• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental Studies of the Herschel-Quinke Tube Concept with Mode Measurements

James, Michael Mark 19 December 2005 (has links)
A fundamental study of the Herschel-Quincke (HQ) tube concept for the reduction of noise in circular ducts is presented here. Recent testing of the Herschel-Quincke tube concept on the Pratt-Whitney JT15D and AlliedSignal TFE731-60 engines showed the potential for the practical application of this approach. A model of the HQ-system has been developed to aid in the design of the system tested. The model has revealed new noise control mechanisms associated to the implementation of multiple HQ-waveguides in a duct in the presence of higher order modes. However, the practical nature of these engine facilities results in limitations with regard to the fundamental research knowledge that could be gained from testing in a more controlled laboratory environment. A series of experiments was conducted at the NASA Langley Research Center 0.30 m ducted fan test facility where detailed modal measurements were performed. The main goals of this research endeavor were to evaluate the accuracy of the previously developed theoretical model and provide insight into the noise control mechanisms. Experiments were performed with different disturbance mode structures, number of HQ tubes and arrays, and axial positions. The modes in the duct were generated with an array of acoustic drivers (no flow case) and measured with logarithmically spaced circumferential and helical microphone arrays located on the duct wall. The modal amplitudes of the incident, transmitted, and reflected modes in the duct were determined from the microphone measurements. This allowed for the comparison of analytical and experimental modal amplitudes, modal powers, total power, and reductions. The results of this study provide insight into the three noise control mechanisms associated with this approach: reflection, circumferential scattering, and radial scattering. Comparison with the experimental results shows that the model accurately predicts the sound power attenuation except near the cut-off frequency of the modes where it tends to overestimate the attenuation. The effect of the number of tubes in the array and its axial position was also evaluated. Overall, the results of this study validate the general modeling approach for the HQ tube concept. / Master of Science
2

Contribution à la modélisation d’un turbocompresseur automobile et sa caractérisation acoustique / Contribution to the modeling of an automotive turbocharger and its acoustic characterizations

Jaimes, Isaac 14 December 2017 (has links)
Dans cette thèse, des méthodes de caractérisation acoustique passive et active de systèmes acoustiques à deux ports sont présentées, basées sur une décomposition d’ondes planes en entrée et sortie. Cette décomposition est réalisée par la méthode du beamforming. Ces méthodes mises en place et validées sur des géométries simples, sont ensuite employées pour caractériser l’étage compresseur d’un turbocompresseur de suralimentation automobile. La caractérisation acoustique active se fait par la mesure de la puissance et de l’intensité acoustique dans les conduits du compresseur, ceci pour des points de fonctionnement spécifiques, des cartographies compresseur complètes sont également élaborées. Les essais ont été menés sur banc turbo, banc moteur et sur véhicule complet. La caractérisation acoustique passive est abordée par le calcul de matrices du compresseur (matrice de transfert, matrice d’impédance et matrice de diffusion). Le calcul de la perte par transmission acoustique est déduit de ces matrices. Des essais ont été réalisés et comparés à des simulations éléments finis 3D sur un turbocompresseur statique comme sur un turbocompresseur opérationnel. / In this thesis, methodologies to perform the acoustic passive and active characterization of two port systems are presented. These methods are based on plane wave decomposition made at the inlet and at the outlet of the system. This decomposition is made according beamforming technique. Once these methods were validated on simple geometries, they were then applied to the compressor stage of an automotive turbocharger. The active acoustic characterization is made by the measurement of the acoustic power and acoustic intensity in the compressor ducts on given working points, but also on complete compressor maps. This was performed on turbocharger benches, engine benches and a complete vehicle. The passive acoustic characterization is made by the calculation of characteristic matrices (transfer matrix, impedance matrix and scattering matrix). These matrices are then used to compute the acoustic transmission loss. Experiments were performed on a static turbocharger and compared to 3D finite elements simulations, as well as experiments on an operating turbocharger.
3

Flow Duct Acoustics : An LES Approach

Alenius, Emma January 2012 (has links)
The search for quieter internal combustion engines drives the quest for a better understanding of the acoustic properties of engine duct components. Simulations are an important tool for enhanced understanding; they give insight into the flow-acoustic interaction in components where it is difficult to perform measurements. In this work the acoustics is obtained directly from a compressible Large Eddy Simulation (LES). With this method complex flow phenomena can be captured, as well as sound generation and acoustic scattering. The aim of the research is enhanced understanding of the acoustics of engine gas exchange components, such as the turbocharger compressor.In order to investigate methods appropriate for such studies, a simple constriction, in the form of an orifice plate, is considered. The flow through this geometry is expected to have several of the important characteristics that generate and scatter sound in more complex components, such as an unsteady shear layer, vortex generation, strong recirculation zones, pressure fluctuations at the plate, and at higher flow speeds shock waves. The sensitivity of the scattering to numerical parameters, and flow noise suppression methods, is investigated. The most efficient method for reducing noise in the result is averaging, both in time and space. Additionally, non-linear effects were found to appear when the amplitude of the acoustic velocity fluctuations became larger than around 1~\% of the mean velocity, in the orifice. The main goal of the thesis has been to enhance the understanding of the flow and acoustics of a thick orifice plate, with a jet Mach number of 0.4 to 1.2. Additionally, we evaluate different methods for analysis of the data, whereby better insight into the problem is gained. The scattering of incoming waves is compared to measurements with in general good agreement. Dynamic Mode Decomposition (DMD) is used in order to find significant frequencies in the flow and their corresponding flow structures, showing strong axisymmetric flow structures at frequencies where a tonal sound is generated and incoming waves are amplified.The main mechanisms for generating plane wave sound are identified as a fluctuating mass flow at the orifice openings and a fluctuating force at the plate sides, for subsonic jets. This study is to the author's knowledge the first numerical investigation concerning both sound generation and scattering, as well as coupling sound to a detailed study of the flow.With decomposition techniques a deeper insight into the flow is reached. It is shown that a feedback mechanism inside the orifice leads to the generation of strong coherent axisymmetric fluctuations, which in turn generate a tonal sound. / <p>QC 20121113</p>
4

The acoustics of curved and lined cylindrical ducts with mean flow

Brambley, Edward James January 2007 (has links)
This thesis considers linear perturbations to the steady flow of a compressible inviscid perfect gas along a cylindrical or annular duct. Particular consideration is given to the model of the duct boundary, and to the effect of curvature of the duct centreline. For a duct with a straight centreline and a locally-reacting boundary, the acoustic duct modes can be segregated into ordinary duct modes and surface modes. Previously-known asymptotics for the surface modes are generalized, and the generalization is shown to provide a distinctly better approximation in aeroacoustically relevant situations. The stability of the surface modes is considered, and previous stability analyses are shown to be incorrect, as their boundary model is illposed. By considering a metal thin-shell boundary, this illposedness is explained, and stability analysed using the Briggs-Bers criterion. The stability of a cylindrical thin shell containing compressible fluid is shown to differ significantly from the stability for an incompressible fluid, even for parameters for which the fluid would otherwise be expected to behave incompressibly. The scattering of sound by a sudden hard-wall to thin-shell boundary change is considered, using the Wiener-Hopf technique. The causal acoustic field is derived analytically, without the need to apply a Kutta-like condition or to include an instability wave, as had previously been necessary. Attention is then turned to a cylindrical duct with a curved centreline and either hard or locally-reacting walls. The centreline curvature (which is not assumed small) and wall radii vary slowly along the duct, enabling an asymptotic multiple scales analysis. The duct modes are found numerically at each axial location, and interesting characteristics are explained using ray theory. This analysis is applied to a hard-walled RAE 2129 duct, and frequency-domain solutions are convolved to give a time-domain example of a pulse propagating along this duct. Finally, some numerical work on the nonlinear propagation of a large-amplitude pulse along a curved duct is presented. This is aimed at modelling a surge event in an aeroengine with a convoluted intake.
5

Development Of An Iterative Method For Liquid-propellant Combustion Chamber Instability Analysis

Cengiz, Kenan 01 January 2011 (has links) (PDF)
Controlling unsteady combustion induced gas flow fluctuations and the resultant motor vibrations is a very significant step in rocket motor design. It occurs when the unsteady heat release due to combustion happens to feed the acoustic oscillations of the closed duct forming a feed-back system. The resultant vibrations concerned may even lead to total failure of the rocket system unless analysed and tested thoroughly. This thesis aims developing a linear numerical analysis method for the growth rate of instabilities and possible mode shape of a liquid-propelled chamber geometry. In particular, A 3-D Helmholtz code, utilizing Culicks spatial averaging linear iterative method, is developed to find the form of deformed mode shapes iteratively to obtain possible effects of heat source and impedance boundary conditions. The natural mode shape phase is solved through finite volume discretization and the open-source eigenvalue extractor, ARPACK, and its parallel implementation PARPACK. The iterative method is particularly used for analyzing the geometries with complex shapes and essentially for disturbances of small magnitudes to natural mode shapes. The developed tools are tested via two simple cases, a duct with inactive flame and a Rijke tube, used as validation cases for the code particularly with only boundary contribution and heat contribution respectively. A sample 2-D and 3-D liquid-propelled combustion chamber is also analysed with heat sources. After comparing with the expected values, it is eventually proved that the method should be only used for determining the modes instability analysis, as to whether it keeps vibrating or decays. The methodology described can be used as a preliminary design tool for the design of liquid-propellant rocket engine combustors, rapidly revealing only the onset of instabilities.
6

Sound propagation in a possibly lined annular duct with swirling and sheared mean flow : application to fan broadband noise prediction

Masson, Vianney 23 February 2018 (has links)
L’évolution des turboréacteurs vers des taux de dilution toujours plus importants est associée à de nouvelles problématiques. Parmi elles, le raccourcissement de l’entrée d’air et de la tuyère est associé à une diminution du gain apporté par les traitements acoustiques de nacelle. La contribution des traitements situés dans l’espace entre la soufflante et le stator redresseur (OGV) va donc prendre de l’importance par rapport à l’ensemble des traitements. Cette zone, également appelée “interstage”, est caractérisée par une forte giration de l’écoulement moyen due à l’entraînement du fluide par le rotor. L’objectif de ce travail est de développer un modèle analytique afin d’évaluer l’effet de la giration sur le comportement des traitements acoustiques dans l’interstage, ainsi que sur le bruit à large-bande rayonnant en amont dû à l’interaction de la turbulence en aval de la soufflante avec les aubes des stators (OGV). Dans un premier temps, l’évolution de petites perturbations dans écoulement moyen tournant et cisaillé dans un conduit rigide est étudiée. Après avoir introduit les équations ainsi que les hypothèses du problème, l’analogie acoustique de Posson & Peake [122] est présentée. L’effet de la giration sur le contenu modal dans un conduit rigide est mis en évidence pour plusieurs types d’écoulements tournants. En particulier, le décalage des fréquences de coupures est étudié. L’étude est ensuite étendue au cas d’un conduit annulaire traité acoustiquement. Une attention particulière est portée sur la condition aux limites à appliquer aux parois du conduit. Dans ce cadre, une correction due aux effets centrifuges est apportée à la condition aux limites de Myers [101]. Une extension du modèle de Brambley [24] est aussi proposée afin de prendre en compte l’effet de l’épaisseur de la couche limite aux parois du conduit dans le cas tournant. Les effets combinés de la rotation et de la condition aux limites sur le contenu modal sont ensuite étudiés. En outre, une relation de dispersion pour les modes de surfaces en présence d’écoulement tournant est développée. À partir des développements précédents, un modèle de transmission acoustique est proposé afin d’évaluer l’effet de la giration sur le comportement des traitements acoustiques. La méthode repose sur le principe de raccordement modal appliqué à la conservation du débit massique et de l’enthalpie totale aux interfaces séparant les sections rigides et traitées. Une nouvelle méthode de projection basée sur les propriétés des polynômes de Chebyshev est proposée. À partir de ce modèle, l’efficacité des traitements acoustiques est étudiée pour différents écoulements tournants. Enfin, un modèle de prédiction du bruit à large-bande d’interaction rotor-stator est établi à partir de l’analogie de Posson & Peake [122], dans le but de prendre en compte l’effet de la giration sur la puissance acoustique rayonnée en amont. Le terme source est calculé selon le formalisme de Posson et al. [120]. Le modèle ainsi développé permet de prendre en compte une évolution radiale des paramètres géométriques et des propriétés statistiques de la turbulence incidente. Le modèle est ensuite évalué sur le cas test NASA SDT pour différents régimes et géométries. / The advent of modern turbofan engines such as UHBR goes along with new issues. Amongst others, the shortening of the inlet and exhaust yield a relatively higher importance of the liners located inside the interstage, where the flow is highly swirling. The present work aims at developing analytical models to assess the effect of the swirl both on the behavior of the interstage liners and on the upstream radiation of the fan-OGV interaction broadband boise. The evolution of small fluctuations in a rigid annular duct containing a swirling and sheared mean flow are studied first. After having introduced the governing equations and the main assumptions, the acoustic analogy of Posson & Peake [122] tailored to an annular duct with swirl and shear is presented. The effect of the swirl on the modal content in a rigid annular duct is highlighted for different types of swirl. In particular the shift of the cut-on thresholds is studied. Then, the modal analysis is extended to a duct with lined walls. A particular attention is paid on the boundary condition. Notably, a correction of the classical Myers boundary condition [101] is proposed to account for the centrifugal effects. An extension of Brambley’s boundary condition [24] is also derived to account for the boundary layer thickness to first order. The effect of both the swirl and the boundary condition on the modal content are studied. Besides, a dispersion relation for the surface waves is derived for the corrected Myers boundary condition. Based on the previous modal analyses, a transmission tool is developed to assess the effect of the swirl on the efficiency of a liner. The method, which relies on the mode-matching approach, is based on the conservation of the total enthalpy and the mass flow at the interfaces between the rigid and the lined sections. Due to the nature of the eigenfunctions, a new projection method based on the Chebyshev polynomial properties is proposed. Thanks to this model, the absorption is assessed for different types of swirl. Finally, a rotor-stator interaction broadband noise prediction model is derived from Posson & Peake’s acoustic analogy [122], to account for the effect of the swirl on the upstream radiated acoustic power. The source term is computed according to Posson et al.’s model [120]. It allows considering a radial variation of the geometry and the statistical properties of the incident turbulence. The model is assessed on the NASA SDT test case and the effect of the swirl is evaluated for several stator geometries and regimes.
7

Numerical simulation of acoustic propagation in a turbulent channel flow with an acoustic liner / Simulation numérique de la propagation acoustique en canal turbulent avec traitement acoustique

Sebastian, Robin 26 November 2018 (has links)
Les matériaux absorbants acoustiques, qui sont d’un intérêt stratégique en aéronautique pour la diminution passive du bruit des réacteurs d’avion, conduisent à une physique complexe où l’écoulement turbulent, des ondes acoustiques, et l’absorbant interagissent. Cette thèse porte sur la simulation de cette interaction dans le problème modèle d’un écoulement de canal turbulent avec des parois impédantes, par le biais de simulations numériques aux grandes échelles implicites, dans un contexte de calcul haute performance.Une étude est d’abord faite des grandes échelles dans un canal turbulent avec des parois rigides, en s’intéressant plus particulièrement à l’effet d’une faible compressibilité (Mach <3) sur les caractéristiques de ces échelles.Un canal turbulent avec une paroi de type impédance est ensuite simulé, avec une condition habituelle de périodicité dans le sens de l’écoulement. On observe que pour des faibles valeurs de la résistance et des fréquences de résonance basses, l’écoulement est instable, ce qui engendre une onde le long de l’absorbant, qui modifie la turbulence et augmente la trainée.Enfin, on se tourne vers une simulation de canal spatial en levant la condition de périodicité dans la direction de l’écoulement, ce qui permet d’introduire une onde acoustique en entrée de domaine. L’atténuation de l’onde dans l’écoulement turbulent est étudiée avec des parois rigides, puis un absorbant acoustique est introduit. Dans cette configuration plus réaliste, il est confirmé que l’écoulement peut devenir instable au bord amont de l’absorbant, ce qui empêche l’atténuation de l’onde acoustique incidente. / Acoustic liners are a key technology in aeronautics for the passive reduction of the noise generated by aircraft engines. They are employed in a complex flow scenario in which the acoustic waves, the turbulent flow, and the acoustic liner are interacting.During this thesis, in a context of high performance computing, a compressible Navier-Stokes solver has been developed to perform implicit large eddy simulations of a model problem of this interaction: a turbulent plane channel flow with one wall modeled as an impedance condition.As a preliminary step the wall-turbulence in rigid channel flows and associated large-scale motions are investigated. A straightforward algorithm to detect these flow features is developed and the effect of compressibility on the flow structures and their contribution to the drag are studied. Then, the interaction between the acoustic liner and turbulent flow is investigated assuming periodicity in the streamwise direction. It is shown that low resistance and low resonance frequency tend to trigger flow instability, which modifies the conventional wall-turbulence and also results in drag increase.Finally, the simulation of a spatial channel flow was addressed. In this case no periodicity is assumed and an acoustic wave can be injected at the inlet of the domain. The effect of turbulence on sound attenuation is studied without liner, before a liner is introduced on a part of the channel bottom wall. In this more realistic case, it is confirmed that low resistance acoustic liners trigger an instability at the leading edge of the liner, resulting in drag increase and excess noise generation.

Page generated in 0.0585 seconds