Puis, ondétaille les aspects expérimentaux du faisceauXUV obtenu par HHG et on couvre brièvementla théorie associée à ce processus. La sectionsuivante traite des paramètres et des techniquesde traitement des données influant sur la qualitéde l'image reconstruite en imagerie sans lentille.On montre comment améliorer lesreconstructions HERALDO dans un régime defaible flux de photons. On présente ensuite lesrésultats d'une technique de caractérisationcomplète de la cohérence spatiale d’un faisceauXUV en simple tir. Cette dernière est unparamètre critique de l'imagerie sans lentille. Al'aide d'un tableau non redondant de référencesponctuelles, on mesure la cohérence spatialepour chaque distance entre les références, sansaucune mesure du profil spatial du faisceau. Onmontre que la distribution de la cohérence estgaussienne et que son diamètre dépend desconditions de génération du faisceauharmonique. On étudie aussi quantitativementcomment l'accumulation de plusieurs tirs dediffraction diminue la cohérence apparente dufaisceau. Une expérience d'imagerie d'objets dephase avec une source harmonique pouvant êtreappliquée à des objets biologiques est ensuiteprésentée.A notre connaissance c'est la premièrereconstruction par méthode CDI d'objets dephase avec une source harmonique. La suite dumanuscrit présente les résultats de deuxexpériences visant à réaliser de l'imagerie 3D àl'échelle nanométrique avec une sourceharmonique. Tout d’abord, on présente unetechnique d'imagerie 3D simple tir. C'est lapremière expérience permettant unereconstruction 3D à partir d'une seuleacquisition, avec une résolution spatialenanométrique et une résolution temporellefemtoseconde, sans utiliser de connaissances apriori sur l'objet étudié. Cette technique possèdeun vaste spectre d'application, particulièrementpour l'étude structurelle d'échantillonsbiologiques sensibles aux dégâts d'irradiation.De plus, cette technique peut être facilementapplicable à des FELs et des synchrontrons pourobtenir de meilleures résolutions. La deuxièmeexpérience d'imagerie 3D est une preuve deconcept validant la faisabilité de lacryptomographie avec une source harmonique.Pour reconstruire le volume 3D de l'échantillon,la cryptotomographie utilise des figures dediffraction qui sont acquises pour desorientations de l'échantillon inconnues. Lerégime de faible flux dans lequel on se place nouspermet de simuler les paramètres d'une sourceharmonique fonctionnant dans la fenêtre de l'eau.On conclut que, le niveau du signal de diffractionest suffisant pour pouvoir identifier l'orientationde l'objet à partir des figures de diffractionenregistrées, dans des conditions expérimentalesoptimisées. Ainsi, avec suffisamment de figuresde diffraction enregistrées et assez d'orientationsde l'objet, on peut reconstruire le volume 3D del'objet. Ces résultats impliquent qu'uneexpérience de cryptotomographie d'objetsbiologiques avec une source harmoniquefonctionnant dans la fenêtre de l'eau seraitréalisable. / The aim of this dissertation is todevelop new lensless single shot imagingtechnique in 2D and 3D with XUV harmonicsources which can be applied to study biologicalobjects and phase objects. Firstly, we introducethe theory underlying lensless imagingtechniques and we describe the methods usedduring this thesis to reconstruct the light fielddiffracted by the studied object. The imagingtechniques are split in two categories: iterativeand holographic. The iterative methodsreconstruct the phase of the diffracted wavefront using constraints in the Fourier space andthe reel space. With the holographic techniques,the phase is encoded directly in the interferencefringes between the reference and the objectwithin the diffraction pattern. We discuss theexperimental parameters required to achieve animage reconstruction and we compare therespective advantages of the two types ofmethod. Then, we describe the experimentalparameters of the XUV beam produced by highharmonic generation (HHG) and we brieflyexplain the theory of the HHG. The next sectiondiscusses the parameters the quality of thereconstructed image. We show how to improvethe resolution and the signal to noise ratio usingthe HERALDO technique in the low fluxregime.We then show the result of a new technique forthe single shot characterization of the spatialcoherence of XUV beams. Indeed, the spatialcoherence is a critical parameter for coherentdiffractive imaging techniques. Using a NRA ofreference holes, we measure the spatialcoherence for each distance between each pairof holes, without the knowledge of the intensitydistribution on the sample. We show that thespatial coherence has a gaussian distribution andthat its diameter varies according to thegeneration parameters of the harmonic beam.We also study quantitatively the effect of multishotsaccumulation of the diffraction pattern onthe apparent coherence of the beam. We alsoshow the result of phase object imaging usingcoherent diffractive imaging with a harmonicsource. To our knowledge, this if the first timesuch result has been achieved. The rest of thedissertation present new lensless imaging 3Dtechniques using harmonic sources. The first ofthe last two experiments shown is a lenslesssingle shot stereo 3D technique. It is the first oneallowing a 3D reconstruction from a singleacquisition, with a nanometer spatial resolutionand a femtosecond temporal resolution, withoutusing \textit{a priori} knowledge of the samplestudied. This method has a vast spectrum ofapplication and is particularly interesting for thestructural study of biological sample sensitive toradiation damage and for the study of nonreversibledynamical phenomena in 3D.Furthermore, this can easily be implemented inFELs and synchrotrons to reach even betterspatial resolution. The second 3D experimentshown in this thesis is a proof of concept ofcryptotomography using a high harmonic sourcein a low flux regime. To reconstruct the 3Dvolume of the sample, cryptotomographie usesdiffraction pattern acquired for unknown sampleorientations and therefore non-classified. Thelow flux regime used here simulate the flux of aharmonic source generated in the water window.We conclude from this experiment that, with theproper experimental conditions, the diffractionsignal is sufficient to allow the classification byorientation of the diffraction patterns. Withenough diffraction pattern and angles of thesample recorded, we can achieve a 3Dreconstruction of the sample. This result impliesthat the cryptotomography of biological objectsusing a water window harmonic source ispossible.
32

3D ultrafast echocardiography : toward a quantitative imaging of the myocardium. / Echocardiographie 3D ultrarapide du cœur : vers une imagerie quantitative du myocarde

Finel, Victor 15 November 2018 (has links)
L’objectif de cette thèse de doctorat était de développer l’échographie ultrarapide 3D du cœur, plus particulièrement dans le but de caractériser le muscle cardiaque. A cet effet, un échographe ultrarapide assemblé dans notre laboratoire a été utilisé. Dans la première partie de cette thèse, un mode d’imagerie temps-réel a été développé pour faciliter l’imagerie in-vivo en utilisant ce scanner, ainsi que des outils de visualisation 3D et 4D. Par la suite, l’imagerie 3D du tenseur de rétrodiffusion a été développée pour analyser l’orientation des fibres musculaires du cœur de manière non-invasive au cours du cycle cardiaque. Des résultats obtenus sur un volontaire avant et après la contraction cardiaque ont été obtenus. De plus, les effets indésirables du mouvement axial ont été étudiés, et une méthode d’estimation de la vitesse axiale et de correction des aberrations induites a été proposée et appliquée sur l’homme. Cette technique pourrait devenir un outil intéressant de diagnostic et quantification de la désorganisation des fibres musculaires dans le cadre de cardiomyopathies hypertrophiques. De plus, l’échographie ultrarapide 3D a été utilisée pour visualiser la propagation dans les parois du cœur d’ondes de cisaillement générées naturellement au cours du cycle cardiaque, et un algorithme pour déterminer leurs vitesses a été développé. Cette technique a été validée grâce à des simulations numériques puis appliquée sur deux volontaires sains, pendant les phases de contraction et relaxation du myocarde. Etant donné que la vitesse des ondes de cisaillement est directement reliée à la rigidité du cœur, cette méthode pourrait permettre d’estimer la capacité du cœur à de contracter et à se relâcher, qui sont des paramètres important pour son fonctionnement. Enfin, l’activation de la contraction cardiaque de cœurs de rats isolés a été imagée à haute cadence et en 3D dans le but d’analyser la synchronisation de la contraction. Les délais d’activation mécanique ont pu correctement être quantifiés lors du rythme naturel du cœur, de stimulations électriques extérieures ainsi qu’en hypothermie. Ensuite, la faisabilité de la technique en 2D sur des cœurs humains de manière non-invasive a été étudiée et appliquée sur des fœtus et des adultes. Cette technique d’imagerie pourrait aider la caractérisation d’arythmies et améliorer leur traitement. En conclusion, nous avons introduit dans ces travaux de thèse trois nouvelles modalités d’imagerie ultrarapide 3D permettant de quantifier des propriétés structurelles et fonctionnelles du myocarde qui jusqu’ici ne pouvaient pas être imagée en échocardiographie. L’imagerie 3D ultrarapide est une modalité très prometteuse, non ionisante, transportable et qui pourrait améliorer fortement dans le futur le diagnostic et la prise en charge des patients. / The objectives of this PhD thesis were to develop 3D ultrafast ultrasound imaging of the human heart toward the characterization of cardiac tissues. In order to do so, a customized, programmable, ultrafast scanner built in our group was used. In the first part of this thesis, a real-time imaging sequence was developed to facilitate in-vivo imaging using this scanner, as well as dedicated 3D and 4D visualization tools. Then, we developed 3D Backscatter Tensor Imaging (BTI), a technique to visualize the muscular fibres orientation within the heart wall non-invasively during the cardiac cycle. Applications on a healthy volunteer before and after cardiac contraction was shown. Moreover, the undesired effects of axial motion on BTI were studied, and a methodology to estimate motion velocity and reduce the undesired affects was introduced and applied on a healthy volunteer. This technique may become an interesting tool for the diagnosis and quantification of fibres disarrays in hypertrophic cardiomyopathies. Moreover, 3D ultrafast ultrasound was used to image the propagation of naturally generated shear waves in the heart walls, and an algorithm to determine their speed was developed. The technique was validated in silico and the in vivo feasibility was shown on two healthy volunteers, during cardiac contraction and relaxation. As the velocity of shear waves is directly related to the rigidity of the heart, this technique could be a way to assess the ability of the ventricle to contract and relax, which is an important parameter for cardiac function evaluation. Finally, the transient myocardial contraction was imaged in 3D on isolated rat hearts at high framerate in order to analyse the contraction sequence. Mechanical activation delays were successfully quantified during natural rhythm, pacing and hypothermia. Then, the feasibility of the technique in 2D on human hearts non-invasively was investigated. Applications on foetuses and adults hearts were shown. This imaging technique may help the characterization of cardiac arrhythmias and thus improve their treatment. In conclusion, we have introduced in this work three novel 3D ultrafast imaging modalities for the quantification of structural and functional myocardial properties. 3D ultrafast imaging may become an important non-ionizing, transportable diagnostic tool that may improve the patient care at the bed side.
33

From 2D to 3D cardiovascular ultrafast ultrasound imaging : new insights in shear wave elastography and blood flow imaging / De l'imagerie échographique ultrarapide cardiovasculaire 2D vers le 3D : nouvelles perspectives en élastographie par des ondes de cisaillement et de l'imagerie du flux sanguin

Correia, Mafalda Filipa Rodrigues 22 November 2016 (has links)
Ces travaux de thèse portent sur le développement de nouvelles modalités d’imagerie cardiovasculaire basé sur l’utilisation de l'imagerie ultrarapide 2D et 3D. Les modalités d’imagerie développées dans cette thèse appartiennent au domaine de de l’élastographie par onde de cisaillement et de l'imagerie Doppler des flux sanguins.Dans un premier temps, la technique de l’élastographie par onde de cisaillement du myocarde a été développée pour les applications cliniques. Une approche d'imagerie non-linéaire a été utilisée pour améliorer l’estimation de vitesse des ondes de cisaillement (ou la rigidité des tissus cardiaques) de manière non invasive et localisée. La validation de cette nouvelle approche de « l’imagerie par sommation cohérente harmonique ultrarapide » a été réalisée in vitro et la faisabilité in vivo a été testée chez l’humain. Dans un second temps, nous avons utilisé cette technique sur des patients lors de deux essais cliniques, chacun ciblant une population différente (adultes et enfants). Nous avons étudié la possibilité d’évaluer quantitativement la rigidité des tissus cardiaques par élastographie chez des volontaires sains, ainsi que chez des malades souffrant de cardiomyopathie hypertrophique. Les résultats ont montré que l’élastographie pourrait devenir un outil d'imagerie pertinent et robuste pour évaluer la rigidité du muscle cardiaque en pratique clinique. Par ailleurs, nous avons également développé une nouvelle approche appelée « imagerie de tenseur élastique 3-D » pour mesurer quantitativement les propriétés élastiques des tissus anisotropes comme le myocarde. Ces techniques ont été testées in vitro sur des modèles de de gels isotropes transverses. La faisabilité in vivo de l’élastographie par onde cisaillement à trois-dimensions a été également évaluée sur un muscle squelettique humain.D'autre part, nous avons développé une toute nouvelle modalité d’imagerie ultrasonore des flux coronariens basée sur l’imagerie Doppler ultrarapide. Cette technique nous a permis d'imager la circulation coronarienne avec une sensibilité élevée, grâce notamment au développement d’un nouveau filtre adaptatif permettant de supprimer le signal du myocarde en mouvement, basé sur la décomposition en valeurs singulières (SVD). Des expériences à thorax ouvert chez le porc ont permis d'évaluer et de valider notre technique et les résultats ont montré que la circulation coronaire intramurale, peut être évaluée sur des vaisseaux de diamètres allant jusqu’à 100 µm. La faisabilité sur l’homme a été démontrée chez l’enfant en imagerie clinique transthoracique.Enfin, nous avons développé une nouvelle approche d’imagerie des flux sanguins, « l’imagerie ultrarapide 3-D des flux», une nouvelle technique d'imagerie quantitative des flux. Nous avons démontré que cette technique permet d’évaluer le débit volumétrique artériel directement en un seul battement cardiaque, indépendamment de l'utilisateur. Cette technique a été mise en place à l'aide d'une sonde matricielle 2-D et d’un prototype d’échographe ultrarapide 3-D développé au sein du laboratoire. Nous avons évalué et validé notre technique in vitro sur des fantômes artériels, et la faisabilité in vivo a été démontrée sur des artères carotides humaines. / This thesis was focused on the development of novel cardiovascular imaging applications based on 2-D and 3-D ultrafast ultrasound imaging. More specifically, new technical and clinical developments of myocardial shear wave elastography and ultrafast blood flow imaging are presented in this manuscript.At first, myocardial shear wave elastography was developed for transthoracic imaging and improved by a non-linear imaging approach to non-invasively and locally assess shear wave velocity measurements, and consequently tissue stiffness in the context of cardiac imaging. This novel imaging approach (Ultrafast Harmonic Coherent Compounding) was tested and validated in-vitro and the in vivo feasibility was performed in humans for biomechanical evaluation of the cardiac muscle wall, the myocardium. Then, we have translated shear wave elastography to the clinical practice within two clinical trials, each one with a different population (adults and children). In both clinical trials, we have studied the capability of shear wave elastography to assess quantitatively myocardial stiffness in healthy volunteers and in patients suffering from hypertrophic cardiomyopathy. The results in the adult population indicated that shear wave elastography may become an effective imaging tool to assess cardiac muscle stiffness in clinical practice and help the characterization of hypertrophic cardiomyopathy. Likewise, we have also translated Shear Wave Elastography into four-dimensions and we have developed a new approach to map tissue elastic anisotropy in 3-D. 3-D Elastic Tensor Imaging allowed us to estimate quantitatively in a single acquisition the elastic properties of fibrous tissues. This technique was tested and validated in vitro in transverse isotropic models. The in-vivo feasibility of 3D elastic tensor imaging was also assessed in a human skeletal muscle.In parallel, we have developed a novel imaging technique for the non-invasive and non-radiative imaging of coronary circulation using ultrafast Doppler. This approach allowed us to image blood flow of the coronary circulation with high sensitivity. A new adaptive filter based on the singular value decomposition was used to remove the clutter signal of moving tissues. Open-chest swine experiments allowed to evaluate and validate this technique and results have shown that intramural coronary circulation, with diameters up to 100 µm, could be assessed. The in-vivo transthoracic feasibility was also demonstrated in humans in pediatric cardiology.Finally, we have developed a novel imaging modality to map quantitatively the blood flow in 3-D: 3-D ultrafast ultrasound flow imaging. We demonstrated that 3-D ultrafast ultrasound flow imaging can assess non-invasively, user-independently and directly volumetric flow rates in large arteries within a single heartbeat. We have evaluated and validated our technique in vitro in arterial phantoms using a 2-D matrix-array probe and a customized, programmable research 3-D ultrafast ultrasound system, and the in-vivo feasibility was demonstrated in human carotid arteries.
34

Semiautomated 3D liver segmentation using computed tomography and magnetic resonance imaging

Gotra, Akshat 08 1900 (has links)
Le foie est un organe vital ayant une capacité de régénération exceptionnelle et un rôle crucial dans le fonctionnement de l’organisme. L’évaluation du volume du foie est un outil important pouvant être utilisé comme marqueur biologique de sévérité de maladies hépatiques. La volumétrie du foie est indiquée avant les hépatectomies majeures, l’embolisation de la veine porte et la transplantation. La méthode la plus répandue sur la base d'examens de tomodensitométrie (TDM) et d'imagerie par résonance magnétique (IRM) consiste à délimiter le contour du foie sur plusieurs coupes consécutives, un processus appelé la «segmentation». Nous présentons la conception et la stratégie de validation pour une méthode de segmentation semi-automatisée développée à notre institution. Notre méthode représente une approche basée sur un modèle utilisant l’interpolation variationnelle de forme ainsi que l’optimisation de maillages de Laplace. La méthode a été conçue afin d’être compatible avec la TDM ainsi que l' IRM. Nous avons évalué la répétabilité, la fiabilité ainsi que l’efficacité de notre méthode semi-automatisée de segmentation avec deux études transversales conçues rétrospectivement. Les résultats de nos études de validation suggèrent que la méthode de segmentation confère une fiabilité et répétabilité comparables à la segmentation manuelle. De plus, cette méthode diminue de façon significative le temps d’interaction, la rendant ainsi adaptée à la pratique clinique courante. D’autres études pourraient incorporer la volumétrie afin de déterminer des marqueurs biologiques de maladie hépatique basés sur le volume tels que la présence de stéatose, de fer, ou encore la mesure de fibrose par unité de volume. / The liver is a vital abdominal organ known for its remarkable regenerative capacity and fundamental role in organism viability. Assessment of liver volume is an important tool which physicians use as a biomarker of disease severity. Liver volumetry is clinically indicated prior to major hepatectomy, portal vein embolization and transplantation. The most popular method to determine liver volume from computed tomography (CT) and magnetic resonance imaging (MRI) examinations involves contouring the liver on consecutive imaging slices, a process called “segmentation”. Segmentation can be performed either manually or in an automated fashion. We present the design concept and validation strategy for an innovative semiautomated liver segmentation method developed at our institution. Our method represents a model-based approach using variational shape interpolation and Laplacian mesh optimization techniques. It is independent of training data, requires limited user interactions and is robust to a variety of pathological cases. Further, it was designed for compatibility with both CT and MRI examinations. We evaluated the repeatability, agreement and efficiency of our semiautomated method in two retrospective cross-sectional studies. The results of our validation studies suggest that semiautomated liver segmentation can provide strong agreement and repeatability when compared to manual segmentation. Further, segmentation automation significantly shortens interaction time, thus making it suitable for daily clinical practice. Future studies may incorporate liver volumetry to determine volume-averaged biomarkers of liver disease, such as such as fat, iron or fibrosis measurements per unit volume. Segmental volumetry could also be assessed based on subsegmentation of vascular anatomy.
35

Development of Imaging Mass Spectrometry Analysis of Lipids in Biological and Clinically Relevant Applications

Patterson, Nathan Heath 04 1900 (has links)
La spectrométrie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employée dans plusieurs domaines et peut analyser des mélanges complexes. L’imagerie par spectrométrie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectrométrie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions détectés. Jusqu’à présent, les échantillons les plus étudiés en IMS sont des sections tissulaires végétales ou animales. Parmi les molécules couramment analysées par l’IMS, les lipides ont suscité beaucoup d'intérêt. Les lipides sont impliqués dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rôles, comme celui de réguler des événements cellulaires. Considérant l’implication des lipides dans la biologie et la capacité du MALDI IMS à les analyser, nous avons développé des stratégies analytiques pour la manipulation des échantillons et l’analyse de larges ensembles de données lipidiques. La dégradation des lipides est très importante dans l’industrie alimentaire. De la même façon, les lipides des sections tissulaires risquent de se dégrader. Leurs produits de dégradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espèces lipidiques pouvant nuire à la précision des mesures d’abondance. Puisque les lipides oxydés sont aussi des médiateurs importants dans le développement de plusieurs maladies, leur réelle préservation devient donc critique. Dans les études multi-institutionnelles où les échantillons sont souvent transportés d’un emplacement à l’autre, des protocoles adaptés et validés, et des mesures de dégradation sont nécessaires. Nos principaux résultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydés et des lysophospholipides dans des conditions ambiantes, une diminution de la présence des lipides ayant des acides gras insaturés et un effet inhibitoire sur ses phénomènes de la conservation des sections au froid sous N2. A température et atmosphère ambiantes, les phospholipides sont oxydés sur une échelle de temps typique d’une préparation IMS normale (~30 minutes). Les phospholipides sont aussi décomposés en lysophospholipides sur une échelle de temps de plusieurs jours. La validation d’une méthode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athérosclérose est une maladie cardiovasculaire induite par l’accumulation de matériel cellulaire sur la paroi artérielle. Puisque l’athérosclérose est un phénomène en trois dimension (3D), l'IMS 3D en série devient donc utile, d'une part, car elle a la capacité à localiser les molécules sur la longueur totale d’une plaque athéromateuse et, d'autre part, car elle peut identifier des mécanismes moléculaires du développement ou de la rupture des plaques. l'IMS 3D en série fait face à certains défis spécifiques, dont beaucoup se rapportent simplement à la reconstruction en 3D et à l’interprétation de la reconstruction moléculaire en temps réel. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athérosclérose d’une carotide humaine et d’un modèle murin d’athérosclérose, nous avons élaboré des méthodes «open-source» pour la reconstruction des données de l’IMS en 3D. Notre méthodologie fournit un moyen d’obtenir des visualisations de haute qualité et démontre une stratégie pour l’interprétation rapide des données de l’IMS 3D par la segmentation multivariée. L’analyse d’aortes d’un modèle murin a été le point de départ pour le développement des méthodes car ce sont des échantillons mieux contrôlés. En corrélant les données acquises en mode d’ionisation positive et négative, l’IMS en 3D a permis de démontrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en évidence une localisation différentielle des acides gras libres, du cholestérol, des esters du cholestérol et des triglycérides. La segmentation multivariée des signaux lipidiques suite à l’analyse par IMS d’une carotide humaine démontre une histologie moléculaire corrélée avec le degré de sténose de l’artère. Ces recherches aident à mieux comprendre la complexité biologique de l’athérosclérose et peuvent possiblement prédire le développement de certains cas cliniques. La métastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie métastatique du cancer colorectal primaire, un des cancers le plus fréquent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectués avec l’histopathologie avec une marge d’erreur. Nous avons utilisé l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures moléculaires, nous avons pu déterminer un score histopathologique quantitatif et objectif et qui corrèle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifié des espèces lipidiques individuelles qui sont discriminants des différentes histologies du CRCLM et qui peuvent potentiellement être utilisées comme des biomarqueurs pour la détermination de la réponse à la thérapie. Plus spécifiquement, nous avons trouvé une série de plasmalogènes et sphingolipides qui permettent de distinguer deux différents types de nécrose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associé avec la réponse aux traitements chimiothérapiques, alors que l’UN est associé au fonctionnement normal de la tumeur. / Mass spectrometry is the measurement of the mass over charge ratio of ions. It is broadly applicable and capable of analyzing complex mixtures. Imaging mass spectrometry (IMS) is a branch of mass spectrometry that analyses ions across a surface while conserving their spatial organization on said surface. At this juncture, the most studied IMS samples are thin tissue sections from plants and animals. Among the molecules routinely imaged by IMS, lipids have generated significant interest. Lipids are important in disease and normal cell function as they form cell membranes and act as signaling molecules for cellular events among many other roles. Considering the potential of lipids in biological and clinical applications and the capability of MALDI to ionize lipids, we developed analytical strategies for the handling of samples and analysis of large lipid MALDI IMS datasets. Lipid degradation is massively important in the food industry with oxidized products producing a bad smell and taste. Similarly, lipids in thin tissue sections cut from whole tissues are subject to degradation, and their degradation products can introduce IMS artifacts and the loss of normally occurring species to degradation can skew accuracy in IMS measures of abundance. Oxidized lipids are also known to be important mediators in the progression of several diseases and their accurate preservation is critical. As IMS studies become multi-institutional and collaborations lead to sample exchange, the need for validated protocols and measures of degradation are necessary. We observed the products of lipid degradation in tissue sections from multiple mouse organs and reported on the conditions promoting and inhibiting their presence as well as the timeline of degradation. Our key findings were the increase in oxidized phospholipids and lysophospholipids from degradation at ambient conditions, the decrease in the presence of lipids containing unsaturations on their fatty acyl chains, and the inhibition of degradation by matrix coating and cold storage of sections under N2 atmosphere. At ambient atmospheric and temperature, lipids degraded into oxidized phospholipids on the time-scale of a normal IMS experiment sample preparation (within 30 min). Lipids then degraded into lysophospholipids’ on a time scale on the order of several days. Validation of sample handling is especially important when a greater number of samples are to be analyzed either through a cohort of samples, or analysis of multiple sections from a single tissue as in serial 3D IMS. Atherosclerosis is disease caused by accumulation of cellular material at the arterial wall. The accumulation implanted in the cell wall grows and eventually occludes the blood vessel, or causes a stroke. Atherosclerosis is a 3D phenomenon and serial 3D IMS is useful for its ability to localize molecules throughout the length of a plaque and help to define the molecular mechanisms of plaque development and rupture. Serial 3D IMS has many challenges, many of which are simply a matter of producing 3D reconstructions and interpreting them in a timely fashion. In this aim and using analysis of lipids from atherosclerotic plaques from a human carotid and mouse aortic sinuses, we described 3D reconstruction methods using open-source software. Our methodology provides means to obtain high quality visualizations and demonstrates strategies for rapid interpretation of 3D IMS datasets through multivariate segmentation. Mouse aorta from model animals provided a springboard for developing the methods on lower risk samples with less variation with interesting molecular results. 3D MALDI IMS showed localized phospholipid accumulation in the mouse aortic sinuses with correlation between separate positive and negative ionization datasets. Silver-assisted LDI imaging presented differential localization of free fatty acids, cholesterol / cholesterol esters, and triglycerides. The human carotid’s 3D segmentation shows molecular histologies (spatial groupings of imaging pixels with similar spectral fingerprints) correlating to the degree of arterial stenosis. Our results outline the potential for 3D IMS in atherosclerotic research. Molecular histologies and their 3D spatial organization, obtained from the IMS techniques used herein, may predict high-risk features, and particularly identify areas of plaque that have higher-risk of rupture. These investigations would help further unravel the biological complexities of atherosclerosis, and predict clinical outcomes. Colorectal cancer liver metastasis (CRCLM) is the metastatic disease of primary colorectal cancer, one of the most common cancers worldwide. CRC is a cancer of the endothelial lining of the colon or rectum. CRC itself is often cured with surgery, while CRCLM is more deadly and treated with chemotherapy with more limited efficacy. Prognosticating and assessment of tumors is performed using classical histopathology with a margin of error. We have used lipid IMS to identify the histological compartments and extract their signatures. Using these IMS signatures we obtained a quantitative and objective histopathological score that correlates with prognosis. Additionally, by dissecting out the lipid signatures we have identified single lipid moieties that are unique to different histologies that could potentially be used as new biomarkers for assessing response to therapy. Particularly, we found a series of plasmalogen and sphingolipid species that differentiate infarct-like and usual necrosis, typical of chemotherapeutic response and normal tumor function, respectively.
36

Experimental methodologies to explore 3D development of biofilms in porous media / Méthodologies expérimentales pour l'étude du développement 3D de biofilms en milieux poreux

Larue, Anne 27 March 2018 (has links)
Les biofilms sont des communautés microbiennes se développant sur des interfaces, en particulier solide-liquide, où les micro-organismes sont enrobés dans une matrice polymérique auto-sécrétée. Le mode de vie sous forme de biofilm est prédominant dans les milieux naturels (par e.g. la texture glissante des fonds de rivières, les dépôts visqueux des canalisations et la plaque dentaire) et confère aux micro-organismes un environnement propice à leur développement. Ceci est particulièrement vrai dans des milieux poreux qui, de part leur important ratio surface/volume, constituent des substrats favorables à la colonisation. Le cadre des biofilms en milieux poreux forme une complexité multi-physique d’ordre élevée dans laquelle interagissent des mécanismes physiques, chimiques et biologiques multi-échelles encore mal compris et très partiellement maîtrisés. La rétroaction entre l’écoulement, la distribution spatiale des microorganismes et le transport de nutriments (par diffusion et advection) en est un exemple. Le développement de biofilms en milieux poreux est au centre de multiples procédés d’ingénierie, tel que les bio-filtres, la bio-remédiation des sols, le stockage de CO2, et de problèmes médicaux comme les infections. Un verrou significatif à l’avancée des connaissances est la limitation des techniques exploratoires en métrologie et imagerie dans des milieux opaques. L’objectif principal de cette thèse est la proposition de méthodologies expérimentales reproductibles et robustes permettant l’étude de biofilms en milieux poreux. Un dispositif expérimental en conditions physiques et biologiques contrôlées est proposé. De plus, un protocole d’imagerie 3D basé sur la micro-tomographie à rayons X (MT RX) associé à l’utilisation d’un nouvel agent de contraste (sulfate de baryum et gel d’agarose), est validé afin de quantifier la distribution spatiale du biofilm. Dans un premier temps, la méthodologie MT RX est comparée à une des méthodes les plus utilisées pour la visualisation de biofilms : la microscopie photonique par fluorescence, ici biphotonique (MBP). Cette comparaison est réalisée pour des biofilms de Pseudomonas Aeruginosa développés dans des capillaires transparents en verre, ce qui facilite l’application des deux modalités. Dans un second temps, une étude des incertitudes liées à l’imagerie est réalisée à travers l’évaluation de différentes métriques (volume, surfaces 3D, épaisseurs) pour un fantôme d’imagerie et trois algorithmes de segmentation différents. Les analyses quantitatives montrent que le protocole de MT RX permet une visualisation du biofilm avec une incertitude d’environ 17%, ce qui est comparable à la MBP (14%). La reproductibilité et la robustesse de la méthodologie MT RX est démontrée. La troisième étape du travail de recherche permet d’aboutir au développement d’un bioréacteur innovant élaboré par fabrication additive et contrôlé par un système micro-fluidique de haute précision. Le dispositif expérimental que nous avons conçu permet de suivre en temps réel l’évolution des propriétés de transport (perméabilité effective), les concentrations en O2 et le détachement de biofilm par spectrophotométrie ; ceci pour des conditions hydrodynamiques contrôlées. Notre méthodologie permet d’étudier l’influence de paramètres biophysiques sur la colonisation du milieu poreux, par exemple l’influence du débit ou de la concentration de nutriments sur le développement temporel du biofilm. En conclusion, ce travail de thèse propose une méthodologie expérimentale reproductible et robuste pour la croissance contrôlée et l’imagerie 3D de biofilms en milieux poreux en apportant la versatilité du contrôle de la micro-architecture du milieu, de l’écoulement et des conditions biochimiques de culture. A notre connaissance, l’approche scientifique suivie et les dispositifs expérimentaux associés constitue la méthodologie la plus complète à ce jour, pour l’étude de biofilms en milieu poreux. / Biofilms are microbial communities developing at the interface between two phases, usually solidliquid, where the micro-organisms are nested in a self-secreted polymer matrix. The biofilm mode of growth is predominant in nature (for e.g. the slimy matter forming on rocks at river bottoms, the viscous deposit in water pipes or even dental plaque) and confers a suitable environment for the development of the micro-organisms. This is particularly the case for porous media which provide favourable substrates given their significant surface to volume ratio. The multi-physical framework of biofilms in porous media is highly complex where the mechanical, chemical and biological aspects interacting at different scales are poorly understood and very partially controlled. An example is the feedback mechanism between flow, spatial distribution of the micro-organisms and the transport of nutrient (by diffusion and advection). Biofilms developing in porous media are a key process of many engineering applications, for example biofilters, soil bio-remediation, CO2 storage and medical issues like infections. Progress in this domain is substantially hindered by the limitations of experimental techniques in metrology and imaging in opaques structures. The main objective of this thesis is to propose robust and reproducible experimental methodologies for the investigation of biofilms in porous media. An experimental workbench under controlled physical and biological conditions is proposed along with a validated 3D imaging protocol based on X-ray micro-tomography (XR MT) using a novel contrast agent (barium sulfate and agarose gel) to quantify the spatial distribution of the biofilm. At first, the XR MT-based methodology is compared to a commonly used techniques for biofilm observation: one or multiple photon excitation fluorescence microscopy, here two-photon laser scanning microscopy (TPLSM). This comparison is performed on Pseudomonas Aeruginosa biofilms grown in transparent glass capillaries which allows for the use of both imaging modalities. Then, the study of uncertainty associated to different metrics namely volume, 3D surface area and thickness, is achieved via an imaging phantom and three different segmentation algorithms. The quantitative analysis show that the protocol enables a visualisation of the biofilm with an uncertainty of approximately 17% which is comparable to TPLSM (14%). The reproducibility and robustness of the XR MT-based methodology is demonstrated. The last step of this work is the achievement of a novel bioreactor elaborated by additive manufacturing and controlled by a high-performance micro-fluidic system. The experimental workbench that we have designed enables to monitor in real-time the evolution of transport properties (effective permeability), O2 concentrations and biofilm detachment by spectrophotometry, all under controlled hydrodynamical conditions. Our methodology allows to investigate the influence of biophysical parameters on the colonisation of the porous medium, for example, the influence of flow rate or nutrient concentration on the temporal development of the biofilm. In conclusion, the thesis work proposes a robust and reproducible experimental methodology for the controlled growth and 3D imaging of biofilms in porous media; while providing versatility in the control of the substrate’s micro-architecture as well as on the flow and biochemical culture conditions. To our knowledge, the scientific approach followed, along with the experimental apparatus, form the most complete methodology, at this time, for the study of biofilms in porous media.
37

Analyse des hétérogénéités de microstructure et de microtexture héritées par transformation de phase β→α dans des pièces massives en alliage Ti-10V-2Fe-3Al : influence sur la dispersion des propriétés mécaniques / Analysis of microstructure and microtexture heterogeneities inherited by beta to alpha phase transformation in massive Ti-10V-2Fe-3Al alloy parts / influence on the dispersion of mechanical properties

Chini, Maria Rita 07 September 2018 (has links)
Les alliages de titane β-métastables comme le Ti-10V-2Fe-3Al se substituent progressivement aux alliages α/β dans les applications aéronautiques du fait de leur résistance spécifique améliorée. Leurs microstructures d'emploi sont cependant complexes et multi-échelles, constituées d'une matrice β (de grains millimétriques) partiellement transformée en nodules primaires αp (micrométriques) et en lamelles secondaires αs (sub-micrométriques). Les propriétés finales peuvent être très sensibles aux variations locales de microstructures et sont souvent non maîtrisées lors du forgeage de pièces massives. De plus la matrice β qui représente ~40% du volume et qui a un comportement élastique et plastique fortement anisotrope, comme la phase α, complique la compréhension des mécanismes de déformation en jeu. Le premier objectif de cette thèse est de mettre en œuvre des techniques de caractérisation multi-échelles (la diffraction des neutrons, l'imagerie électronique couplée à l'analyse d'image et l'EBSD, la reconstruction des microtextures de haute température β/αp) pour analyser efficacement la microstructure/texture des constituants β/αp/αs et caractériser leurs hétérogénéités au sein de demi-produits et de pièces obtenues par matriçage. Les résultats permettent d'analyser la fragmentation des grains β en sous-grains, les macrozones αp, le maintien de relation d'orientation entre β/αp et l'organisation des lamelles αs en colonies ou paniers tressés, en pointant les différences de taille de domaines révélés par la cristallographie et l'imagerie standard. Le second objectif est d'appliquer cette méthodologie à l'analyse de facies de rupture d'éprouvettes présentant un comportement singulier (en traction ou en fatigue) pour caractériser les configurations microstructurales à l'origine de l'amorçage de fissures. Cette analyse a principalement été réalisée par polissage manuel du faciès couplé à des acquisitions EBSD mais également en exploitant le potentiel de l'imagerie 3D par MEB-FIB (Focus Ion Beam) et la technique TKD (Transmission Kikuchi Diffraction) sur lame mince prélevée au niveau d'un site d'amorçage par FIB. Enfin, cette étude expérimentale a été complétée par une première approche en simulation micromécanique sur une microstructure modèle 100% β. L'objectif était d'évaluer l'influence de l’anisotropie élastique de la phase β sur la genèse de contraintes d'incompatibilités dans les régimes élastique et élasto-plastique. L'ensemble des résultats contribue à une meilleure compréhension des variations de propriétés mécaniques en lien avec la microstructure locale / The β-metastable titanium alloys such as Ti-10V-2Fe-3Al are gradually replacing α/β alloys in aeronautical applications thanks to their improved specific strength. However, their microstructures are complex and multi-scale, consisting of a β matrix (of millimetric grains) partially transformed into primary αp nodules (micrometric) and secondary αs lamellae (sub-micrometric). The final mechanical properties are very sensitive to local variations of the microstructure, which are not always fully controlled during forging of massive parts. Moreover, the β matrix, which represent 40% of the volume and whose elastic and plastic behavior is strongly anisotropic (like the α phase) complicates the understanding of the mechanisms of deformation. The first objective of this thesis was to efficiently characterize the microstructure/texture of the different constituents (β/αp/αs) and their heterogeneities within half-finished products and forged parts by using techniques of multi-scale characterization (neutron diffraction, electronic imaging coupled with image analysis and EBSD, reconstruction of high temperature microtextures β/αp). As a result the fragmentation of the β grains into subgrains, the αp macrozones, the destruction of the orientation relation between β/αp and the organization of the αs lamellae in colonies or basket weave was quantified and the differences in size of domains revealed by crystallography and by standard imaging were pointed out. The second objective is to apply this methodology to the analysis of fracture surfaces of samples exhibiting singular behavior (in tension or in fatigue) in order to characterize the microstructural configurations leading to early cracking. This analysis was mainly performed by manual polishing coupled with EBSD acquisitions but also by using 3D imaging by SEM-FIB (Focus Ion Beam) and TKD (Transmission Kikuchi Diffraction) technique on a thin foil FIB-extracted from the crack initiation site. Finally, this experimental study was completed by a micromechanical simulation on a 100% β model microstructure. The objective was to evaluate the influence of the elastic anisotropy of the β phase on the genesis of incompatibility stresses in the elastic and elasto-plastic regimes. The overall results contribute to a better understanding of the variations of mechanical properties related to the local microstructure
38

3D short fatigue crack investigation in beta titanium alloys using phase and diffraction contrast tomography / Caractérisation tridimensionnelle des fissures de fatigue courtes dans les alliages de titane métastable (béta) par tomographie en contraste de phase et de diffraction

Herbig, Michael 26 January 2011 (has links)
La tomographie en contraste de diffraction est une nouvelle technique non destructive d'imagerie synchrotron qui caractérise la microstructure et l'orientation des grains dans les matériaux polycristallins en trois dimensions (3D). En la combinant avec la tomographe par contraste de phase. Il est pour la première fois possible d'observer in situ la propagation 3D des fissures de fatigue courtes au sein d'un ensemble de grains entièrement caractérisé (orientation et forme). L'approche combinée, appelée « tomographie tri-dimensionnelle par rayons X des fissures courtes et de la microstructure »(T3DXFM), a été développée sur l’alliage de titane métastable "Beta21S". Une grande partie de ce travail porte sur le développement de la méthodologie T3DXFM. Dans le jeu de données combinées, chaque point de la surface de rupture 3D peut être associé à une structure de données multidimensionnelle contenant des variables décrivant l'orientation des grains, l'orientation locale de la surface de rupture ainsi que l'histoire de la propagation. La méthode utilise un maillage de surface composé de triangles qui décrit la fissure (en d'autres termes: la surface de rupture) dans l'état de propagation mesuré au dernier cycle de fatigue réalisé. Les orientations des grains, les différents fronts de la fissure, les vitesses de croissance locales ainsi que les joints de grains peuvent être visualisés en attribuant des couleurs à ce maillage. Des outils d'extraction des figures de pôle ont été créés et mis en œuvre. Un algorithme a été développé qui est capable de mesurer la vitesse de propagation locale 30 d'une fissure contenant des branchements. / X-Ray Diffraction Contrast Tomography (DCT) is a recently developed, non-destructive synchrotron imaging technique which characterizes microstructure and grain orientation in polycrystalline materials in three dimensions (3D). By combining it with propagation based phase contrast tomography (PCT) it is for the first lime possible to observe in situ the 3D propagation behavior of short fatigue cracks (SFCs) within a set of fully characterized grains (orientation and shape). The combined approach, termed 3D X-ray Tomography of short cracks and Microstructure (3DXTSM), has been developed on the metastable beta titanium alloy "Beta21S". A large part of this work deals with the development of the 3DXTSM methodology. In the combined dataset, each point on the 3D fracture surface can be associated with a multidimensional data structure containing variables describing the grain orientation, the local fracture surface normal and the propagation history. The method uses a surface mesh composed of triangles that describes the crack (in other words: the fracture surface) in the last propagation state measured. Grain orientations, crack fronts, local growth rates and grain boundaries can be visualized by assigning colors to this mesh. The data structure can be interrogated in a number of different ways. Tools for extracting pole figures and pole density distribution functions have been implemented. An algorithm was developed that is capable of measuring the 3D local growth rate of a crack containing branches. The accuracy of the grain boundaries as reconstructed with OCT was evaluated and the elastic constants of Beta21S were determined.
39

Visualisation Scientifique en médecine.<br />Application à la visualisation de l'anatomie et à la visualisation en épileptologie clinique

Dillenseger, Jean-Louis 17 June 2003 (has links) (PDF)
En médecine, le rôle de l'image est primordial. Depuis la renaissance, l'image a été un des vecteurs principaux de la transmission du savoir. Plus récemment, l'essor des techniques d'imageries tridimensionnelles n'a fait qu'étendre l'importance de l'image à la plupart des disciplines et des procédures médicales. Tout naturellement donc, la médecine a représenté un des domaines d'application privilégiés de la visualisation scientifique. Mes travaux de recherche s'inscrivent directement dans cette discipline de la visualisation scientifique et se présentent sous la forme de solutions de représentations originales apportées et associées à certaines problématiques médicales.<br />Pour cela, une réflexion sur l'outil de visualisation a été menée afin de proposer un cadre bien défini qui puisse guider l'élaboration d'un outil de représentation répondant à une discipline et à une problématique particulière. Le point le plus original de cette réflexion concerne un essai de formalisation de l'évaluation de la performance des outils de visualisation.<br />Deux grands domaines d'application ont justement permis de démontrer la pertinence de ce cadre général de la visualisation :<br />- La visualisation générale de l'anatomie avec, dans un premier temps, la conception d'un outil générique de visualisation de données médicale, le lancer de rayons multifonctions. Cet outil a été ensuite étendu selon deux axes de recherche, d'une part l'intégration de modèles de connaissances dans la procédure de synthèse d'images et d'autre part, l'imagerie interventionnelle et plus particulièrement des applications en urologie.<br />- Les apports de la visualisation pour l'interprétation des données recueillies sur le patient épileptique et plus particulièrement l'élaboration d'outils complémentaires permettant une analyse progressive des mécanismes et structures impliqués dans la crise.
40

Développement de modèles graphiques probabilistes pour analyser et remailler les maillages triangulaires 2-variétés

Vidal, Vincent 09 December 2011 (has links) (PDF)
Ce travail de thèse concerne l'analyse structurelle des maillages triangulaires surfaciques, ainsi que leur traitement en vue de l'amélioration de leur qualité (remaillage) ou de leur simplification. Dans la littérature, le repositionnement des sommets d'un maillage est soit traité de manière locale, soit de manière globale mais sans un contrôle local de l'erreur géométrique introduite, i.e. les solutions actuelles ne sont pas globales ou introduisent de l'erreur géométrique non-contrôlée. Les techniques d'approximation de maillage les plus prometteuses se basent sur une décomposition en primitives géométriques simples (plans, cylindres, sphères etc.), mais elles n'arrivent généralement pas à trouver la décomposition optimale, celle qui optimise à la fois l'erreur géométrique de l'approximation par les primitives choisies, et le nombre et le type de ces primitives simples. Pour traiter les défauts des approches de remaillage existantes, nous proposons une méthode basée sur un modèle global, à savoir une modélisation graphique probabiliste, intégrant des contraintes souples basées sur la géométrie (l'erreur de l'approximation), la qualité du maillage et le nombre de sommets du maillage. De même, pour améliorer la décomposition en primitives simples, une modélisation graphique probabiliste a été choisie. Les modèles graphiques de cette thèse sont des champs aléatoires de Markov, ces derniers permettant de trouver une configuration optimale à l'aide de la minimisation globale d'une fonction objectif. Nous avons proposé trois contributions dans cette thèse autour des maillages triangulaires 2-variétés : (i) une méthode d'extraction statistiquement robuste des arêtes caractéristiques applicable aux objets mécaniques, (ii) un algorithme de segmentation en régions approximables par des primitives géométriques simples qui est robuste à la présence de données aberrantes et au bruit dans la position des sommets, (iii) et finalement un algorithme d'optimisation de maillages qui cherche le meilleur compromis entre l'amélioration de la qualité des triangles, la qualité de la valence des sommets, le nombre de sommets et la fidélité géométrique à la surface initiale.

Page generated in 0.0481 seconds