• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 361
  • 121
  • 70
  • 55
  • 39
  • 22
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • Tagged with
  • 916
  • 155
  • 151
  • 112
  • 110
  • 84
  • 75
  • 67
  • 57
  • 52
  • 51
  • 48
  • 46
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

流れ場の形状最適化解析 (成長ひずみ法による試み)

片峯, 英次, Katamine, Eiji, 畔上, 秀幸, Azegami, Hideyuki, 沖津, 昭慶, Okitsu, Akiyoshi 05 1900 (has links)
No description available.
442

Shape Optimization Analysis of Flow Field : Growth-Strain Method Approach

Katamine, Eiji, Azegami, Hideyuki, Okitsu, Akiyoshi 15 February 1994 (has links)
No description available.
443

Radon (Rn-222) and thoron (Rn-220) emanation fractions from three separate formations of oil field pipe scale

Fruchtnicht, Erich Harold 15 November 2004 (has links)
Over the course of normal oil well operations, pipes used downhole in the oil and petroleum industry tend to accumulate a mineral deposit on their interior, which restricts the flow of oil. This deposit, termed scale, will eventually occlude the interior diameter of the pipe making removal from service and descaling a cost effective option. The pipes are sent to cleaning yards where they remain until descaling can be performed. This storage period can potentially create a health concern not only because of the external radiation exposure but also because of the radon gas emissions, both of which are due to the radioactive minerals contained in the scale. It was believed that the structure of the scale is formed tightly enough to prevent much of the radon from becoming airborne. The goal of this research was to determine the emanation fractions for the rattled scale samples from three formations. A high purity germanium detector was used to measure the activities of the parents and progeny of radon, and electret ion chambers were used to measure the concentration of radon emanated from the scale. The emanation fractions of between 4.9x10-5 and 1.08x10-3 for radon were a factor of approximately 100 smaller than previous research results. For thoron, the fractions were and 5.72x10-8 and 4.92x10-7 for thoron with no previous research to compare. However, information that pertains to the temperature dependence of emanation was included in this research and was not available for previous, similar research. Therefore, differences in the environment (e.g., temperature, humidity, etc.) in which the previous experiments were conducted, as well as differences in the scale formation types used, could account for the discrepancy. In addition, measuring the emanation fractions of the rattled scale was a method of determining whether surface to volume ratio dependence existed. After acquiring the emanation fractions, insufficient evidence of any surface to volume ratio dependence could be found.
444

Fundamental study of evaporation model in micron pore

Oinuma, Ryoji 15 November 2004 (has links)
As the demand for high performance small electronic devices has increased, heat removal from these devices for space use is approaching critical limits. A heat pipe is a promising device to enhance the heat removal performance due to the phase change phenomena for space thermal management system. Even though a heat pipe has a big potential to remove the thermal energy from a high heat flux source, the heat removal performance of heat pipes cannot be predicted well since the first principle of evaporation has not been established. The purpose of this study is to establish a method to apply the evaporation model based on the statistical rate theory for engineering application including vapor-liquid-structure intermolecular effect. The evaporation model is applied to the heat pipe performance analysis through a pressure balance and an energy balance in the loop heat pipe.
445

Design of regulated velocity flow assurance device for petroleum industry

Yardi, Chaitanya Narendra 17 February 2005 (has links)
The petroleum industry faces problems in transportation of crude petroleum be- cause of the deposition of paraffins, hydrates and asphaltenes on the insides of the pipeline. These are conventionally removed using either chemical inhibitors or mechani- cal devices, called pigs, which travel through the pipeline and mechanically scrape away the deposits. These pigs are propelled by the pipeline product itself and hence travel at the same velocity as the product. Research has indicated that cleaning would be better if the pigs are traveling at a relatively constant velocity of around 70% of the product velocity. This research utilizes the concept of regulating the bypass flow velocity in order to maintain the pig velocity. The bypass flow is regulated by the control unit based on the feedback from the turbine flowmeter, which monitors the bypass flow. A motorized butterfly valve is used for actually controlling the bypass flow. In addition to cleaning, the proposed pig utilizes on-board electronics like accelerom- eter and pressure transducers to store the data gathered during the pig run. This data can then be analyzed and the condition of the pipeline predicted. Thus, this research addresses the problem of designing a pig to maintain a constant velocity in order to achieve better cleaning. It also helps gather elementary data that can be used to predict the internal conditions in the pipe.
446

Hydraulic modeling of large district cooling systems for master planning purposes

Xu, Chen 17 September 2007 (has links)
District Cooling Systems (DCS) have been widely applied in large institutions such as universities, government facilities, commercial districts, airports, etc. The hydraulic system of a large DCS can be complicated. They often stem from an original design that has had extensive additions and deletions over time. Expanding or retrofitting such a system involves large capital investment. Consideration of future expansion is often required. Therefore, a thorough study of the whole system at the planning phase is crucial. An effective hydraulic model for the existing DCS will become a powerful analysis tool for this purpose. Engineers can use the model to explore alternative system configurations to find an optimal way of accommodating the DCS hydraulic system to the planned future unit. This thesis presents the first complete procedure for the use of commercial simulation software to construct the hydraulic model for a large District Cooling System (DCS). A model for one of the largest DCS hydraulic systems in the United States has been developed based on this procedure and has been successfully utilized to assist its master planning study.
447

Analysis on Strategic Competitiveness of API Carbon ERW Steel Pipe Industry in Taiwan ¡V A Case Study of CHS

LEE, IE-HSIAN 27 August 2008 (has links)
Steel industry is highly connected to a lot of industries. In year 2007 Taiwan steel industry is the third industry, after warfer and electronic industry, which achieved hundred billion NTD in total years¡¦s revenue. Taiwaness downstream industries, unlike Japanese and Korean, are mostly owned and managed by small and medium companies. Steel pipe is a long- hollow shaped material, massively adapted in fluid transportation, such as pretrolem, natural gas, water and steam etc. It is also heavily used in mechanic maching and structure engineering. This study focuses on API ERW carbon steel pipe industry in Taiwan. Analysis of pipe manufacture industry strategy is made upon the basis of theories like value chain, competitive strategy and game theory. Moreover, interviews with professionals and specialists are held to collect experiential wisdom regarding management and core competence ability. In another word, theory analyses together with interviews lead to the conclusion of competitive characteristics. Also, illustration of strategic competitiveness forming in CHS provides a practical example. How to evaluate the core competitive ability in Taiwan API ERW carbon steel pipe industry when facing global competition, that depends on every company¡¦s unique global strategy. To sum up, this study describes and analyzes the current state of API ERW carbon steel pipe industry in Taiwan and summits the proposal of competitive strategies by taking CHS as an example.
448

Direct numerical simulation of turbulent flow in plane and cylindrical geometries

Komminaho, Jukka January 2000 (has links)
<p>This thesis deals with numerical simulation of turbulentflows in geometrically simple cases. Both plane and cylindricalgeometries are used. The simplicity of the geometry allows theuse of spectral methods which yield a very high accuracy usingrelatively few grid points. A spectral method for planegeometries is implemented on a parallel computer. Thetransitional Reynolds number for plane Couette flow is verifiedto be about 360, in accordance with earlier findings. TurbulentCouette flow at twice the transitional Reynolds number isstudied and the findings of large scale structures in earlierstudies of Couette flow are substantiated. These largestructures are shown to be of limited extent and give anintegral length scale of six half channel heights, or abouteight times larger than in pressure-driven channel flow.Despite this, they contain only about 10 \% of the turbulentenergy. This is demonstrated by applying a very smallstabilising rotation, which almost eliminates the largestructures. A comparison of the Reynolds stress budget is madewith a boundary layer flow, and it is shown that the near-wallvalues in Couette flow are comparable with high-Reynolds numberboundary layer flow. A new spectrally accurate algorithm isdeveloped and implemented for cylindrical geometries andverified by studying the evolution of eigenmodes for both pipeflow and annular pipe flow. This algorithm is a generalisationof the algorithm used in the plane channel geometry. It usesFourier transforms in two homogeneous directions and Chebyshevpolynomials in the third, wall-normal, direction. TheNavier--Stokes equations are solved with a velocity-vorticityformulation, thereby avoiding the difficulty of solving for thepressure. The time advancement scheme used is a mixedimplicit/explicit second order scheme. The coupling between twovelocity components, arising from the cylindrical coordinates,is treated by introducing two new components and solving forthem, instead of the original velocity components. TheChebyshev integration method and the Chebyshev tau method isboth implemented and compared for the pipe flow case.</p>
449

On Heat and Paper : From Hot Pressing to Impulse Technology

Lucisano, Marco Francesco Carlo January 2002 (has links)
<p>Impulse technology is a process in which water is removedfrom a wet paper web by the combined action of mechanicalpressure and intense heat. This results in increased dewateringrates, increased smoothness on the roll side of the sheet, andincreased density. Although the potential benefits of impulsepressing have been debated over the past thirty years, itsindustrial acceptance has been prevented by web delamination,which is defined as a reduction in the z-directional strengthof paper.</p><p>This thesis deals with the mechanism of heat transfer withphase change during impulse pressing of wet paper. The resultsof four complementary experimental studies suggest that littleor no steam is formed in an impulse nip prior to the point ofmaximum applied load. As the nip is unloaded and the hydraulicpressure decreases, hot liquid water flashes to steam. Weadvance the argument that the force expressed upon flashing canbe used to displace liquid water, in a mechanism similar tothat originally proposed by Wahren. Additionally, modelexperiments performed in a novel experimental facility suggestthat the strength of flashing-assisted displacement dewateringcan be maximized by controlling the direction of steam venting.If this solution could be exploited in a commercially viableimpulse press, delamination would cease to be an issue ofconcern.</p><p>The thesis includes a study of the web structure ofdelaminated paper. Here, we characterized delaminated paper bythe changes in transverse permeability and cross-sectionalsolidity profiles measured as a function of pressingtemperature. We found no evidence that wet pressing and impulsepressing induced stratification in non-delaminated sheets andconcluded that the parabolic solidity profiles observed weredue to capillary forces present during drying. Further, thepermeability of mechanically compressed never-dried samples wasfound to be essentially constant for pressing temperatureslower than the atmospheric boiling point of water and toincrease significantly at higher pressing temperatures. Wepropose this to be a result of damage to the cell wall materialdue to flashing of hot liquid water in the fiber walls andlumina.</p><p>Finally, we present a method and an apparatus formeasurement of the thermal properties of water-saturated paperwebs at temperatures and pressures of interest for commercialhigh-intensity processes. After validation, the method wassuccessfully applied to measure the thermal conductivity,thermal diffusivity and volumetric heat capacity ofwater-saturated blotter paper as functions of temperature andsolids content. Here, we found that the thermal conductivityincreased with solids content in the range from 30%\ to 55%,which is in conflict with the commonly stated assumptions of adecreasing trend. We propose that this discrepancy could be dueto the thermal conductivity of air-free fibers wetted byunpressable water only, being significantly different from thatof dry cellulose.</p>
450

Numerical computations of the unsteady flow in a radial turbine

Hellström, Fredrik January 2008 (has links)
<p>Non-pulsatile and pulsatile flow in bent pipes and radial turbine has been assessed with numerical simulations. The flow field in a single bent pipe has been computed with different turbulence modelling approaches. A comparison with measured data shows that Implicit Large Eddy Simulation (ILES) gives the best agreement in terms of mean flow quantities. All computations with the different turbulence models qualitatively capture the so called Dean vortices. The Dean vortices are a pair of counter-rotating vortices that are created in the bend, due to inertial effects in combination with a radial pressure gradient. The pulsatile flow in a double bent pipe has also been considered. In the first bend, the Dean vortices are formed and in the second bend a swirling motion is created, which will together with the Dean vortices create a complex flow field downstream of the second bend. The strength of these structures will vary with the amplitude of the axial flow. For pulsatile flow, a phase shift between the velocity and the pressure occurs and the phase shift is not constant during the pulse depending on the balance between the different terms in the Navier- Stokes equations.</p><p>The performance of a radial turbocharger turbine working under both non-pulsatile and pulsatile flow conditions has also been investigated by using ILES. To assess the effect of pulsatile inflow conditions on the turbine performance, three different cases have been considered with different frequencies and amplitude of the mass flow pulse and different rotational speeds of the turbine wheel. The results show that the turbine cannot be treated as being quasi-stationary; for example, the shaft power varies with varying frequency of the pulses for the same amplitude of mass flow. The pulsatile flow also implies that the incidence angle of the flow into the turbine wheel varies during the pulse. For the worst case, the relative incidence angle varies from approximately −80° to +60°. A phase shift between the pressure and the mass flow at the inlet and the shaft torque also occurs. This phase shift increases with increasing frequency, which affects the accuracy of the results from 1-D models based on turbine maps measured under non-pulsatile conditions.</p><p>For a turbocharger working under internal combustion engine conditions, the flow into the turbine is pulsatile and there are also unsteady secondary flow components, depending on the geometry of the exhaust manifold situated upstream of the turbine. Therefore, the effects of different perturbations at the inflow conditions on the turbine performance have been assessed. For the different cases both turbulent fluctuations and different secondary flow structures are added to the inlet velocity. The results show that a non-disturbed inlet flow gives the best performance, while an inflow condition with a certain large scale eddy in combination with turbulence has the largest negative effect on the shaft power output.</p>

Page generated in 0.0204 seconds