• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 73
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 11
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 213
  • 117
  • 59
  • 50
  • 49
  • 38
  • 32
  • 32
  • 30
  • 29
  • 27
  • 27
  • 26
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Examination of Neisseria gonorrhoeae opacity protein expression during experimental murine genital tract infection /

Simms, Amy Nicole. January 2005 (has links) (PDF)
Thesis (Ph. D.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).
212

Análise da mobilidade mitocondrial em células vivas do hipocampo, substância negra e locus coeruleus anterior à agregação proteica envolvida  em neurodegeneração / Analisys of mitochondrial mobility in living hippocampal, substantita nigra and locus coeruleos cells before protein aggregation involved in neurodegeneration

Stephanie Alves Martins 29 November 2013 (has links)
A alteração do tráfego mitocondrial em neurônios leva ao aumento do estresse oxidativo, privação de energia, deficiência da comunicação intercelular e neurodegeneração. Há evidências de que essas alterações de tráfego antecedem a morte neuronal associada à agregação proteica. Portanto, conhecer a relação entre a mobilidade mitocondrial e a formação de agregados proteicos pode ser um passo importante para o melhor entendimento dos mecanismos da neurodegeneração. Com isso, o objetivo do presente estudo é analisar a mobilidade das mitocôndrias em culturas de células do hipocampo, substância negra e locus coeruleus expostas a rotenona e MPTP, como agentes neurodegenerativos, e à rapamicina como ativador da autofagia. Um outro objetivo do estudo é avaliar o papel do cálcio (através do emprego de EGTA e ionomicina) no modelo experimental. Os resultados mostraram aumento da mobilidade mitocondrial no hipocampo e diminuição na substância negra, já no locus coeruleus houve aumento seguido de diminuição da mobilidade mitocondrial dependendo da concentração de rotenona. O emprego do EGTA e ionomicina mostra que a ação da rotenona sobre o tráfego mitocondrial envolve o cálcio, mas não se relaciona com uma possível alteração da integridade mitocondrial, já que não foi observada alteração no potencial de membrana mitocondrial. Foram também realizados experimentos a fim de avaliar a mobilidade mitocondrial em modelo utilizando rapamicina para ativar a autofagia e MPTP como indutor da neurodegeneração em culturas de células, onde foi observado aumento da mobilidade no hipocampo e no locus coeruleus quando exposto a rapamicina e aumento da mobilidade mitocondrial em cultura de células do hipocampo exposto a MPTP já no locus coeruleus houve uma diminuição significativa da mobilidade mitocondrial. Os resultados permitem concluir que o tráfego mitocondrial está alterado antes da agregação proteica podendo contribuir com a neurodegeneração / Altered mitochondrial traffic in neurons can lead to increased oxidative stress, energy deprivation, impaired intercellular communication and neurodegeneration. There are evidences mitochondria disturbing precedes neuronal death associated with protein aggregation. Therefore, the study of mitochondrial traffic and protein aggregation can be an important step towards a better understanding of the mechanisms of neurodegeneration. Thus, the aim of this study is to analyze mitochondria mobility in cultured cells of the hippocampus, substantia nigra and locus coeruleus exposed to rotenone and MPTP, as neurodegeneration-promoting agents, and rapamycin to activate autophagy. The other objective of the study was to analyze the role of calcium (through EGTA and ionomycin) in the experimental model. The results showed increased and decreased mobility mitochondrial in cells from hippocampus and substantia nigra, respectively, while the locus coeruleus cell culture has increased followed by decreased mitochondrial mobility depending upon rotenone concentration. The use of EGTA and ionomycin showed that alteration of mitochondrial traffic is associated with calcium, however it is not related with changes in mitochondrial membrane potential. Additional experiments were also conducted to assess mitochondrial mobility in a model using rapamycin to activate autophagy and MPTP to induce neurodegeneration in cell cultures. The results of these experiments showed increased mitochondrial mobility in the hippocampus and locus coeruleus when exposed to rapamycin; while MPTP also increased mitochondria mobility in hippocampal cell cultures, but decreased it in locus coeruleus. Results suggest that mitochondrial traffic is altered before protein aggregation, which may contribute to neurodegeneration
213

Inhibiting Axon Degeneration in a Mouse Model of Acute Brain Injury Through Deletion of Sarm1

Henninger, Nils 24 May 2017 (has links)
Traumatic brain injury (TBI) is a leading cause of disability worldwide. Annually, 150 to 200/1,000,000 people become disabled as a result of brain trauma. Axonal degeneration is a critical, early event following TBI of all severities but whether axon degeneration is a driver of TBI remains unclear. Molecular pathways underlying the pathology of TBI have not been defined and there is no efficacious treatment for TBI. Despite this significant societal impact, surprisingly little is known about the molecular mechanisms that actively drive axon degeneration in any context and particularly following TBI. Although severe brain injury may cause immediate disruption of axons (primary axotomy), it is now recognized that the most frequent form of traumatic axonal injury (TAI) is mediated by a cascade of events that ultimately result in secondary axonal disconnection (secondary axotomy) within hours to days. Proposed mechanisms include immediate post-traumatic cytoskeletal destabilization as a direct result of mechanical breakage of microtubules, as well as catastrophic local calcium dysregulation resulting in microtubule depolymerization, impaired axonal transport, unmitigated accumulation of cargoes, local axonal swelling, and finally disconnection. The portion of the axon that is distal to the axotomy site remains initially morphologically intact. However, it undergoes sudden rapid fragmentation along its full distal length ~72 h after the original axotomy, a process termed Wallerian degeneration. Remarkably, mice mutant for the Wallerian degeneration slow (Wlds) protein exhibit ~tenfold (for 2–3 weeks) suppressed Wallerian degeneration. Yet, pharmacological replication of the Wlds mechanism has proven difficult. Further, no one has studied whether Wlds protects from TAI. Lastly, owing to Wlds presumed gain-of-function and its absence in wild-type animals, direct evidence in support of a putative endogenous axon death signaling pathway is lacking, which is critical to identify original treatment targets and the development of viable therapeutic approaches. Novel insight into the pathophysiology of Wallerian degeneration was gained by the discovery that mutant Drosophila flies lacking dSarm (sterile a/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously recapitulated the Wlds phenotype. The pro-degenerative function of the dSarm gene (and its mouse homolog Sarm1) is widespread in mammals as shown by in vitro protection of superior cervical ganglion, dorsal root ganglion, and cortical neuron axons, as well as remarkable in-vivo long-term survival (>2 weeks) of transected sciatic mouse Sarm1 null axons. Although the molecular mechanism of function remains to be clarified, its discovery provides direct evidence that Sarm1 is the first endogenous gene required for Wallerian degeneration, driving a highly conserved genetic axon death program. The central goals of this thesis were to determine (1) whether post-traumatic axonal integrity is preserved in mice lacking Sarm1, and (2) whether loss of Sarm1 is associated with improved functional outcome after TBI. I show that mice lacking the mouse Toll receptor adaptor Sarm1 gene demonstrate multiple improved TBI-associated phenotypes after injury in a closed-head mild TBI model. Sarm1-/- mice developed fewer beta amyloid precursor protein (βAPP) aggregates in axons of the corpus callosum after TBI as compared to Sarm1+/+ mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phosphorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after TBI. Strikingly, whereas wild type mice exhibited a number of behavioral deficits after TBI, I observed a strong, early preservation of neurological function in Sarm1-/- animals. Finally, using in vivo proton magnetic resonance spectroscopy, I found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1-/- mice compared to controls immediately following TBI. My results indicate that the Sarm1-mediated prodegenerative pathway promotes pathogenesis in TBI and suggest that anti-Sarm1 therapeutics are a viable approach for preserving neurological function after TBI.

Page generated in 0.021 seconds