• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 33
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 106
  • 106
  • 97
  • 32
  • 28
  • 28
  • 18
  • 15
  • 14
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Electrical impedance tomography for void fraction measurements of harsh two-phase flows : prototype development and reconstruction techniques / Tomographie d'impédance électrique pour la mesure du taux de vide d'écoulements sous pression : developpement d'un prototype et de techniques de reconstruction

Dupre, Antoine 10 October 2017 (has links)
Les récentes avancées technologiques des matériels d’acquisition de données ont permis de réduire le temps d’acquisition d’image en tomographie électrique, ce qui offre des opportunités pour l’étude des écoulements diphasiques transitoires. Parmi les nombreux atouts de cette technique d’imagerie d’écoulements diphasiques, on peut citer son caractère non-intrusif, sa haute fréquence d’acquisition et son faible coût. Un ensemble d’électrodes placées sur le pourtour d’une conduite servent à transmettre une excitation électrique au milieu et à le sonder. Ainsi, la distribution des phases perturbe les champs électriques de manière caractéristique. L’objectif de cette thèse est d’évaluer le potentiel de la tomographie d’impédance électrique rapide. La première étape consiste au développement d’un prototype de capteur et à l’évaluation de sa performance par des essais simplifiés. L’architecture du système utilise un contrôle en potentiel du signal d’excitation et ne nécessite donc pas d’implémenter un module de conversion tension-courant. La seconde étape est la reconstruction de l’image à partir des données mesurées. L’approche qui a été considérée est de supposer une image approchée de la distribution des phases grâce à une identification du régime d’écoulement. Ainsi, le défi de résoudre un problème inverse fortement non-linéaire est simplifié. Une méthode d’identification de régimes d’écoulements horizontaux eau-air a été élaborée avec un module de tomographie de capacitance électrique et une boucle d’essais hydrauliques déjà éprouvés. Cette technique est en cours d’adaptation au prototype de tomographie d’impédance électrique rapide et en amélioration grâce à l’inclusion des régimes d’écoulements verticaux. En parallèle, une méthode de reconstruction d’image a été développée, basée sur l’algorithme NOSER et un postulat pseudo-2D. L’analyse des images reconstruites à partir d’un set d’expériences de référence procure un aperçu des avantages et des défauts de la méthode et du prototype. / Recent developments with data acquisition equipment have reduced the time required for image acquisition with electrical tomography, thereby bringing new opportunities for the study of fast-evolving two-phase flows. Amongst the numerous advantages of this imaging technique for multiphase flow related research are non-intrusiveness, high acquisition rates, low-cost and improved safety. A set of electrodes placed on the periphery of the pipe to be imaged is used to impose an electrical excitation and measure the system response. The distribution of phases inside the study volume distorts the electrical field in a characteristic manner. The objective of this thesis is to assess the potential of electrical impedance tomography at high acquisition rate. The first stage consists in developing a prototype sensor and assessing its performance with simplistic experiments. The system architecture employs voltage control of the excitation and therefore does not require the implementation of the conventional voltage-to-current converter module. A novel data collection method, the full scan strategy, is considered and provides correcting factors for the parasitic impedances in the system. The second stage is the image reconstruction from the measurement data. The approach considered in the thesis is to assume that flow regime identification techniques may provide valuable information on the phase distribution that can be injected in the inverse problem for imaging, thereby tackling the challenge of the non-linearity of the inverse problem. A method for horizontal air-water flow regime identification has been elaborated with an electrical capacitance tomography sensor and multiphase flow rig tried and tested. It is being adapted to the fast electrical impedance tomography prototype and upgraded to include vertical flow regimes. In parallel, an image reconstruction method has been developed based on the NOSER algorithm and a pseudo-2D postulate. The analysis of the reconstructed images for a set of benchmark experiments provide insights on the merits and deficiencies of the algorithm and of the prototype.
62

Electrical Conductivity Imaging via Boundary Value Problems for the 1-Laplacian

Veras, Johann 01 January 2014 (has links)
We study an inverse problem which seeks to image the internal conductivity map of a body by one measurement of boundary and interior data. In our study the interior data is the magnitude of the current density induced by electrodes. Access to interior measurements has been made possible since the work of M. Joy et al. in early 1990s and couples two physical principles: electromagnetics and magnetic resonance. In 2007 Nachman et al. has shown that it is possible to recover the conductivity from the magnitude of one current density field inside. The method now known as Current Density Impedance Imaging is based on solving boundary value problems for the 1-Laplacian in an appropriate Riemann metric space. We consider two types of methods: the ones based on level sets and a variational approach, which aim to solve specific boundary value problem associated with the 1-Laplacian. We will address the Cauchy and Dirichlet problems with full and partial data, and also the Complete Electrode Model (CEM). The latter model is known to describe most accurately the voltage potential distribution in a conductive body, while taking into account the transition of current from the electrode to the body. For the CEM the problem is non-unique. We characterize the non-uniqueness, and explain which additional measurements fix the solution. Multiple numerical schemes for each of the methods are implemented to demonstrate the computational feasibility.
63

Development of Electrical Impedance Tomography Data Acquisition System and Deep Learning-Based Reconstruction Algorithms for Spatial Damage Detection

Li, Damond Michael 01 March 2024 (has links) (PDF)
Electrical impedance tomography (EIT) is a non-destructive, non-invasive, and non-radioactive imaging technique used for reconstructing the internal conductivity distribution of a sensing domain. Performing EIT often requires large, stationary benchtop equipment that can be expensive and impractical. Other researchers have attempted to make portable EIT systems, but they all rely on external computation for image reconstruction/data analysis. This study outlines the development of a low-cost, portable, and wireless EIT data acquisition (DAQ) system that is capable of independently performing image reconstructions on-board. With the proposed system, EIT can be performed on carbon fiber reinforced polymers to spatially locate damages. Since EIT reconstruction algorithms can be extremely computationally intensive, this study has also developed an alternative deep-learning algorithm that leverages the compressed-sensing technique to strategically train a neural network. The proposed neural network has not only achieved comparable results to traditional iterative algorithms, but it can do so in a fraction of the time.
64

Studies on Multifrequensy Multifunction Electrical Impedance Tomography (MfMf-EIT) to Improve Bio-Impedance Imaging

Bera, Tushar Kanti January 2013 (has links) (PDF)
Electrical Impedance Tomography (EIT) is a non linear inverse problem in which the electrical conductivity or resistivity distribution across a closed domain of interest is reconstructed from the surface potentials measured at the domain boundary by injecting a constant sinusoidal current through an array of surface electrodes. Being a non-invasive, non-radiating, non-ionizing, portable and inexpensive methodology, EIT has been extensively studied in medical diagnosis, biomedical engineering, biotechnology, chemical engineering, industrial and process engineering, civil and material engineering, soil and rock science, electronic industry, defense field, nano-technology and many other fields of applied physics. The reconstructed image quality in EIT depends mainly on the boundary data quality and the performance of the reconstruction algorithm used. The boundary data accuracy depends on the design of the practical phantoms, current injection method and boundary data measurement process and precision. On the other hand, the reconstruction algorithm performance is highly influenced by the mathematical modeling of the system, performance of the forward solver and Jacobian computation, inverse solver and the regularization techniques. Hence, for improving the EIT system performance, it is essential to improve the design of practical phantom, instrumentation and image reconstruction algorithm. As the electrical impedance of biological materials is a function of tissue composition and the frequency of applied ac signal, the better assessment of impedance distribution of biological tissues needs multifrequency EIT imaging. In medical EIT, to obtain a better image quality for a complex organ or a body part, accurate domain modelling with a large 3D finite element mesh is preferred and hence, the computation speed becomes very expensive and time consuming. But, the high speed reconstruction with improved image quality at low cost is always preferred in medical EIT. In this direction, a complete multifrequency multifunction EIT (MfMf-EIT) system is developed and multifrequency impedance reconstruction is studied to improve the bioimpedance imaging. The MfMf-EIT system consists of an MfMf-EIT instrumentation (MfMf-EITI), high speed impedance image reconstruction algorithms (IIRA), a Personal Computer (PC) and a number of practical phantoms with EIT sensors or electrodes. MfMf-EIT system and high speed IIRA are studied tested and evaluated with the practical phantoms and the multifrequency impedance imaging is improved with better image quality as well as fast image reconstruction. The MfMf-EIT system is also applied to the human subjects and the impedance imaging is studied for human body imaging and the system is evaluated. MfMf-EIT instrumentation (MfMf-EITI) consists of a multifrequency multifunction constant current injector (MfMf-CCI), multifrequency multifunction data acquisition system (MfMf DAS), a programmable electrode switching module (P-ESM) and a modified signal conditioner blocks (M-SCB) or data processing unit (DPU). MfMf-CCI, MfMf-DAS, P-ESM and M-SCBs are interfaced with a LabVIEW based data acquisition program (LV-DAP) controlled by a LabVIEW based graphical user interface (LV-GUI). LV-GUI controls the current injection and data acquisition with a user friendly, fast, reliable, efficient measurement process. The data acquisition system performance is improved by the high resolution NIDAQ card providing high precision measurement and high signal to noise ratio (SNR). MfMf-EIT system is developed as a versatile data acquisition system with a lot of flexibilities in EIT parameter selection that allows studying the image reconstruction more effectively. MfMf-EIT instrumentation controls the multifrequency and multifunctioned EIT experimentation with a number of system variables such as signal frequency, current amplitude, current signal wave forms and current injection patterns. It also works with either grounded load CCI or floating load CCI and collects the boundary data either in grounded potential form or differential form. The MfMf-EITI is futher modified to a battery based MfMf-EIT (BbMfMf-EIT) system to obtain a better patient safety and also to improve the SNR of the boundary data. MfMf-EIT system is having a facility of injecting voltage signal to the objects under test for conducting the applied potential tomography (APT). All the electronic circuit blocks in MfMf-EIT instrumentation are tested, evaluated and calibrated. The frequency response, load response, Fast Fourier Transform (FFT) studies and DSO analysis are conducted for studying the electronic performance and the signal quality of all the circuit blocks. They are all evaluated with both the transformer based power supply (TBPS) and battery based power supply (BBPS). MfMf-DAS, P-ESM and LV-DAP are tested and evaluated with digital data testing module (DDTM) and practical phantoms. A MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate 2D boundary data for assessing the 2D EIT inverse solvers and its image reconstruction accuracy. It is a MATLAB-based computer program which defines a phantom domain and its inhomogeneities to generate the boundary potential data by changing its geometric parameters. In MatVP2DEIT, the phantom diameter, domain discretization, inhomogeneity number, inhomogeneity geometry (shape, size and position), electrode geometry, applied current magnitude, current injection pattern, background medium conductivity, inhomogeneity conductivity all are set as the phantom variables and are chosen indipendently for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. A number of boundary data sets are generated with different phantom configurations and the resistivity images are reconstructed using EIDORS (Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software). Resistivity images are evaluated with the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed impedance images. MfMf-EIT system is studied, tested, evaluated with a number of practical phantoms eveloped with non-biological and biological materials and the multifrequency impedance imaging is improved. A number of saline phantoms with single and multiple inhomogeneities are developed and the boundary data profiles are studied and the phantom geometry is modified. NaCl-insulator phantoms and the NaCl-vegetable phantoms with different inhomogeneity configurations are developed and the multifrequency EIT reconstruction is studied with different current patterns, different current amplitudes and different frequencies using EIDORS as well as the developed IIRAs developed in MATLAB to evaluate the phantoms and MfMf-EIT system. Real tissue phantoms are developed with different chicken tissue backgrounds and high resistive inhomogeneities and the resistivity image reconstruction is studied using MfMf-EIT system. Chicken tissue phantoms are developed with chicken muscle tissue (CMTP) paste or chicken tissue blocks (CMTB) as the background mediums and chicken fat tissue, chicken bone, air hole and nylon cylinders are used as the inhomogeneity to obtained different phantom configurations. Resistivity imaging of all the real tissue phantoms is reconstructed in EIDORS and developed IIRAs with different current patterns, different frequencies and the images are evaluated by the image parameters to assess the phantoms as well as the MfMf-EIT system. Gold electrode phantoms are developed with thin film based flexible gold electrode arrays for improved bioimpedance and biomedical imaging. The thin film based gold electrode arrays of high geometric precision are developed on flexible FR4 sheet using electro-deposition process and used as the EIT sensors. The NaCl phantoms and real tissue phantoms are developed with gold electrode arrays and studied with MfMf-EIT system and and the resiulsts are compared with identical stainless steel electrode phantoms. NaCl phantoms are developed with 0.9% NaCl solution with single and multiple insulator or vegetable tissues as inhomogeneity. Gold electrode real tissue phantoms are also developed with chicken muscle tissues and fat tissues or other high resistive objects. The EIT images are reconstructed for the gold electrode NaCl phantoms and the gold electrode real tissue phantoms with different phantom geometries, different inhomogeneity configurations and different current patterns and the results are compared with identical SS electrode phantoms. High speed IIRAs called High Speed Model Based Iterative Image Reconstruction (HSMoBIIR) algorithms are developed in MATLAB for impedance image reconstruction in Electrical Impedance Tomography (EIT) by implementing high speed Jacobian calculation techniques using “Broyden’s Method (BM)” and “Adjoint Broyden’s Method (ABM)”. Gauss Newton method based EIT inverse solvers repeatitively evaluate the Jacobian (J) which consumes a lot of computation time for reconstruction, whereas, the HSMoBIIR with Broyden’s Methods (BM)-based accelerated Jacobian Matrix Calculators (JMCs) provides the high speed schemes for Jacobian (J) computation which is integrated with conjugate gradient scheme (CGS) for fast impedance reconstruction. The Broyden’s method based HSMoBIIR (BM-HSMoBIIR) and Adjoint Broyden’s method based HSMoBIIR (ABM-HSMoBIIR) algorithm are developed for high speed improved impedance imaging using BM based JMC (BM-JMC) and ABM-based JMC (ABM-JMC) respectively. Broyden’s Method based HSMoBIIR algorithms make explicit use of secant and adjoint information that can be obtained from the forward solution of the EIT governing equation and hence both the BM-HSMoBIIR and ABM-HSMoBIIR algorithms reduce the computational time remarkably by approximating the system Jacobian (J) successively through low-rank updates. The impedance image reconstruction is studied with BM-HSMoBIIR and ABM-HSMoBIIR algorithms using the simulated and practical phantom data and results are compared with a Gauss-Newton method based MoBIIR (GNMoBIIR) algorithm. The GNMoBIIR algorithm is developed with a Finite Element Method (FEM) based flexible forward solver (FFS) and Gauss-Newton method based inverse solver (GNIS) working with a modified Newton-Raphson iterative technique (NRIT). FFS solves the forward problem (FP) to obtain the computer estimated boundary potential data (Vc) data and NRIT based GNIS solve the inverse problem (IP) and the conductivity update vector [Δσ] is calculated by conjugate gradient search by comparing Vc measured boundary potential data (Vm) and using the Jacobian (J) matrix computed by the adjoint method. The conductivity reconstruction is studied with GNMoBIIR, BM-HSMoBIIR and ABM-HSMoBIIR algorithms using simulated data a practical phantom data and the results are compared. The reconstruction time, projection error norm (EV) and the solution error norm (Eσ) produced in HSMoBIIR algorithms are calculated and compared with GNMoBIIR algorithm. Results show that both the BM-HSMoBIIR and ABM-HSMoBIIR algorithms successfully reconstructs the conductivity distribution of the domain under test with its proper inhomogeneity and background conductivities for simulation as well as experimental studies. Simulated and practical phantom studies demonstrate that both the BM-HSMoBIIR and ABM-HSMoBIIR algorithms accelerate the impedance reconstruction by more than five times. It is also observed that EV and Eσ are reduced in both the HSMoBIIR algorithms and hence the image quality is improved. Noise analysis and convergence studies show that both the BM-HSMoBIIR and ABM-HSMoBIIR algorithms works faster and better in noisy conditions compared to GNMoBIIR. In low noise conditions, BM-HSMoBIIR is faster than to ABM-HSMoBIIR algorithm. But, in higher noisy environment, the ABM-HSMoBIIR is found faster and better than BM-HSMoBIIR. Two novel regularization methods called Projection Error Propagation-based Regularization (PEPR) and Block Matrix based Multiple Regularization (BMMR) are proposed to improve the image quality in Electrical Impedance Tomography (EIT). PEPR method defines the regularization parameter as a function of the projection error contributed by the mismatch (difference) between the data obtained from the experimental measurements (Vm) and calculated data (Vc). The regularization parameter in the reconstruction algorithm gets modified automatically according to the noise level in measured data and ill-posedness of the Hessian matrix. The L-2 norm of the projection error is calculated using the voltage difference and it is used to find the regularization parameter in each iteration in the reconstruction algorithm. In BMMR method, the response matrix (JTJ) obtained from the Jacobian matrix (J) has been partitioned into several sub-block matrices and the highest eigenvalue of each sub-block matrices has been chosen as regularization parameter for the nodes contained by that sub-block. The BMMR method preserved the local physiological information through the multiple regularization process which is then integrated to the ill-posed inverse problem to make the regularization more effective and optimum for all over the domain. Impedance imaging with simulated data and the practical phantom data is studied with PEPR and BMMR techniques in GNMoBIIR and EIDORS and the reconstructed images are compared with the single step regularization (STR) and Modified Levenberg Regularization (LMR). The projection error and the solution error norms are estimated in the reconstructions processes with PEPR and the BMMR methods and the results are compared with the errors estimated in STR and modified LMR techniques. Reconstructed images obtained with PEPR and BMMR are also studied with image parameters and contrast parameters and the reconstruction performance with PEPR and BMMR are evaluated by comparing the results with STR and modified LMR. PEPR and BMMR techniques are successfully implemented in the GNMoBIIR and EIDORS algorithms to improve the impedance image reconstruction by regularizing the solution domain in EIT reconstruction process. As the multifrequency EIT is always preferred in biological object imaging for better assessments of the frequency dependent bioimpedance response, multifrequency impedance imaging is studied with MfMf-EIT system developed for biomedical applications. MfMf-EIT system is studied, tested and evaluated with practical phantoms suitably developed for multifrequency impedance imaging within a wide range of frequency. Different biological materials are studied with electrical impedance spectroscopy (EIS) and a number of practical biological phantoms suitable for multifrequency EIT imaging are developed. The MfMf-EIT system is studied, tested and evaluated at different frequency levels with different current patterns using a number of NaCl phantoms with single, multiple and hybrid vegetable tissue phantoms as well as with chicken tissue phantoms. BbMfMf-EIT system is also studied and evaluated with the multifrequency EIT imaging using the developed biological phantoms. The developed MfMf-EIT system is applied on human body for impedance imaging of human anatomy. Impedance imaging of human leg and thigh is studied to visualize the muscle and bone tissues using different current patterns and different relative electrode positions. Ag/AgCl electrodes are attached to the leg and thigh using ECG gel and the boundary data are collected with MfMf-EIT EIT system by injecting a 1 mA and 50 kHz sinusoidal constant current with neighbouring and opposite current injection patterns. Impedance images of the femur bone of the human thigh and the tibia and fibula bones of the human leg along with the muscle tissue backgrounds are reconstructed in EIDORS and GNMoBIIR algorithms. Reconstructed resistivity profiles of bone and muscles are compared with the resistivity data profiles reported in the published literature. Impedance imaging of leg and thigh is studied with MfMf-EIT system for different current patterns, relative electrode positions and the images are evaluated to assess the system reliability. Battery based MfMf-EIT system (BbMfMf-EIT) is also studied for human leg and thigh imaging and it is observed that MfMf-EIT system and BbMfMf-EIT system are suitable for impedance imaging of human body imaging though the BbMfMf-EIT system increases the patiet safety. Therefore, the developed MfMf-EIT and BbMfMf-EIT systems are found quite suitable to improve the bio-impedance imaging in medical, biomedical and clinical applications as well as to study the anatomical and physiological status of the human body to diagnose, detect and monitor the tumors, lesions and a number of diseases or anatomical abnormalities in human subjects.
65

STRUCTURAL HEALTH MONITORING OF FILAMENT WOUND GLASS FIBER/EPOXY COMPOSITES WITH CARBON BLACK FILLER VIA ELECTRICAL IMPEDANCE TOMOGRAPHY

Akshay Jacob Thomas (7026218) 02 August 2019 (has links)
<div> <p>Fiber reinforced polymer composites are widely used in manufacturing advanced light weight structures for the aerospace, automotive, and energy sectors owing to their superior stiffness and strength. With the increasing use of composites, there is an increasing need to monitor the health of these structures during their lifetime. Currently, health monitoring in filament wound composites is facilitated by embedding piezoelectrics and optical fibers in the composite during the manufacturing process. However, the incorporation of these sensing elements introduces sites of stress concentration which could lead to progressive damage accumulation. In addition to introducing weak spots in the structure, they also make the manufacturing procedure difficult. </p> <p> </p> <p>Alternatively, nanofiller modification of the matrix imparts conductivity which can be leveraged for real time health monitoring with fewer changes to the manufacturing method. Well dispersed nanofillers act as an integrated sensing network. Damage or strain severs the well-connected nanofiller network thereby causing a local change in conductivity. The self-sensing capabilities of these modified composites can be combined with low cost, minimally invasive imaging modalities such as electrical impedance tomography (EIT) for damage detection. To date, however, EIT has exclusively been used for damage detection in planar coupons. These simple plate-like structures are not representative of real-world complex geometries. This thesis advances the state of the art in conductivity-based structural health monitoring (SHM) and nondestructive evaluation (NDE) by addressing this limitation of EIT. The current study will look into damage detection of a non-planar multiply connected domain – a filament-wound glass fiber/epoxy tube modified by carbon black (CB) filler. The results show that EIT is able to detect through holes as small as 7.94 mm in a tube with length-to-diameter ratio of 132.4 mm-to-66.2 mm (aspect ratio of 2:1). Further, the sensitivity of EIT to damage improved with decreasing tube aspect ratio. EIT was also successful in detecting sub-surface damage induced by low velocity impacts. These results indicate that EIT has much greater potential for composite SHM and NDE than prevailing work limited to planar geometries suggest.</p> </div> <br>
66

Determinação da PEEP ideal e evolução da função pulmonar por tomografia de impedância elétrica durante o intraoperatório de cirurgia eletiva / Determination of optimal PEEP by electrical impedance tomography during the intraoperative period

Pereira, Sérgio Martins 29 April 2019 (has links)
Introdução: A individualização da pressão positiva ao final da expiração (PEEP) pode reduzir a pressão de distensão e a formação de atelectasias em pacientes sendo submetidos a cirurgia abdominal eletiva. Objetivos: Titular a PEEP e comparar a mecânica respiratória de pacientes ventilados com PEEP titulada a pacientes ventilados com PEEP de 4 cmH2O. Após a extubação, comparar a formação de atelectasias. Métodos: Pacientes submetidos à cirurgia laparoscópica ou cirurgia aberta foram incluídos de forma não consecutiva, estratificada e randomizados em dois braços: PEEP titulada (PEEPT) e PEEP de 4 cmH2O (PEEP4). A PEEP foi titulada com tomógrafo de impedância elétrica (TIE). Dados de mecânica e três gasometrias foram coletadas durante o intraoperatório. Após extubação, os pacientes realizaram a uma tomografia computadorizada de tórax. Resultados: Vinte pacientes submetidos à cirurgia laparoscópica e vinte pacientes submetidos à cirurgia aberta foram incluídos. A mediana de PEEP titulada foi 12 cmH2O (10-14), com uma ampla variação de 6-16 (IC 95% 10-14). O uso da PEEP titulada determinou uma redução da pressão de distensão (p < 0,001), melhora da complacência (p < 0,001), melhora a oxigenação (p < 0,001) apenas dos pacientes de cirurgia laparoscópica e redução da massa de tecido pulmonar não-aerada após a extubação (P < 0,05). Conclusão: A PEEP individualizada apresentou ampla distribuição. A individualização da PEEP reduziu a quantidade de atelectasia após a extubação e, também, melhorou a mecânica respiratória e a oxigenação / Rationale: Individualized PEEP may reduce driving pressure and the formation of atelectasis in patients undergoing elective abdominal surgery. Objectives: To titrate PEEP and compare respiratory mechanics of patients submitted to titrated PEEP to PEEP 4 cmH2O. After extubation, to compare the non-aerated lung mass. Methods: Patients undergoing laparoscopic or open abdominal surgery were stratified and randomized non-consecutively to titrated PEEP (PEEPT) and PEEP 4 cmH2O. PEEP was titrated using electrical impedance tomography. Respiratory mechanics arterial blood gas analysis were performed during surgery. After extubation, the patients were submitted to a chest computadorized tomography (CT) scan. Measurements and Main Results: Twenty patients undergoing laparoscopic surgery and twenty patients undergoing open abdominal surgery were included. The median PEEP was 12 cmH2O with a wide variation from 6 to 16 (IC 95% 10-14). Titrated PEEP reduced driving pressure (p < 0.001), improved respiratory system compliance (p < 0.001), improved oxygenation (p < 0.001) (only in patients being submitted to laparoscopic surgery) and reduced non-aerated lung mass on CT scan (p < 0.05) after extubation. Conclusions: Titrated PEEP had a wide variation. PEEP individualization reduced postoperative atelectasis and also improved respiratory mechanics and oxygenation
67

Reconstrução de imagens por tomografia por impedância elétrica utilizando recozimento simulado massivamente paralelizado. / Image reconstruction through electrical impedance tomography using massively parallelized simulated annealing.

Tavares, Renato Seiji 06 May 2016 (has links)
A tomografia por impedância elétrica é uma modalidade de imageamento médico recente, com diversas vantagens sobre as demais modalidades já consolidadas. O recozimento simulado é um algoritmo que apresentada qualidade de solução, mesmo com a utilização de uma regularização simples e sem informação a priori. Entretanto, existe a necessidade de reduzir o tempo de processamento. Este trabalho avança nessa direção, com a apresentação de um método de reconstrução que utiliza o recozimento simulado e paralelização massiva em GPU. A paralelização das operações matriciais em GPU é explicada, com uma estratégia de agendamento de threads que permite a paralelização efetiva de algoritmos, até então, considerados não paralelizáveis. Técnicas para sua aceleração são discutidas, como a heurística de fora para dentro. É proposta uma nova representação de matrizes esparsas voltada para as características da arquitetura CUDA, visando um melhor acesso à memória global do dispositivo e melhor utilização das threads. Esta nova representação de matriz mostrou-se vantajosa em relação aos formatos mais utilizados. Em seguida, a paralelização massiva do problema inverso da TIE, utilizando recozimento simulado, é estudada, com uma proposta de abordagem híbrida com paralelização tanto em CPU quanto GPU. Os resultados obtidos para a paralelização do problema inverso são superiores aos do problema direto. A GPU satura em aproximadamente 7.000 nós, a partir do qual o ganho em desempenho é de aproximadamente 5 vezes. A utilização de GPUs é viável para a reconstrução de imagens de tomografia por impedância elétrica. / Electrical impedance tomography is a new medical imaging modality with remarkable advatanges over other stablished modalities. Simulated annealing is an algorithm that renders quality solutions despite the use of simple regularization methods and the absence of a priori information. However, it remains the need to reduce its processing time. This work takes a step in this direction, presenting a method for the reconstruction of EIT images using simulated annealing and GPU parallelization. The parallelization of matrix operations in GPU is explained, with a thread scheduling strategy that allows the effective parallelization of not-yet effectively parallelized algorithms. There are strategies for improving its performance, such as the presented outside-in heuristic. It is proposed a new sparse matrix representation focused on the CUDA architecture characteristics, with improved global memory access patterns and thread efficiency. This new matrix representation showed several advantages over the most common formats. The massive parallelization of the TIE\'s inverse problem using simulated annealing is studied, with a proposed hybrid approach that uses parallelization in both CPU and GPU. Results showed that the performance gain for the inverse problem is higher than the one obtained for the forward problem. The GPU device saturates with meshes of size of approximately 7,000 nodes, with a performance gain around 5 times faster than serial implementations. GPU parallelization may be used for the reconstruction of electrical impedance tomography images.
68

Método dos elementos de contorno para tomografia de impedância elétrica / Boundary Element Method for Electrical Impedance Tomography

Menin, Olavo Henrique 02 September 2009 (has links)
A Tomografia de Impedância Elétrica (TIE) é uma técnica relativamente nova e que tem se mostrado bastante promissora na obtenção de imagens do interior de um corpo explorando as diferenças entre as propriedades elétricas (condutividade e permissividade) dos diferentes materiais que o constituem. A técnica se baseia na aplicação de um perfil de potencial elétrico ou de corrente elétrica no contorno da seção do corpo e na medição da resposta. A partir da relação entre os dados da excitação e da resposta, estima-se a distribuição de condutividade no interior do domínio, o que pode ser traduzido, computacionalmente, como uma imagem dessa seção. Apesar de promissora, a TIE ainda apresenta dificuldades, principalmente no que se refere à resolução da imagem e ao elevado tempo computacional necessário para sua reconstrução. A reconstrução de uma imagem na TIE é uma tarefa realizada em duas etapas: primeiro deve-se resolver o problema direto, que se resume na determinação dos potencias elétricos no interior do domínio e das respostas no contorno a partir dos dados da excitação; segundo, deve-se resolver o problema inverso, que é a determinação da condutividade dos pontos internos do domínio a partir da relação entre os dados de excitação e resposta no contorno. Dependendo do método utilizado para a resolução do problema inverso, deve-se resolver o problema direto iterativamente inúmeras vezes, onerando computacionalmente o processo. Esse trabalho se propõe a aplicar o Método dos Elementos de Contorno (MEC) como técnica de resolução numérica do problema direto. A vantagem é que o MEC requer apenas a discretização do contorno e não de todo o domínio, como ocorre com os outros métodos. Essa redução na dimensão do problema diminui consideravelmente o tamanho do sistema linear a ser resolvido a cada resolução do problema direto, o que pode reduzir satisfatoriamente o tempo computacional empregado na reconstrução de cada imagem. Para isso, foi implementado um programa em linguagem C que resolve o problema direto da TIE, especificamente para um domínio bidimensional, utilizando o MEC. O programa, a princípio, aceita formas genéricas de geometria do domínio e de condições de contorno. Foram realizados testes com domínios quadrado e circular e com diferentes tipos e valores para as condições de contorno. Os resultados obtidos foram comparados tanto com resultados analíticos como obtidos na literatura e foram bastante satisfatórios. / The Electrical Impedance Tomography (EIT) is a quite new technique and has proved to be promising in obtaining inner body images exploring the differences between electric qualities (conductivity and permissity) of different materials that constitute it. The technique is based on applying an electric potential profile or electric current on the boundary of the body section and by measuring the response. From the relation of data of excitement and response, the distribution of conductivity in the interior of the dominion is assessed, what may be translated, computationally, as an image of that section. Although being promising, the EIT still presents difficulties, especially regarding image definition and the long time taken to its reconstruction. A EIT image reconstruction is a task done in two phases: first, one must solve the direct problem which is basically the determination of electrical potentials in the interior of the dominion and the responses on the boundary from the excitation data; second, the inverse problem must be solved, which is the determination of conductivity of the inner points of the dominion from the relation between the excitation data and the response on the boundary. Depending on the method used to solve the inverse problem, the direct problem must be iterative solved countless times, burdening the process computationally. This work has the purpose of applying the Boundary Element Method (BEM) as numeric resolution technique of the direct problem. The advantage is that the BEM requires only the discretization of the boundary and not of the whole dominion, as it occurs with the other methods. This decrease in the problem dimension reduces the size of the linear system to be solved at each resolution of the direct problem, what may reduce satisfactory the computational time employed on the reconstruction of each image. For that, a C language program was implemented, which solves the direct problem of the EIT, particularly for a two dimensional dominion, using the BEM. The program, at first, accepts generic forms of the dominion geometry and of boundary conditions. Tests were performed with square and circular and with different types and values for the boundaries conditions. The obtained results were compared to analytic results as well as the ones obtained from literature and were quite satisfactory.
69

Impacto na ventilação e aeração pulmonar após remoção de derrame pleural neoplásico: um estudo com tomografia de impedância elétrica / Impact of lung ventilation and aeration after a therapeutic pleural aspiration of a malignant effusion: a study using electrical impedance tomography

Alves, Sergio Henrique Saraiva 15 March 2013 (has links)
INTRODUÇÃO: O primeiro passo na presença de derrame pleural maligno é a aspiração terapêutica do líquido para alívio dos sintomas e avaliar indicação de pleurodese. Infelizmente, em seres humanos a re-aeração e re- ventilação pulmonar após a retirada de líquido pleural foi avaliada apenas indiretamente. A tomografia de impedância elétrica (TIE) é uma técnica precisa que já foi extensivamente validada para quantificar aeração e ventilação pulmonar em tempo real e à beira-leito. O conhecimento das alterações em aeração e ventilação pulmonar após a retirada do líquido pleural é essencial para a compreensão da evolução clínica, objetivando novos esquemas de pleurodese e novos indicadores de reexpansão pulmonar. OBJETIVOS: Avaliar a aeração, ventilação e sincronia ventilatória antes e durante a primeira hora após a aspiração de um derrame pleural maligno. Objetivos secundários: correlacionar a re-aeração com variáveis que pudessem influenciá-la. Métodos: Critérios de inclusão: derrame pleural unilateral com necessidade de aspiração terapêutica e superior a 500 mL. Os sinais e imagens da TIE foram adquiridos em seis períodos diferentes: antes da aspiração pleural, imediatamente, 15, 30, 45 e 60 minutos após a aspiração. A re-aeração foi avaliada pela variação no valor da impedância (Z) ao final de uma expiração relaxada, enquanto a re-ventilação foi avaliada através da variação da impedância no volume corrente. Também medimos a sincronia entre os pulmões usando o ângulo de fase. Finalmente, correlacionamos à re-aeração final com o volume retirado, ângulo de fase inicial e elastância pleural. O pulmão afetado pelo derrame foi nomeado como ipsilateral e o não afetado como contralateral. RESULTADOS: Foram incluídos 22 pacientes. O volume médio aspirado foi 1438 ml. No pulmão ipsilateral, a média no final da expiração valor Z aumentou para 173,5 ± 122,3, imediatamente após a aspiração pleural (p <0,001), e a análise individual revelou que todos os pacientes ganharam re-aeracão pulmonar imediatamente, sem mais re-aerações após. O mesmo comportamento, mas com uma menor magnitude foi encontrado no pulmão contralateral. Na avaliação da re-ventilação, os pulmões ipsilateral e contralateral mostraram resultados heterogêneos, alguns aumentaram a ventilação, outros diminuíram ou mantiveram-na inalterada. Antes da aspiração pleural, a média do ângulo de fase foi de 93 ± 71 graus e diminuiu para 20 ± 30 graus, imediatamente após a aspiração pleural (p <0,001), sem outras alterações após. A re-aeração final correlacionou-se apenas com o volume de derrame aspirado (R2 = 0,49, p <0,01). CONCLUSÃO: Após a aspiração de derrame pleural unilateral neoplásico em pulmões não encarcerados, a re-aeração pulmonar ocorre imediatamente nos pulmões ipisilateral e contralateral, sem mais re-aeração durante a hora seguinte. As mudanças na re-ventilação mostram altas variações individuais. Há uma assincronia ventilatória entre os pulmões, que é imediatamente revertida pela aspiração pleural. A única variável correlacionada com a re-aeração do pulmão afetado é o volume de derrame drenado / INTRODUCTION: The first procedure in the management of a malignant pleural effusion is a therapeutic pleural aspiration to relieve symptoms and assess pleurodesis indication. Unfortunately, in humans the pulmonary re- aeration and re-ventilation after a pleural aspiration was evaluated only indirectly. Electrical impedance tomography (EIT) is an accurate, non- invasive and bedside method that has been extensively validated to quantify lung ventilation and aeration. The knowledge of changes in lung aeration and ventilation after a therapeutic pleural aspiration is essential to understand the clinical course, to propose new lung reexpansion predictors and pleurodesis schemas. OBJECTIVE: To measure the lung re-aeration, re-ventilation and ventilatory synchrony before and over the first hour after a therapeutic pleural aspiration for a malignant pleural effusion. As secondary objectives we correlate the lung re-aeration with variables that could influence them. METHODS: The inclusion criteria were the need of a therapeutic pleural aspiration of a unilateral effusion over 500 mL. EIT signals and images were acquired in six different periods: before the pleural aspiration, immediately and 15, 30, 45 and 60 minutes after the aspiration. The re-aeration was evaluated through the change in the end-expiratory lung impedance (Z), while the re-ventilation was evaluated through the change in tidal impedance. We also measure the ventilator synchrony between lungs using the phase angle. Finally we correlated the final re-aeration with the effusion volume drained, pleural elastances and baseline phase angle. The lung affected by the effusion was nominated as ipsilateral and the non-affected as contralateral. RESULTS: We included 22 patients. The mean volume of aspirated effusion was 1438 ml. In the ipsilateral lung, the mean end- expiratory Z value increased to 173.5 ± 122.3 immediately after the pleural aspiration (p < 0.001) and the individual analysis revealed that all patients re- aerated the lung immediately without further re-aeration thereafter. The same behavior but with a lower magnitude was found in the contralateral lung. The ipsilateral and contralateral lung re-ventilation showed heterogeneous results with patients increasing the ventilation, while others decreased or kept the ventilation unchanged. Before the pleural aspiration, the mean phase angle was 93 ± 71 degrees and decreased to 20 ± 30 degrees immediately after the pleural aspiration (p < 0.001), without further changes thereafter. The final re-aeration only correlated to the volume of effusion aspirated (R2 = 0.49; p < 0.01). CONCLUSION: In untrapped lungs, a pleural aspiration of a unilateral malignant pleural effusion causes an immediate re-aeration of the lung affected by the effusion and even of the contralateral lung, without further re-aeration over the next hour. The changes in ventilations show high individual variations. There is a ventilatory asynchrony between lungs that is immediately reversed by the aspiration. The only variable correlated to re- aeration of the affected lung is the effusion volume drained
70

Tomographie d’impédance électrique à l’aide d’une matrice de microélectrodes : vers l’imagerie des nerfs périphériques / Electrical impedance tomography using a microelectrode array : towards peripheral nerve imaging

Fouchard, Alexandre 06 November 2015 (has links)
La neuromodulation offre une possibilité de traitement pour des pathologies pharmoco-resistantes. Dans ce domaine, l'émergence de matrices d'électrodes à l'échelle microscopique ouvre la voie à des interfaces neurales sélectives. Cependant, leur fonctionnalité est réduite par le manque d'information sur l'anatomie fonctionnelle du nerf ciblé. L'objectif global de ce projet de thèse est d'explorer les possibilités d'imager un nerf de manière non-invasive par tomographie d'impédance électrique (EIT). Modalité d'imagerie des tissus mous, l'EIT déduit des cartes de conductivité à partir de mesures sur la frontière du domaine étudié. Une plateforme expérimentale a été mise en place et a permis de valider les développements des méthodes numériques effectués pour la prédiction des données et l'estimation des paramètres. Des tests in vivo ont été réalisés dans le contexte de la stimulation du nerf vague et du nerf sciatique. Des spécifications pour de futures expériences ont été déduites, avec l'utilisation d'électrodes plus robustes comprenant un plus grand nombre de contacts par section. / Neuromodulation offers treatments for drug resistant pathologies. In this field, the emergence of micro-scale multi-electrode arrays paves the way for selective neural interfaces. But they suffer from the lack of information on the nerve functional anatomy. The global aim of this PhD project is to explore the possibilities of imaging the inside of a nerve in a non-invasive way through electrical impedance tomography (EIT). As a soft-field imaging modality, EIT infers conductivity maps from boundary measurements. An experimental platform was built and allowed the validation of numerical methods developed for data prediction and parameter estimation. In vivo tests were performed in the context of vagus and sciatic nerve stimulation. Specifications were deduced for future experiments, with more reliable electrodes, embedding a higher number of contacts per cross-section.

Page generated in 0.0531 seconds