• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hluboké neuronové sítě pro prostředí superpočítače / Deep neural network for supercomputer environments

Bronda, Samuel January 2019 (has links)
The main benefit of the work is the optimization of the hardware configuration for the calculation of neural networks. The theoretical part describes neural networks, deep learning frameworks and hardware options. The next part of the thesis deals with implementation of performance tests, which include application of Inception V3 and ResNet models. Network models are applied to various graphics cards and computing hardware. The output of the thesis is the implemented model of the network Inception V3, which examines the graphics cards and their performance, time-consuming calculations and their efficiency. The ResNet model is applied to a section that examines other impacts on neural network computing such as used disk, operating memory, and so on. Each practical part contains a discussion where the knowledge of the given part is explained. In the case of consumption measurement, a mismatch between the declaration by the manufacturer and the measured values was identified.
2

Use of Deep Learning in Detection of Skin Cancer and Prevention of Melanoma

Papanastasiou, Maria January 2017 (has links)
Melanoma is a life threatening type of skin cancer with numerous fatal incidences all over the world. The 5-year survival rate is very high for cases that are diagnosed in early stage. So, early detection of melanoma is of vital importance. Except for several techniques that clinicians apply so as to improve the reliability of detecting melanoma, many automated algorithms and mobile applications have been developed for the same purpose.In this paper, deep learning model designed from scratch as well as the pretrained models Inception v3 and VGG-16 are used with the aim of developing a reliable tool that can be used for melanoma detection by clinicians and individual users. Dermatologists who use dermoscopes can take advantage of the algorithms trained on dermoscopical images and acquire a confirmation about their diagnosis. On the other hand, the models trained on clinical images can be used on mobile applications, since a cell phone camera takes images similar to them.The results using Inception v3 model for dermoscopical images achieved accuracy 91.4%, sensitivity 87.8% and specificity 92.3%. For clinical images, the VGG-16 model achieved accuracy 86.3%, sensitivity 84.5% and specificity 88.8%. The results are compared to those of clinicians, which shows that the algorithms can be used reliably for the detection of melanoma.
3

Transfer learning between domains : Evaluating the usefulness of transfer learning between object classification and audio classification

Frenger, Tobias, Häggmark, Johan January 2020 (has links)
Convolutional neural networks have been successfully applied to both object classification and audio classification. The aim of this thesis is to evaluate the degree of how well transfer learning of convolutional neural networks, trained in the object classification domain on large datasets (such as CIFAR-10, and ImageNet), can be applied to the audio classification domain when only a small dataset is available. In this work, four different convolutional neural networks are tested with three configurations of transfer learning against a configuration without transfer learning. This allows for testing how transfer learning and the architectural complexity of the networks affects the performance. Two of the models developed by Google (Inception-V3, Inception-ResNet-V2), are used. These models are implemented using the Keras API where they are pre-trained on the ImageNet dataset. This paper also introduces two new architectures which are developed by the authors of this thesis. These are Mini-Inception, and Mini-Inception-ResNet, and are inspired by Inception-V3 and Inception-ResNet-V2, but with a significantly lower complexity. The audio classification dataset consists of audio from RC-boats which are transformed into mel-spectrogram images. For transfer learning to be possible, Mini-Inception, and Mini-Inception-ResNet are pre-trained on the dataset CIFAR-10. The results show that transfer learning is not able to increase the performance. However, transfer learning does in some cases enable models to obtain higher performance in the earlier stages of training.
4

Deep Learning Models for Human Activity Recognition

Albert Florea, George, Weilid, Filip January 2019 (has links)
AMI Meeting Corpus (AMI) -databasen används för att undersöka igenkännande av gruppaktivitet. AMI Meeting Corpus (AMI) -databasen ger forskare fjärrstyrda möten och naturliga möten i en kontorsmiljö; mötescenario i ett fyra personers stort kontorsrum. För attuppnågruppaktivitetsigenkänninganvändesbildsekvenserfrånvideosoch2-dimensionella audiospektrogram från AMI-databasen. Bildsekvenserna är RGB-färgade bilder och ljudspektrogram har en färgkanal. Bildsekvenserna producerades i batcher så att temporala funktioner kunde utvärderas tillsammans med ljudspektrogrammen. Det har visats att inkludering av temporala funktioner både under modellträning och sedan förutsäga beteende hos en aktivitet ökar valideringsnoggrannheten jämfört med modeller som endast använder rumsfunktioner[1]. Deep learning arkitekturer har implementerats för att känna igen olika mänskliga aktiviteter i AMI-kontorsmiljön med hjälp av extraherade data från the AMI-databas.Neurala nätverks modellerna byggdes med hjälp av KerasAPI tillsammans med TensorFlow biblioteket. Det finns olika typer av neurala nätverksarkitekturer. Arkitekturerna som undersöktes i detta projektet var Residual Neural Network, Visual GeometryGroup 16, Inception V3 och RCNN (LSTM). ImageNet-vikter har använts för att initialisera vikterna för Neurala nätverk basmodeller. ImageNet-vikterna tillhandahålls av Keras API och är optimerade för varje basmodell [2]. Basmodellerna använder ImageNet-vikter när de extraherar funktioner från inmatningsdata. Funktionsextraktionen med hjälp av ImageNet-vikter eller slumpmässiga vikter tillsammans med basmodellerna visade lovande resultat. Både Deep Learning användningen av täta skikt och LSTM spatio-temporala sekvens predikering implementerades framgångsrikt. / The Augmented Multi-party Interaction(AMI) Meeting Corpus database is used to investigate group activity recognition in an office environment. The AMI Meeting Corpus database provides researchers with remote controlled meetings and natural meetings in an office environment; meeting scenario in a four person sized office room. To achieve the group activity recognition video frames and 2-dimensional audio spectrograms were extracted from the AMI database. The video frames were RGB colored images and audio spectrograms had one color channel. The video frames were produced in batches so that temporal features could be evaluated together with the audio spectrogrames. It has been shown that including temporal features both during model training and then predicting the behavior of an activity increases the validation accuracy compared to models that only use spatial features [1]. Deep learning architectures have been implemented to recognize different human activities in the AMI office environment using the extracted data from the AMI database.The Neural Network models were built using the Keras API together with TensorFlow library. There are different types of Neural Network architectures. The architecture types that were investigated in this project were Residual Neural Network, Visual Geometry Group 16, Inception V3 and RCNN(Recurrent Neural Network). ImageNet weights have been used to initialize the weights for the Neural Network base models. ImageNet weights were provided by Keras API and was optimized for each base model[2]. The base models uses ImageNet weights when extracting features from the input data.The feature extraction using ImageNet weights or random weights together with the base models showed promising results. Both the Deep Learning using dense layers and the LSTM spatio-temporal sequence prediction were implemented successfully.
5

Further development and optimisation of the CNN-classicification algorithm of Alfrödull for more accurate aerial image detection of decentralised solar energy systems : A study on how the performance of neural networks can beimproved through additional training data, image preprocessing, class balancing and sliding windowclassification

Lindvall, Erik January 2024 (has links)
The global use of solar power is growing at an unprecedented rate, making the need toaccurately track the energy generation of decentralised solar energy systems (SES) more andmore relevant. The purpose of this thesis is to further develop a binary image classifier for thesimulation system framework known as Alfrödull, which will be used to detect and segment SESfrom aerial images to simulate the energy generation within a given Swedish municipality on anhourly basis. This project focuses on improving the Alfrödull classifier through four differentanalyses. the first focusing on examining how additional training data from publicly availabledatasets affects the model performance. The second on how the model can be improvedthrough the use of various image pre-processing techniques. The third on how the model canbe improved through balancing the training datasets to make up for the low amount of positiveimages as well as utilising model ensembles for joint classification. Finally, the fourth analysisemploys a sliding window approach to classify overlapping image tiles. The results show thathaving training data that is a good representation of the environment the model will be used in iscrucial, that the use of image augmentation policies can significantly improve modelperformance, that compensating for class imbalance as well as utilising ensemble methodspositively impacts model performance and that a sliding window approach to classifyingoverlapping images significantly decreases the amount of missed SES at the cost of clusters offalsely classified negative images (false positives). In conclusion, this thesis serves as animportant stepping stone in the practical implementation of the Alfrödull framework, showcasingthe key aspects in making a well performing binary image classifier of SES in Sweden.

Page generated in 0.0638 seconds