• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 24
  • 19
  • 8
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 129
  • 26
  • 22
  • 16
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Extending Shelf Life of Sliced Mushrooms (Agaricus bisporus) by using Vacuum Impregnation and Electron-beam Irradiation

Sevimli, Zeynep 02 October 2013 (has links)
Mushrooms are one of the protein rich foods, however they have a short pro-harvest life (2 to 3 days) compared to most vegetables. The aim of this study was to evaluate whether applying an anti-browning solution using vacuum impregnation and then electron beam irradiation can be used to extend the shelf life of fresh-cut mushrooms (Agaricus bisporus). Solutions made with (a) 2% ascorbic acid + 1% calcium lactate, (b) 2% citric acid + 1% calcium lactate, (c) 1% chitosan + 1% calcium lactate, and (d) 1% calcium lactate were used to impregnate mushroom slices at different vacuum pressures, vacuum pressure times, and atmospheric restoration times. Mushrooms were also irradiated at a dose of 1 kGy using a 1.35 MeV e-beam accelerator and their quality was evaluated in terms of color, texture, and microbial growth during 15 days storage at 4 degrees C. The best vacuum impregnation treatment was the 2% ascorbic acid and 1% calcium lactate solution using a vacuum pressure of 50 mmHg for 5 minutes and an atmospheric restoration time of 5 minutes. The control (not treated) and impregnated samples lost their structure (softening) during storage. The irradiated samples lost their firmness by day 4 of storage. The addition of calcium lactate to the samples during the treatment helped to keep the product’s texture during the 15 days storage time. Color of the mushrooms changed during storage for all the control and impregnated samples and only the irradiated samples showed an acceptable color by the end of day 15. Aerobics and psychrotrophics counts were significantly reduced by irradiation; while yeast and molds population increased by day 9 and were not completely inactivated with a dose of 1 kGy. Sensory panelists preferred the treated samples over the controls. The best treatment was the combination of vacuum impregnation with irradiation according to the consumer studies.
12

Investigations On The Permeability Of Acrylic Powder Structures

Agirtopcu, Yasin 01 January 2003 (has links) (PDF)
There are many examples where creation and usage of porous substrates play important roles in various fields of application in material science and technology. In the manufacture of ceramic products, as an alternative to the plaster molds, porous resin molds are used in order to resolve the drawbacks that result A porous substrate can be produced by various ways. In this study, porous polymeric matrices of poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) [poly(MMA-HEMA)] polymers were prepared by connecting the polymer microspheres to each other by an epoxy adhesive. To improve the surface properties, methyl methacrylate (MMA) was copolymerized with 2-hydroxyethyl methacrylate (HEMA). The microspheres used were synthesized by suspension polymerization and characterization was done by Nuclear Magnetic Resonance (NMR), Particle Size Analyzer and Scanning Electron Microscope (SEM). The porous samples were prepared with PMMA and poly(MMA-HEMA) copolymer microspheres with two different HEMA contents and their surface energies were measured. In addition, the effect of mean particle diameter of the microspheres used and the epoxy content of the solution used to bind the microspheres, on the impregnation capacity, morphology and the impact strength of the porous samples prepared, were studied. Inclusion of HEMA into the formulation improved the impregnation capacity of the samples. Using microspheres with narrower particle size distribution resulted in larger representative capillary radii and higher rate of impregnation of the samples. Increasing the epoxy content of the solution used to bind the beads, increased the impact strengths of the samples prepared.
13

Estudo da impregnação a vácuo de trealose como crioprotetor em morangos

Kunsler, Nicole Luíse Froehlich January 2017 (has links)
Embora o congelamento apresente vantagens em relação a outros métodos de conservação de alimentos, o mesmo causa alterações sensoriais, principalmente em produtos de origem vegetal. O morango, uma fruta muito apreciada e com formas variadas de consumo, tem comportamento sazonal e apresenta como fator limitante para o congelamento sua estrutura frágil e sensível ao processo, o que causa alterações sensoriais. Tais alterações podem ser minimizadas com a incorporação de crioprotetores, como a trealose, um dissacarídeo que vem se destacando pelo seu efeito crioprotetor em produtos congelados e desidratados. O principal objetivo deste trabalho foi verificar o efeito crioprotetor da trealose incorporada através da impregnação a vácuo em soluções de diferentes concentrações (100, 300 e 500 g/L) em morangos submetidos ao congelamento e descongelamento. As condições de impregnação foram de 5 min, aplicando pressão de -650 mmHg e 10 min de tempo de relaxamento. As alterações provocadas pelo processo de impregnação bem como a verificação do efeito crioprotetor da trealose foram identificadas através de análise de cromatografia líquida de alta eficiência (High Performance Liquid Chromatography- HPLC), análise colorimétrica, análise de textura, determinação do teor de sólidos solúveis, determinação do teor de umidade e perda de massa (perda por gotejamento). Os resultados mostraram que a concentração da solução de trealose exerce influência significativa no teor de umidade, teor de sólidos solúveis e teor de trealose. As amostras tratadas com soluções mais concentradas não sofreram desidratação após descongelamento. O teor de trealose, após descongelamento, permaneceu constante em todas as amostras tratadas. Todas as amostras tiveram a mesma perda de massa após descongelamento (perda por gotejamento), porém a composição da massa diferiu entre elas. Amostras tratadas com a solução mais concentrada perderam sólidos enquanto que as amostras tratadas com a menos concentrada, perderam água. Na análise de textura, a introdução da trealose não influenciou a força máxima de pico nas amostras impregnadas. Após descongelamento, todas as amostras, exceto a tradada com solução de 500 g/L, sofreram amolecimento. A parte externa dos morangos não sofreu alterações de cor devido à introdução da trealose nem devido ao congelamento e descongelamento. Na parte interna dos frutos, ocorreram variações no parâmetro L* devido à impregnação e no parâmetro b*, devido ao congelamento e descongelamento. / Although freezing offers advantages to others food conservations process, it causes sensorial changes, mostly in vegetables products. The strawberry, a quite appreciated fruit, shows different ways of use, has seasonal behavior and is limited to freezing due the sensorial changes caused by its fragile structure to freezing process. These sensorial changes can be minimized by the incorporation of cryoprotectors, as trehalose, that is known by its cryoprotector effect during freezing and dehydration. The aim of this work was to verify the trehalose cryoprotector effect in frozen and thawed strawberries introduced by vacuum impregnation with different solutions (100, 300 and 500 g/L). The impregnation conditions were 5 min of applying pressure of -650 mmHg and after atmospheric pressure was restored, the sample was maintained within the solution for 10 min (these conditions were obtained from previous experiments). The alterations caused by the vacuum impregnation and the verification of the cryoprotector effect of trehalose were identified by High Performance Liquid Chromatography (HPLC), color analysis, texture analysis, soluble solids content, moisture content and drip loss. The results have shown that concentration of the trehalose solution had a significant influence on the moisture content, soluble solids and trehalose content of impregnated strawberries. The samples treated with more concentration solutions did not dehydrated after thawing. The trehalose content was the same in all treated samples after thawing. All the samples showed the same drip loss due to thawing although the composition of the mass was different among the samples. Samples treated with the most concentration solution lost trehalose while the sample treated with the least concentration solutions lost water. The introduction of trehalose did not affect the maximum peak force of the impregnated samples. The freezing and the thawing process caused the softening of the samples. This effect was not observed on the sample treated with solution of 500 g/L. The introduction of trehalose did not cause significant differences in all color parameters measured on the outside of the strawberries after impregnation and thawing. In the inside of the samples, there were variation in the L* parameter caused by the vacuum impregnations and in the b* parameter caused by the freezing and thawing process.
14

Estudo da impregnação a vácuo de trealose como crioprotetor em morangos

Kunsler, Nicole Luíse Froehlich January 2017 (has links)
Embora o congelamento apresente vantagens em relação a outros métodos de conservação de alimentos, o mesmo causa alterações sensoriais, principalmente em produtos de origem vegetal. O morango, uma fruta muito apreciada e com formas variadas de consumo, tem comportamento sazonal e apresenta como fator limitante para o congelamento sua estrutura frágil e sensível ao processo, o que causa alterações sensoriais. Tais alterações podem ser minimizadas com a incorporação de crioprotetores, como a trealose, um dissacarídeo que vem se destacando pelo seu efeito crioprotetor em produtos congelados e desidratados. O principal objetivo deste trabalho foi verificar o efeito crioprotetor da trealose incorporada através da impregnação a vácuo em soluções de diferentes concentrações (100, 300 e 500 g/L) em morangos submetidos ao congelamento e descongelamento. As condições de impregnação foram de 5 min, aplicando pressão de -650 mmHg e 10 min de tempo de relaxamento. As alterações provocadas pelo processo de impregnação bem como a verificação do efeito crioprotetor da trealose foram identificadas através de análise de cromatografia líquida de alta eficiência (High Performance Liquid Chromatography- HPLC), análise colorimétrica, análise de textura, determinação do teor de sólidos solúveis, determinação do teor de umidade e perda de massa (perda por gotejamento). Os resultados mostraram que a concentração da solução de trealose exerce influência significativa no teor de umidade, teor de sólidos solúveis e teor de trealose. As amostras tratadas com soluções mais concentradas não sofreram desidratação após descongelamento. O teor de trealose, após descongelamento, permaneceu constante em todas as amostras tratadas. Todas as amostras tiveram a mesma perda de massa após descongelamento (perda por gotejamento), porém a composição da massa diferiu entre elas. Amostras tratadas com a solução mais concentrada perderam sólidos enquanto que as amostras tratadas com a menos concentrada, perderam água. Na análise de textura, a introdução da trealose não influenciou a força máxima de pico nas amostras impregnadas. Após descongelamento, todas as amostras, exceto a tradada com solução de 500 g/L, sofreram amolecimento. A parte externa dos morangos não sofreu alterações de cor devido à introdução da trealose nem devido ao congelamento e descongelamento. Na parte interna dos frutos, ocorreram variações no parâmetro L* devido à impregnação e no parâmetro b*, devido ao congelamento e descongelamento. / Although freezing offers advantages to others food conservations process, it causes sensorial changes, mostly in vegetables products. The strawberry, a quite appreciated fruit, shows different ways of use, has seasonal behavior and is limited to freezing due the sensorial changes caused by its fragile structure to freezing process. These sensorial changes can be minimized by the incorporation of cryoprotectors, as trehalose, that is known by its cryoprotector effect during freezing and dehydration. The aim of this work was to verify the trehalose cryoprotector effect in frozen and thawed strawberries introduced by vacuum impregnation with different solutions (100, 300 and 500 g/L). The impregnation conditions were 5 min of applying pressure of -650 mmHg and after atmospheric pressure was restored, the sample was maintained within the solution for 10 min (these conditions were obtained from previous experiments). The alterations caused by the vacuum impregnation and the verification of the cryoprotector effect of trehalose were identified by High Performance Liquid Chromatography (HPLC), color analysis, texture analysis, soluble solids content, moisture content and drip loss. The results have shown that concentration of the trehalose solution had a significant influence on the moisture content, soluble solids and trehalose content of impregnated strawberries. The samples treated with more concentration solutions did not dehydrated after thawing. The trehalose content was the same in all treated samples after thawing. All the samples showed the same drip loss due to thawing although the composition of the mass was different among the samples. Samples treated with the most concentration solution lost trehalose while the sample treated with the least concentration solutions lost water. The introduction of trehalose did not affect the maximum peak force of the impregnated samples. The freezing and the thawing process caused the softening of the samples. This effect was not observed on the sample treated with solution of 500 g/L. The introduction of trehalose did not cause significant differences in all color parameters measured on the outside of the strawberries after impregnation and thawing. In the inside of the samples, there were variation in the L* parameter caused by the vacuum impregnations and in the b* parameter caused by the freezing and thawing process.
15

Obtenção de figos secos por desidratação osmotica e secagem convectiva / Osmotic dehydration and convective drying of figs slices

Sousa, Severina de 28 February 2008 (has links)
Orientador: Florencia Cecilia Menegalli / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-10T02:57:51Z (GMT). No. of bitstreams: 1 Sousa_Severinade_D.pdf: 3233199 bytes, checksum: c69375c3baa9b4be2e41470f3792f663 (MD5) Previous issue date: 2008 / Resumo: O processo de desidratação osmótica figos (Fícus carica, L.) em soluções de sacarose foi investigado com base em um planejamento experimental completo e metodologia de superfície de resposta (RSM). As variáveis independentes foram a concentração de sacarose, variando de 35,9 a 64,1% p/p e a temperatura da solução desidratante de 32,9 a 47,0ºC, a fim de avaliar a cinética da perda de umidade, da incorporação de açúcares e da atividade de água durante o processo. As condições ótimas de desidratação osmótica que geraram dois tipos de produtos, ou seja, figos com maior conteúdo de açúcares e figos com menor conteúdo de açúcares, ambos com menor atividade de água e menor conteúdo de umidade, foram encontradas respectivamente, na temperatura de 39,7ºC e concentração de 63,1% p/p de sacarose, e temperatura de 35,3ºC e concentração de sacarose de 64,1% p/p. A cinética de incorporação de ácido ascórbico foi estudada durante o processo de desidratação osmótica a 44ºC e 36% p/p de concentração da solução, com adição de ácido ascórbico de 100 e 200mg/100g de solução, obtendo-se coeficientes de difusão para a incorporação da vitamina através do modelo difusional de Fick. A avaliação da degradação de vitamina C durante subseqüente secagem mostrou que as perdas de vitamina C podem ser compensadas através de sua incorporação à fruta durante o processo de desidratação osmótica. As isotermas de sorção e a cinética da secagem convectiva foram determinadas às diferentes temperaturas (40, 50, 60 e 70ºC). Para o ajuste dos dados de secagem foram utilizados o modelo difusional de Fick, o modelo de Page e o modelo exponencial com dois termos. Durante a secagem observou-se que a difusividade não foi constante durante todo o período, considerando-se três difusividades distintas ao longo da curva de secagem. As amostras in natura apresentaram maiores coeficientes de difusão de umidade que as amostras desidratadas osmoticamente com sacarose. O tempo de secagem foi reduzido com o processo de desidratação osmótica em todas as temperaturas, especialmente para obtenção da fruta em umidades intermediárias / Abstract: A full experimental design and response surface methodology (RSM) were used to study osmotic dehydration process of figs (Ficus carica, L.) in sucrose solutions. The independent variables were: the sucrose concentration, varying from 35,9 to 64,1% w/w and the solution temperature, varying from 32,9 to 47,0ºC, in order to study the kinetic of water loss, sugars incorporation and water activity during the process. The optimized conditions in osmotic dehydration to obtain two kinds of products: figs with higher content of sugars and figs with lower content of sugars, both of them with lower water activity and water content, had been found respectively, at 39,7ºC and 63,1% w/w and 35,3ºC and 64,1% w/w of temperature and sucrose concentration. The kinetic of ascorbic acid incorporation was studied during osmotic dehydration process at 44ºC, using a solution of 36% of sucrose concentration with an addition of 100 or 200mg of ascorbic acid /100g of solution. The diffusion coefficients for the vitamin incorporation were obtained fitting data with the Fick¿s second law of diffusion. The evaluation of vitamin C degradation during the subsequent drying process showed that the losses of vitamin C can be compensated with the addition of this vitamin in the fruit during osmotic dehydration process. The sorption isotherms and the kinetic of the convective drying were determined at different temperatures (40, 50, 60 and 70ºC). The drying data was fitted with Fick¿s second law of diffusion, the Page model and the Exponential model with two terms. During the drying was observed that the diffusivity was not constant during all period, therefore, were considered three different diffusivities along of the drying curves. The fresh samples had presented higher water diffusion coefficients compared with the samples osmotically dehydrated with sucrose. The drying time was reduced with the use of osmotic dehydration as pretreatment for the several temperatures, especially when the intermediate moisture of fruit was obtained / Doutorado / Doutor em Engenharia de Alimentos
16

An investigation of means of mitigating alkali-silica reaction in hardened concrete

Markus, Reid Patrick 21 November 2013 (has links)
This research project, funded by the Federal Highway Administration (FHWA Project DTFH61-02-C-0097), focuses mainly on alkali-silica reaction (ASR) and techniques to mitigate the effects of alkali-silica reaction in hardened concrete. A large portion of this report discusses the construction and design of an outdoor exposure site built at the University of Texas at Austin where the goal was to cast field representative concrete elements with laboratory precision and expose them to real environmental conditions. The elements were monitored for expansion and deterioration. At discrete expansion levels a range of mitigation methods were implemented on the structures. After the concrete elements were treated, long-term monitoring was conducted to determine the best approach to provide effective suppression of alkali-silica reaction in the various element types. / text
17

NOVEL CATALYSTS FOR THE PRODUCTION OF CO- AND CO<sub>2</sub>-FREE HYDROGEN AND CARBON NANOTUBES BY NON-OXIDATIVE DEHYDROGENATION OF HYDROCARBONS

Shen, Wenqin 01 January 2008 (has links)
Non-oxidative dehydrogenation of hydrocarbons is an attractive alternative route for the production of CO- and CO2-free hydrogen. It will satisfy a major requirement for successful utilization of polymer electrolyte membrane (PEM) fuel cells (< 10 ppm CO) and sequestering carbon as a potentially valuable by-product, carbon nanotubes (CNTs). Due to the deposition of carbon on the surface of catalyst particles during the reaction, catalyst performance, life-time, and purification of the generated carbon product, are significant issues to solve in order to make the process practically feasible. The scope of this thesis includes: the development of novel Fe, Ni, and Fe-Ni catalysts supported on a Mg(Al)O support to achieve improved catalytic performance with easily-purified CNTs; evaluation of catalysts for ethane/methane dehydrogenation at moderate reaction temperatures; and study of activation and deactivation mechanisms by a variety of characterization techniques including TEM, HRTEM, XRD, Mössbauer spectroscopy, and x-ray absorption fine structure (XAFS) spectroscopy. The Mg(Al)O support was prepared by calcination of synthetic MgAl-hydrotalcite with a Mg to Al ratio of 5. The catalysts were prepared either by conventional incipient wetness method or by a novel nanoparticle impregnation method, where the monodisperse catalyst nanoparticles were prepared in advance by thermal decomposition of a metal-organic complex in an organic-phase solution and then dispersed onto the Mg(Al)O support. Dehydrogenation of undiluted methane was conducted in a fix-bed plug-flow reactor. Before reaction, the catalysts were activated by reduction in hydrogen. Fe-based catalysts exhibit a higher hydrogen yield at temperature above 600ºC compared with monometallic Ni catalyst. FeNi-9 nm/Mg(Al)O, Fe-10 nm/Mg(Al)O and Fe-5 nm/ Mg(Al)O nanoparticle catalysts show much improved performance and longer life-times compared with the corresponding FeNi IW/Mg(Al)O and Fe IW/Mg(Al)O catalysts prepared by incipient wetness. 10 nm is the optimum particle size for methane dehydrogenation. Addition of Ni to Fe forming a bimetallic FeNi alloy catalyst enhances the catalytic performance at the temperatures below 650ºC. Metallic Fe, Ni, FeNi alloy and Fe-Ni-C alloy, unstable iron carbide are all catalytically active components. Catalysts deactivation is due to the carbon encapsulation. The carbon products are in the form of stack-cone CNTs (SCNTs) and multi-walled CNTs (MWNTs), depending on the reaction temperature and catalyst composition. The growth of CNTs follows a tip growth mechanism and the purity of cleaned CNTs is more than 99.5%.
18

Evaluation of alkali- impregnated honeycomb catalysts for NOx reduction in the SCR-process

Johansson, Sofia January 2006 (has links)
<p>Samples of SCR catalysts were impregnated with the following alkali salts; KCl, K2SO4 and ZnCl2 at two different concentrations in a wet impregnation method. The activities of the six samples were measured in a test reactor and at different temperatures between 250-350 ºC. Compared to fresh catalyst, the impregnated samples all had lower activity. It seems like KCl is the most poisoning salt, depending on the lowest value of the activity. The experimental results are expected as compared to earlier articles, which reports that all alkali salts has deactivating effects on a catalyst and that KCl is among the most poisoning ones. By making a cross-section SEM analysis, the penetration of the metals at different depths in to the catalyst material wall was evaluated. An ICP-AES analysis was carried out in order to see the concentration of K and Zn of the test samples. Finally, the pore diameter and active surface was measured by BET method. Since the values of the active surface didn’t change compared to a fresh catalyst and the pore diameter was only slightly decreased we can suppose that the alkali salts deactivates the catalyst by coating of the catalyst pore structure and not as a pore blocking.</p>
19

Microstructure and electrochemical performance of fully ceramic composite anodes for SOFCs

Schlegl, Harald January 2015 (has links)
Solid Oxide Fuel Cells could play a key role in energy systems of the future because they can directly convert the chemical energy of fuels into electrical energy in a reliable and energy efficient way. The choice of materials for the components of fuel cells is crucial for the achievement of the high performance and the low price necessary to establish fuel cell technology in the energy market. Current state of the art anodes consisting of nickel and yttria stabilised zirconia (Ni/YSZ) offer good electrochemical performance but suffer from limitations like carbon deposition, redox instability and sulphur poisoning. This thesis explores the properties of composite fully ceramic anodes consisting of a skeleton of yttria stabilised zirconia (YSZ) or cerium gadolinium oxide (CGO) and a perovskite phase based on B-site doped lanthanum strontium titanate. The perovskite phase was fabricated in situ inside the pores of the skeleton material by the infiltration of an aqueous precursor and subsequent firing (impregnation method). Material characterisation of the composite anodes was carried out by X-ray diffraction and the microstructure investigated by electron microscope techniques. The electrochemical performance was tested by IV-curves and impedance spectroscopy. Particularly the investigation of the connection between the microstructure of the impregnated anodes and their electrochemical performance is a main objective of this work. The electrochemical performance of cells with a CGO skeleton and an impregnated lanthanum strontium titanate phase was found to be inferior compared to cells with a YSZ skeleton, even if the ionic conductivity of CGO is known to be higher than the ionic conductivity of YSZ. The difference was assigned to mass transport problems tightly connected to the different microstructure of the composite anodes. A significant improvement of the performance could be achieved by the utilisation of A-site deficient perovskites as impregnated phase in a YSZ skeleton. Cells with composite anodes of YSZ and La₀.₄Sr₀.₄Ti₀.₉₄Mn₀.₀₆O[sub](3-δ) show power densities of 156.2 mW/cm² at a measuring temperature of 750 °C compared to 58.5 mW/cm² measured in a similar cell with A-site stoichiometric LSTM, both cells having an electrolyte thickness of around 60 μm. The superiority of the performance of anodes with A-site deficient perovskites is mainly due to a lower ohmic resistance of only 0.5 Ω*cm², indicating better conductivity of the composite with A-site deficient perovskites. The investigation of the microstructure of composite anodes with A-site deficient perovskites showed the decoration of the surface with nanoparticles after reduction. These nanoparticles originate from exsolution of ions from the B-site of the perovskite and can't be found in A-site stoichiometric perovskites. The influence of fabrication parameters like firing temperature of the skeleton, firing temperature after impregnation or vacuum impregnation on the microstructure and electrochemical performance of the composite anodes was studied. Particularly the increase of the firing temperature of the skeleton from 1400 °C to 1500 °C resulted in an impressive improvement of total cell resistance and maximal power density.
20

Natriumkarbonat som alternativ alkalikälla till natriumhydroxid : Impregnering och blekning av kemitermomekanisk massa / Sodium carbonate as an alternative alkali source to sodium hydroxide : Impregnation and bleaching of chemi-thermomechanical pulp

Zethelius, Thea January 2019 (has links)
Arbetet handlade om att ta reda på om det går att byta ut natriumhydroxid mot natriumkarbonat som alkalikälla på CTMP-linjen, och gjordes på uppdrag av Stora Enso Skoghalls bruk. De områdena som studerades var impregnering och blekning av CTMP (kemitermomekanisk pappersmassa) samt hantering av natriumkarbonatlösning. Natriumkarbonatens löslighet vid olika temperaturer verifierades, blekning av CTMP med natriumkarbonat och natriumhydroxid utfördes, titrering av natriumhydroxid och natriumkarbonat mot natriumbisulfitlösning och en enklare laborationsimpregnering gjordes. Även aspekten av utrustning, kostnader och eventuell utfällning av kalciumkarbonat studerades. Resultaten visade att det krävs mer natriumkarbonat för att ersätta natriumhydroxid än vad man trott och att det totalt sett blir dyrare. Det finns dock en möjlighet att andra delar av bruket kan utföra bytet av alkali och gå med större vinst än vad CTMP-linjen går med förlust. Försöken visade även på temperaturökning vid tillredning av natriumkarbonatlösningen, utfällning av kristallsoda och behov av att den befintliga utrustningen kompletteras utifrån rekommendationer från kemikalieleverantören. Tidigare studier visade på eventuella försämringar av papperskvaliteten när natriumkarbonat används vid blekning av CTMP. Trots att natriumkarbonat är ett billigare alternativ till natriumhydroxid, och att det teoretiskt sett skulle fungera bra som en utbrytare, är det mycket som man behöver ta hänsyn till vad gäller natriumkarbonat och det krävs eftertanke för att saker ska görs på rätt sätt. Utifrån resultaten kan man dra slutsatsen att det inte ser ut som en bra ide att utföra bytet. / The objective of this project was to see if it is possible to replace sodium hydroxide with sodium carbonate as an alkali source on the CTMP line, and it was done on behalf of the Stora Enso Skoghall Mill. The areas that were studied were the impregnation and bleaching of CTMP and also the handling of sodium carbonate solution. The solubility of sodium carbonate at various temperatures was confirmed, bleaching of CTMP with sodium hydroxide and sodium carbonate, titration of the sodium hydroxide and sodium carbonate against sodium bisulfite solution and a simpler laboratory impregnation was performed. Aspects of equipment, costs and the possibility of precipitation of calcium carbonate were also studied. The results indicate that more sodium carbonate is needed than one thought for the substitution to be possible, and that it also becomes more expensive. There is a possibility that other parts of the mill can perform the replacement of alkali and go with greater profit than the CTMP line goes with loss. Experiments also showed an increase in temperature when preparing the sodium carbonate solution, precipitation of natron and the need for the existing equipment to be supplemented on the basis of recommendations from the chemical supplier. Previous studies showed possible deterioration of the paper quality when bleaching CTMP with sodium carbonate. Although sodium carbonate is a cheaper alternative to sodium hydroxide, and that it would theoretically work well as a substitute, it is much that one has to take into consideration in terms of using sodium carbonate and it is necessary to think things through before usage, so that things can be done properly. Based on the results, it is shown that the swap of alkali will be suboptimal.

Page generated in 0.1314 seconds