• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 24
  • 21
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 37
  • 31
  • 28
  • 23
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Étude sur l'utilisation de liquides ioniques à base imidazolium pour l'extraction sélective de phosphopeptides

Sanon, Samantha Herntz 04 1900 (has links)
La phosphorylation des protéines constitue l’une des plus importantes modifications post-traductionnelles (PTMs) et intervient dans de multiples processus physiologiques tels, la croissance, la différenciation cellulaire, l’apoptose, etc. En dépit de son importance, l’analyse des phosphoprotéines demeure une tâche difficile en raison de leur nature dynamique (car la phosphorylation des protéines est un processus réversible) et de leur faible abondance relative. En effet, la détermination des sites de phosphorylation est souvent difficile car les phosphopeptides sont souvent difficiles à détecter par des méthodes d’analyse chromatographique classique et par spectrométrie de masse (MS). De récentes études ont démontré que les nombreuses méthodes d’enrichissement de phosphopeptides existantes ne sont pas complètes, et que le nombre total de phosphopeptides détectés ne chevauchent pas complètement ces méthodes. C’est pour cela qu’il existe une nécessité de combler les lacunes des méthodes d’enrichissement existantes afin d’avoir des analyses phosphoprotéomiques plus complètes. Dans cette étude, nous avons utilisé les liquides ioniques (LI), plus particulièrement les sels d’imidazolium, comme une technique d’enrichissement alternative, dans le but de favoriser une extraction sélective de phosphopeptides présents en solution. Les sels d’imidazolium ont donc été utilisés en raison de leurs propriétés physico-chimiques "facilement" ajustables selon la nature des substituants sur le noyau imidazolium et la nature de l’anion. Les sels de monoimidazolium et de bis-imidazolium possédant respectivement des chaînes linéaires à 4, 12 et 16 atomes de carbone et ayant différents anions ont été synthétisés et utilisés pour effectuer des extractions liquide-liquide et solide-liquide des phosphopeptides en solution. Dans un premier temps, des extractions liquide-liquide ont été réalisées en utilisant un liquide ionique (LI) ayant une chaine linéaire de 4 atomes de carbone. Ces extractions réalisées avec le bis(trifluoromethanesulfonyl) amide de 3-butyl-1-methylimidazolium (BMIM-NTf2) et l’hexafluorophosphate de 3-butyl-1-methylimidazolium (BMIM-PF6) n’ont pas montré une extraction notable du PPS comparativement au PN. Dans un deuxième temps, des extractions solide-liquide ont été réalisées en fonctionnalisant des particules solides avec des sels d’imidazolium possédant des chaines linéaires de 12 ou 16 atomes de carbone. Ces extractions ont été faites en utilisant un phosphopentapeptide Ac-Ile-pTyr-Gly-Glu-Phe-NH2 (PPS) en présence de 2 analogues acides non-phosphorylés. Il a été démontré que les sels d’imidazolium à chaine C12 étaient meilleurs pour extraire le PPS que les deux autres peptides PN (Ac-Ile-Tyr-Gly-Glu-Phe-NH2) et PE (Ac-Glu-Tyr-Gly-Glu-Phe-NH2) L’électrophorèse capillaire (CE) et la chromatographie liquide à haute performance couplée à la spectrométrie de masse (LC-MS) ont été utilisées pour quantifier le mélange des trois peptides avant et après extraction ; dans le but de mesurer la sélectivité et l’efficacité d’extraction de ces peptides par rapport à la composition chimique du liquide ionique utilisé. / Protein phosphorylation is one of the most important post-translational modifications because it is involved in multiple physiological processes such as growth, differentiation, apoptosis, etc. Despite its importance, the analysis of phosphoproteins remains a difficult task due to their dynamic nature (phosphorylation of proteins is a reversible process) and their low abundance. Indeed, the determination of phosphorylation sites is difficult because phosphopeptides are often difficult to detect by conventional chromatographic analysis and by mass spectrometric (MS) methods. Recent studies have shown that the existing methods of enrichment of phosphopeptides are not complete, and the total number of phosphopeptides detected does not overlap completely with those detected by these methods. The gaps in existing enrichment methods need to be filled in order to have more complete phosphoproteomic analyses. In the current study, ionic liquids (IL), specifically imidazolium salts, have been used in an alternative enrichment technique with potential for selective extraction of phosphopeptides from solution. Imidazolium salts were chosen because their physicochemical properties are readily adjustable depending on the nature of the substituent attached to the imidazolium core and the counter-anion. Monoimidazolium and bis-imidazolium salts with linear chains having respectively 4, 12, and 16 carbon atoms and with different anions were synthesized and used to carry out liquid-liquid and solid-liquid extractions of a phosphorylated peptide from a solution. At first, liquid-liquid extractions were carried out using an ionic liquid (IL) with a linear chain of 4 carbon atoms. These extractions performed with bis (trifluoromethanesulfonyl) amide 3-butyl-1-methylimidazolium (BMIM-NTf2) and hexafluorophosphate 3-butyl-1-methylimidazolium (BMIM-PF6) did not show a considerable extraction of PPS comparatively to the PN. Secondly, solid-liquid extractions were done by first functionalizing solid-phase particles with the imidazolium salts. The extractions were carried out using the phosphopentapeptide Ac-pTyr-Ile-Gly-Glu-Phe-NH2 (PPS) and its acidic non-phosphorylated analogues. It has been shown that the C12 chain imidazolium salts were better to extract PPS than the other two peptides PN (Ac-Ile-Tyr-Gly-Glu-Phe-NH2) and PE (Ac-Glu-Tyr-Gly-Glu-Phe-NH2). The extraction efficiency of these peptides was estimated by capillary electrophoresis (CE) and high performance liquid chromatography coupled with mass spectrometry (LC-MS).
92

(Ethynyl-)Ferrocenyl Phosphine Palladium Complexes and (Bis-)Phosphinoimidazol(e/ium) Compounds and their Application in Homogeneous Catalysis

Milde, Bianca 19 July 2012 (has links) (PDF)
Die vorliegende Dissertation beschäftigt sich mit der Synthese, der Charakterisierung und der Anwendung neuartiger Phosphane in homogenkatalytischen Reaktionen. Dabei wurden die Ferrocenyl- und Ferrocenylethinylphosphan-Palladium und Ferrocenylethinylphosphan-Ruthenium Komplexe in der Palladium-vermittelten Mizoroki-Heck- und Suzuki-Miyaura-Reaktion sowie der Ruthenium-katalysierten Synthese von β-Oxopropylestern verwendet. Der Schwerpunkt lag dabei auf der Untersuchung des Einflusses der elektronischen und räumlichen Eigenschaften der Phosphanliganden auf die Aktivität und Produktivität der entsprechenden Katalysatoren in den homogenkatalytischen Reaktionen. Weiterhin beschäftigt sich die vorliegende Arbeit mit der Synthese und Charakterisierung von funktionalisierten (Phosphino)Imidazol und (Phosphino)Imidazolium Salzen und deren Anwendung in der Suzuki-Miyaura-Reaktion. Dabei wurde neben der Untersuchung des Einflusses der Position der Phosphanylgruppe und der unterschiedlichen Substituenten ebenfalls die Auswirkung von elektronenziehenden und -schiebenden Gruppen am Phosphanrest untersucht. Die neutralen Mono- und Diphosphane wurden außerdem in der Kreuzkupplung von Arylhalogeniden und in der Synthese räumlich anspruchsvoller Biaryle verwendet. Des Weiteren wurden die (Phosphino)Imidazolium-Salze als Liganden in der Suzuki-Miyaura-Reaktion in ionischen Flüssigkeiten als Reaktionsmedium angewendet, um die Möglichkeit des Recyclings der Katalysatorphase zu untersuchen.
93

Nouveaux copolymères et nanostructures dérivés de liquides ioniques à base d'imidazoliums : applications en catalyse et comme additifs conducteurs ioniques / New copolymers and nanostructures derived from imidazolium based ionic liquids : applications in catalysis and as ionic conductor additive

Lambert, Romain 05 December 2016 (has links)
Des poly(liquides ioniques) (PILs) arrangés sous la forme de copolymères statistiques,de nanoparticules à chaine unique ou bien sous la forme de copolymères à blocs autoassemblés ont été employés comme précurseurs de carbènes N-hétérocycliques (NHC)s à des fins de catalyses organiques ou organométalliques. L’introduction d’anions acétate dans des unités PIL dérivés d’imidazolium permet la génération in situ de NHCs actifs en catalyse. Les nanoparticules composées d’une chaine unique polymère repliée sur elle-même (SCNP) ont été spécialement conçues selon deux stratégies impliquant, d’une part, une réaction d’autoquaternisation entre groupements fonctionnels antagonistes portés par la chaine et, d’autre part, une réaction de complexation organométallique à l’aide d’un sel de palladium. Dans lesdeux cas, les chaines polymères ont été obtenues par polymérisation contrôlée (méthode RAFT). Les copolymères à blocs amphiphiles comportant un bloc PIL fonctionnalisé par du palladium ont été synthétisés par polymérisation RAFT et auto-assemblés dans l’eau sous forme de micelles.Un effet de confinement des sites catalytiques a clairement été démontré à travers des réactions de catalyse pour les couplages de Suzuki et de Heck dans l’eau, avec un gain cinétique très net par rapport à des homologues non micellisés, en plus d’une grande facilité de recyclage de ces supports micellaires.Enfin, des copolymères à blocs à base de PIL-benzimidazolium à contre anion bis(trifluoromethane)-sulfonylimide de lithium ont été développés comme agents dopants conducteurs ioniques de matrices structurantes PS-b-PEO. Des mélanges configurés en films minces avec une quantité minimale d’agent dopant ont conduit dans certaines conditions à des valeurs optimales de conductivité ionique grâce à une nano structuration des films à longue distance. / Poly(ionic liquid)s (PILs) in the form of random copolymers, single chain nanoparticles(SCNPs), or self assembled block copolymers have been used as N-heterocyclic carbenes(NHCs) precursors for the purpose of organic and organometallic catalysis. Introducing acetate derivative counter anion in imidazolium based PIL units enable in situ generation of catalyticallyactive NHC. SCNPs have been specially designed along two strategies including, firstly, a self quaternization reaction involving two antagonists groups supported on to the polymer chain and,secondly, an organometallic complexation featuring palladium salt. Both polymeric precursors were obtained using RAFT as controlled polymerization method. Amphiphilic block copolymers composed of a PIL block functionalized by palladium have been synthesized by RAFT and self-assembled in water, leading to micellar structures. Confinement effect has been demonstrated through Suzuki and Heck coupling in water showing kinetic gain compared to molecular homologue in addition to an easier recycling method.Finally, PIL-benzimidazolium based block copolymers with lithium bis(trifluoromethane)-sulfonylimide anion have been developed as ionic conductor doping agent for PS-PEO matrix. Thin films blends with minimum doping agent amount led to optimum ionic conductivity owing tolong range order.
94

(Ethynyl-)Ferrocenyl Phosphine Palladium Complexes and (Bis-)Phosphinoimidazol(e/ium) Compounds and their Application in Homogeneous Catalysis: (Ethynyl-)Ferrocenyl Phosphine Palladium Complexes and (Bis-)Phosphinoimidazol(e/ium) Compounds and their Application in Homogeneous Catalysis

Milde, Bianca 09 July 2012 (has links)
Die vorliegende Dissertation beschäftigt sich mit der Synthese, der Charakterisierung und der Anwendung neuartiger Phosphane in homogenkatalytischen Reaktionen. Dabei wurden die Ferrocenyl- und Ferrocenylethinylphosphan-Palladium und Ferrocenylethinylphosphan-Ruthenium Komplexe in der Palladium-vermittelten Mizoroki-Heck- und Suzuki-Miyaura-Reaktion sowie der Ruthenium-katalysierten Synthese von β-Oxopropylestern verwendet. Der Schwerpunkt lag dabei auf der Untersuchung des Einflusses der elektronischen und räumlichen Eigenschaften der Phosphanliganden auf die Aktivität und Produktivität der entsprechenden Katalysatoren in den homogenkatalytischen Reaktionen. Weiterhin beschäftigt sich die vorliegende Arbeit mit der Synthese und Charakterisierung von funktionalisierten (Phosphino)Imidazol und (Phosphino)Imidazolium Salzen und deren Anwendung in der Suzuki-Miyaura-Reaktion. Dabei wurde neben der Untersuchung des Einflusses der Position der Phosphanylgruppe und der unterschiedlichen Substituenten ebenfalls die Auswirkung von elektronenziehenden und -schiebenden Gruppen am Phosphanrest untersucht. Die neutralen Mono- und Diphosphane wurden außerdem in der Kreuzkupplung von Arylhalogeniden und in der Synthese räumlich anspruchsvoller Biaryle verwendet. Des Weiteren wurden die (Phosphino)Imidazolium-Salze als Liganden in der Suzuki-Miyaura-Reaktion in ionischen Flüssigkeiten als Reaktionsmedium angewendet, um die Möglichkeit des Recyclings der Katalysatorphase zu untersuchen.:Table of Contents Bibliographische Beschreibung und Referat ii Präambel iii Table of Contents 1 List of Abbreviations 5 A Introduction 9 1 Homogeneous Catalysis 9 2 References 11 B State of Knowledge 13 1 Transition Metal-Catalyzed C,C Cross-Coupling Reactions 13 2 Mizoroki-Heck Reaction 16 3 Suzuki-Miyaura Reaction 23 4 β-Oxopropyl Ester Synthesis 29 5 Ferrocenyl Phosphines in C,C Cross-Coupling Reactions 33 6 Phosphino Imidazoles and their Application in C,C Cross-Coupling Reactions 35 7 Motivation 36 8 References 37 C Metallocenyl Phosphine Palladium Dichlorides: Synthesis, Electrochemistry and their Application in C,C Coupling Reactions 44 1 Introduction 44 2 Results and Discussion 45 2.1 Ligand Synthesis and Properties 45 2.2 Electrochemistry 47 2.3 Single Crystal X-ray Structure Determination 51 2.4 Catalytic Investigations 55 2.4.1 Mizoroki-Heck Catalysis 55 2.4.2 Suzuki-Miyaura Catalysis 56 3 Conclusions 58 4 Experimental Section 60 4.1 General Data 60 4.2 Instruments 60 4.3 Electrochemistry 60 4.4 Spectro-electrochemistry 61 4.5 Materials 61 4.6 General Procedure for the Synthesis of Phosphines 3 and 6 61 4.7 General Procedure for the Synthesis of the Seleno Phosphines 4 and 7 65 4.8 General Procedure for the Synthesis of the Palladium Complexes 9a – e and 10a – d 69 4.9 General Procedure for the Mizoroki-Heck Reaction 72 4.10 General Procedure for the Suzuki-Miyaura Reaction 73 4.11 Crystal Data for 4b 73 5 Supporting Information 73 6 Acknowledgement 77 7 References 77 D Fundamental Study of (Ferrocenylethynyl)phosphines: Correlation of Steric and Electronic Effects in C,C Cross-Coupling Reactions 81 1 Introduction 81 2 Results and Discussion 82 2.1 Synthesis, Reaction Chemistry and Characterization 82 2.2 C,C Cross-Coupling Reactions 95 2.2.1 Suzuki-Miyaura Reaction 95 2.2.2 Mizoroki-Heck Reaction 96 3 Conclusions 97 4 Experimental Section 99 4.1 General Data and Materials 99 4.2 Instruments 99 4.3 Electrochemistry 100 4.4 Spectro-electrochemistry 100 4.5 General Procedure for the Synthesis of Phosphines 3b – f 101 4.6 General Procedure for the Synthesis of Seleno Phosphines 4b – f 104 4.7 General Procedure for the Synthesis of Palladium Complexes 6e, 6f and 7a – f 106 4.8 Synthesis of [PdCl2(P(C≡CFc)(Cy)2)2][B(C6F5)4]2 ([7f][(B(C6F5)4)]2) 110 4.9 General Procedure for the Suzuki-Miyaura Reaction 110 4.10 General Procedure for the Mizoroki-Heck Reaction 110 4.11 Crystal Structure Determination 111 5 Supporting Information 112 6 Acknowledgement 114 7 References 114 E (Ethynylferrocenyl)phosphine Ruthenium Complexes in Catalytic β-Oxopropyl Benzoate Formation 119 1 Introduction 119 2 Experimental Section 120 2.1 General Procedure and Materials 120 2.2 General Procedure for the Synthesis of Ruthenium Complexes 3a – 3e and 10 121 2.3 Synthesis of (Et2N)P(C≡C-PPh2)2 (6) 124 2.4 Synthesis of P(C≡CFc)(C≡CPPh2)2 (9) 124 2.5 Synthesis of (RuCl2(η6-p-cymene))(FcC≡C)P(C≡CPPh2(RuCl2(η6-p-cymene)))2 (10) 125 2.6 General Procedure for the Catalytic Reactions 125 2.7 Crystal Structure Determination 126 3 Results and Discussion 127 4 Conclusions 135 5 Supporting Information 135 6 Acknowledgement 135 7 References 136 F Phosphino Imidazoles and Imidazolium Salts for Suzuki-Miyaura C,C Coupling Reactions 138 1 Introduction 138 2 Results and Discussion 139 2.1 Synthesis 139 2.2 Characterization 143 2.3 Catalysis 148 3 Conclusions 152 4 Experimental Section 154 4.1 General Procedures 154 4.2 Synthesis of 1-(4-iodophenyl)-4,5-dimethyl-1H-imidazole (3b) 155 4.3 Synthesis of 1-(4-ferrocenylphenyl)-1H-imidazole (5) 156 4.4 Synthesis of 1-(4-(ethynylferrocenyl)phenyl)-1H-imidazole (7) 156 4.5 Synthesis of 1-(4-(1,1’-biphenyl))-4,5-dimethyl-1H-imidazole (9) 157 4.6 General Synthesis Procedure for Phosphines 11a – f 157 4.7 General Procedure for the Synthesis of Seleno Phosphines 11a-Se – f-Se 165 4.8 General Procedure for the Synthesis of Imidazolium Salts 16a – 16d 169 4.9 Synthesis of 1-phenyl-2-(diphenylphosphino)-3-n-octyl-4,5-dimethyl-1H-imidazolium hexafluorophosphate (17a) 171 4.10 Synthesis of 1-phenyl-2-(dicyclohexylphosphino)-3-n-octyl-4,5-dimethyl-1H-imidazolium hexafluorophosphate (17b) 172 4.11 Synthesis of [(1-(4-Br-C6H4)-cC3H2N2-3-n-Bu)2PdI2] (19) 173 4.12 Synthesis of 1-(4-(diphenylphosphino)phenyl)-3-n-octyl-4,5-dimethyl-1H-imidazolium hexafluorophosphate (20) 173 4.13 General Procedure for the Suzuki-Miyaura Reaction 174 4.14 General Procedure for the Suzuki-Miyaura Reaction in Ionic Liquids 175 4.16 General Procedure for the Synthesis of Sterically Hindered Biaryls 175 4.17 Crystal Structure Determination 176 5 Supporting Information 177 6 Acknowledgement 180 7 References 180 G Imidazole Phosphines: Synthesis, Reaction Chemistry and Their Use in Suzuki-Miyaura C,C Cross-Coupling Reactions 184 1 Introduction 184 2 Results and Discussion 185 2.1 Synthesis and Characterization of Phosphino Imidazoles and Metallamacrocycles 185 2.2 Suzuki-Miyaura C,C Cross-Coupling Reactions 193 3 Conclusions 196 4 Experimental Section 197 4.1 General Procedures 197 4.2 Synthesis of 1-(4-(diphenylphosphino)phenyl)-4,5-dimethyl-1H-imidazole (4a) 198 4.3 Synthesis of 1-(4-(dicyclohexylphosphino)phenyl)-4,5-dimethyl-1H-imidazole (4b) 199 4.4 General Synthesis Procedure for Phosphines 6a – f 199 4.5 Synthesis of [Pd(1-(4-PPh2-C6H4)-2-PFur2-4,5-Me2-1H-C3N2)Cl2]2 (8) 204 4.6 Synthesis of [Pt(dppf)(C≡C-C6H4-4-PPh2)2] (11) 204 4.7 Synthesis of [Pt(dppf)(C≡C-C6H4-4-PPh2)2PtCl2)]2 (13) 205 4.8 General Procedure for the Suzuki-Miyaura Reaction 205 4.9 General Procedure for the Suzuki-Miyaura Coupling of Aryl Chlorides 206 4.10 General Procedure for the Synthesis of Sterically Hindered Biaryls 206 4.11 Crystal Structure Determination 206 5 Acknowledgement 207 6 Supporting Information 208 7 References 208 H Summary 211 Acknowledgement/Dank 219 Publications, Oral Presentations, Poster 220 Publications 220 Oral Presentations 221 Posters 221 Curriculum Vitae 223 Selbstständigkeitserklärung 224 Appendix 225
95

Synthesis and Physical Properties of Tunable Aryl Alkyl Ionic Liquids (TAAILs) Comprising Imidazolium Cations Blocked with Methyl-, Propyl- and Phenyl-Groups at the C2 Position

Biller, Harry, Strassner, Thomas 22 February 2024 (has links)
Imidazolium-based ionic liquids are very popular for different applications because of their low viscosity and melting point. However, the hydrogen atom at the C2 position of the imidazolium cation can easily be deprotonated by a base, resulting in a reactive carbene. If an inert ionic liquid is needed, it is necessary to introduce an unreactive alkyl or aryl group at the C2 position to prevent deprotonation. Tunable aryl alkyl ionic liquids (TAAILs) were first introduced by our group in 2009 and are characterized by a phenyl group at the N1 position, which offers the possibility to fine-tune the physicochemical properties by using different electron-donating or -withdrawing substituents. In this work, we present a new series of TAAILs where the C2 position is blocked by a methyl, propyl or phenyl group. For each of the blocking groups, the phenyl and three different phenyl derivatives (2-Me, 4-OMe, 2,4-F₂) are compared with respect to melting point, viscosity, conductivity and electrochemical window. In addition, the differences between blocked and unblocked TAAILs with regard to their electrochemical reduction potentials are investigated by quantum chemical methods.

Page generated in 0.0558 seconds