• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Études de problèmes aux limites non linéaires de type pseudo-parabolique

Seam, Ngonn 14 September 2010 (has links) (PDF)
L'objectif de ce travail est l'étude du problème non linéaire de type pseudo parabolique suivant : trouver une fonction mesurable $u$ de $Q:=]0,T[\times \Omega$ solution de \begin{equation*} \left\{ \begin{array}{l@{\quad}l} f\left(t,x,u_t\right)-Div \left\{a\left(x,u,u_t\right)\nabla u+b\left(x,u,u_t\right)\nabla u_t \right\}=g(t,x), \; (t,x)\in Q, \\ u(x,t)=0,\; (t,x)\in ]0,T[\times \partial \Omega, \\ u(0,x)=u_0, \; x\in \Omega,\\ \end{array} \right. \end{equation*} où l'opérateur de Nemestki associé à la fonction $f$ est monotone.\\ Un premier chapitre est conscré à l'étude de l'existence d'une solution pour le problème ci-dessus. Pour cela, on utilise une méthode de semi-discrétisation implicite en temps. L'existence des itérés repose sur le théorème de point fixe de Schauder-Tikhonov et la convergence du schéma sur une outil de compacité adapté à la situation. À la fin du chapitre, on propose des applications à l'équation de Barenblatt et au cas d'un $f$ multivoque. \\ Dans le second chapitre, on s'intéresse au problème de Barenblatt pseudo-parabolique : rechercher une fonction mesurable $u$ de $Q$ à valeur réelle telle que \begin{equation*} \left\{ \begin{array}{l@{\quad}l} f\left(u_t\right(t,x))-\Delta u(t,x)-\epsilon \Delta u_t(t,x)=g(t,x), \; (t,x)\in Q, \\ u(x,t)=0,\; (t,x)\in ]0,T[\times \partial \Omega, \\ u(0,x)=u_0, \; x\in \Omega,\\ \end{array} \right. \end{equation*} où $f$ n'est pas nécessairement monotone.\\ Pour $\epsilon> \epsilon_0>0 $, où $\epsilon_0$ est une valeur critique, on montre que le problème est bien posé en utilisant une méthode similaire à celle du premier chapitre. Pour la valeur critique de $\epsilon=\epsilon_0$, le problème admet au plus une solution ; cette dernière existe moyennant une hypothèse supplémentaire sur $f$. Enfin, si $0<\epsilon<\epsilon_0$, la solution n'est pas unique en général. On propose enfin d'une approche stochastique de l'équation pseudo-parabolique de Barenblatt-Sobolev. Le dernier chapitre propose des simulations numériques monodimensionnelles ; notamment, on s'intéresse à la perturbation singulière pseudo-parabolique lorsque la diffusion moléculaire change de signe.
2

Inclusions différentielles d'évolution associées à des ensembles sous-lisses / Evolution differential inclusions associated with subsmooth sets

Noel, Jimmy 23 May 2013 (has links)
Cette thèse est consacrée à l'étude d'existence de solutions pour certains problèmes d'évolution. Il s'agit de processus de rafle perturbés associés d'une part à des ensembles prox-réguliers et d'autre part à des ensembles sous-lisses. Les ensembles sont supposés évoluer de façon lipschitzienne ou absolument continue. / This dissertation is devoted to the study of the existence of solutions for some evolution problems. The study is concerned with perturbed sweeping processes associated on the one hand with prox-regular sets and the other hand with subsmooth sets. It is assumed that the sets move either in a Lipschitz way or in an absolutely continuous way.
3

Modélisation mathématique et numérique de mouvements de foule

Venel, Juliette 27 November 2008 (has links) (PDF)
Nous nous intéressons à la modélisation des mouvements de foule causés par des situations d'évacuation d'urgence. L'objectif de cette thèse est de proposer un modèle mathématique et une méthode numérique de gestion des contacts, afin de traiter les interactions locales entre les personnes pour finalement mieux rendre compte de la dynamique globale du trafic piétonnier. Nous proposons un modèle microscopique de mouvements de foule reposant sur deux principes. D'une part, chaque personne a une vitesse souhaitée, celle qu'elle aurait en l'absence des autres. D'autre part, la vitesse réelle des individus prend en compte une certaine contrainte d'encombrement maximal. En précisant le lien entre ces deux vitesses, le problème d'évolution prend la forme d'une inclusion différentielle du premier ordre. Son caractère bien posé est démontré en utilisant des résultats sur les processus de rafle par des ensembles uniformément prox-réguliers. Ensuite, nous présentons un schéma numérique et démontrons sa convergence. Pour calculer une vitesse souhaitée particulière (celle dirigée par le plus court chemin évitant les obstacles), nous présentons une programmation orientée objet ayant pour but de simuler l'évacuation d'une structure de plusieurs étages présentant une géométrie quelconque. Nous finissons avec d'autres choix de vitesse souhaitée (par exemple, en ajoutant des stratégies individuelles) et présentons les résultats numériques associés. Ces simulations numériques permettent de retrouver certains phénomènes observés lors de déplacements piétonniers.
4

Systèmes dynamiques discrets avec frottement et Identification en biomécanique

Bastien, Jérôme 18 September 2013 (has links) (PDF)
Ce mémoire est consacré à l'étude de systèmes dynamiques discrets avec frottements et à des problèmes d'identification en biomécanique. La première partie concerne des résultats théoriques d'unicité, de convergence et d'analyse numérique de solutions d'équations différentielles non linéaires pour étudier des modèles dynamiques discrets contenant des non-linéarités. Ces non-linéarités sont introduites pour prendre en compte des modèles de frictions via des inclusions différentielles maximales monotones, essentiellement en dimension finie. De nombreux exemples ainsi que des applications sont fournis avec des simulations numériques. La seconde partie est consacrée à la résolution de certains problèmes d'identification en biomécanique : identification d'espaces de travail, de paramètres cinématiques lors de la modélisation de certains mouvements et de paramètres anthropométriques dans le cadre de la dynamique inverse.
5

Fixed point results for multivalued contractions on graphs and their applications

Dinevari, Toktam 06 1900 (has links)
Nous présentons dans cette thèse des théorèmes de point fixe pour des contractions multivoques définies sur des espaces métriques, et, sur des espaces de jauges munis d’un graphe. Nous illustrons également les applications de ces résultats à des inclusions intégrales et à la théorie des fractales. Cette thèse est composée de quatre articles qui sont présentés dans quatre chapitres. Dans le chapitre 1, nous établissons des résultats de point fixe pour des fonctions multivoques, appelées G-contractions faibles. Celles-ci envoient des points connexes dans des points connexes et contractent la longueur des chemins. Les ensembles de points fixes sont étudiés. La propriété d’invariance homotopique d’existence d’un point fixe est également établie pour une famille de Gcontractions multivoques faibles. Dans le chapitre 2, nous établissons l’existence de solutions pour des systèmes d’inclusions intégrales de Hammerstein sous des conditions de type de monotonie mixte. L’existence de solutions pour des systèmes d’inclusions différentielles avec conditions initiales ou conditions aux limites périodiques est également obtenue. Nos résultats s’appuient sur nos théorèmes de point fixe pour des G-contractions multivoques faibles établis au chapitre 1. Dans le chapitre 3, nous appliquons ces mêmes résultats de point fixe aux systèmes de fonctions itérées assujettis à un graphe orienté. Plus précisément, nous construisons un espace métrique muni d’un graphe G et une G-contraction appropriés. En utilisant les points fixes de cette G-contraction, nous obtenons plus d’information sur les attracteurs de ces systèmes de fonctions itérées. Dans le chapitre 4, nous considérons des contractions multivoques définies sur un espace de jauges muni d’un graphe. Nous prouvons un résultat de point fixe pour des fonctions multivoques qui envoient des points connexes dans des points connexes et qui satisfont une condition de contraction généralisée. Ensuite, nous étudions des systèmes infinis de fonctions itérées assujettis à un graphe orienté (H-IIFS). Nous donnons des conditions assurant l’existence d’un attracteur unique à un H-IIFS. Enfin, nous appliquons notre résultat de point fixe pour des contractions multivoques définies sur un espace de jauges muni d’un graphe pour obtenir plus d’information sur l’attracteur d’un H-IIFS. Plus précisément, nous construisons un espace de jauges muni d’un graphe G et une G-contraction appropriés tels que ses points fixes sont des sous-attracteurs du H-IIFS. / In this thesis, we present fixed point theorems for multivalued contractions defined on metric spaces, and, on gauge spaces endowed with directed graphs. We also illustrate the applications of these results to integral inclusions and to the theory of fractals. chapters. In Chapter 1, we establish fixed point results for the maps, called multivalued weak G-contractions, which send connected points to connected points and contract the length of paths. The fixed point sets are studied. The homotopical invariance property of having a fixed point is also established for a family of weak G-contractions. In Chapter 2, we establish the existence of solutions of systems of Hammerstein integral inclusions under mixed monotonicity type conditions. Existence of solutions to systems of differential inclusions with initial value condition or periodic boundary value condition are also obtained. Our results rely on our fixed point theorems for multivalued weak G-contractions established in Chapter 1. In Chapter 3, those fixed point results for multivalued G-contractions are applied to graph-directed iterated function systems. More precisely, we construct a suitable metric space endowed with a graph G and an appropriate G-contraction. Using the fixed points of this G-contraction, we obtain more information on the attractors of graph-directed iterated function systems. In Chapter 4, we consider multivalued maps defined on a complete gauge space endowed with a directed graph. We establish a fixed point result for maps which send connected points into connected points and satisfy a generalized contraction condition. Then, we study infinite graph-directed iterated function systems (H-IIFS). We give conditions insuring the existence of a unique attractor to an H-IIFS. Finally, we apply our fixed point result for multivalued contractions on gauge spaces endowed with a graph to obtain more information on the attractor of an H-IIFS. More precisely, we construct a suitable gauge space endowed with a graph G and a suitable multivalued G-contraction such that its fixed points are sub-attractors of the H-IIFS.
6

Some aspects on sweeping processes / Quelques résultats sur les processus de rafle

Latreche, Wissam 10 July 2018 (has links)
Dans cette thèse, on s'intéresse à l'étude d'existence de solutions pour les processus de rafle. Ce problème prend la forme d'une inclusion différentielle contrainte avec des cônes normaux qui apparaissent naturellement dans nombreuses applications telles que le mouvement de foule, l'élastoplasticité, les mécaniques, les circuits électroniques, etc. L'objective de ce travail est de rapprocher deux importantes classes d'inclusions différentielles. D'une part, nous établissons quelques résultats d'existence de tube-solutions pour des processus de rafle à des ensembles uniformément prox-réguliers. D'autre part, nous présentons des résultats d'existence de solutions monotone par rapport à un préordre pour un système mixte d'inclusions différentielles projetées. De plus, nous montrons l'existence d'un point-selle pour notre système et nous fournissons deux exemples d'applications. / In this thesis, we were interested in the study of the existence of solutions for sweeping processes. This problem takes the form of a constrained differential inclusion involving normal cones which appears naturally in many applications such as crowd motion, elastoplasticity, mechanics, electrical circuit, etc.The aim of this work is to bring together two classes of differential inclusions. On one hand, we establish some existence results of solutions-tube for sweeping processes with uniformly prox-regular sets. On the other hand, we present existence results of monotone solutions with respect to a preorder for a mixed system of projected differential inclusions. In addition, we show that our system has a saddle-point and we provide two examples of applications.
7

Problèmes de contrôle optimal associés avec des inégalités variationnelles et différentielles variationnelles / Optimal control problems associated with variational inequalities and differential variational inequalities

Hechaichi, Hadjer 19 June 2019 (has links)
Les problèmes de contrôle optimal se rencontrent dans l'industrie aérospatiale et dans la mécanique. Leur étude conduit à des difficultés mathématiques importantes. Dans cette thèse, nous nous intéressons aux conditions d'optimalité pour certains problèmes de contrôle avec des contraintes exprimées en termes d'inclusions différentielles. Nous considérons aussi des problèmes de contrôle associés aux modèles mathématiques issus de la Mécanique du Contact. Cette thèse est structurée en deux parties et six chapitres. La première partie, contenant les Chapitres 1, 2 et 3, représente un résumé de nos résultats, en Français. Nous y présentons les problèmes étudiés, les hypothèses sur les données, les notations utilisées ainsi que l’énoncé des principaux résultats. Les démonstrations sont omises. La deuxième partie du manuscrit représente la partie principale de la thèse. Elle contient les Chapitres 4, 5 and 6, chacun ayant fait l'objet d'une publication (parue ou soumise) dans une revue internationale avec comité de lecture.Nous y présentons nos principaux résultats, accompagnés des démonstrations et des références bibliographiques. / Optimal control problems arise in aerospace industry and in mechanics. They are challenging and involve important mathematical difficulties. In this thesis, we are interested to derive optimality conditions for optimal control problems with constraints under the form of differential inclusions. We also consider optimal control problems in the study of some boundary value problems arising in Contact Mechanics. The thesis is structured in two parts and six chapters. Part I represents an abstract of the main results, in French. It contains Chapters 1, 2 and 3. Here we present the problems we study together with the assumptions on the data, the notation and the statement of the main results. The proofs of these results are omitted, since them are presented in Part II of the manuscript.Part II represents the main part of the thesis. It contains Chapters 4, 5 and 6. Each of these chapters made the object of a paper published (or submitted) in an international journal. Here we present our main results, together with the corresponding proofs and bibliographical references.
8

Analyse et implémentation du contrôle par modes glissants en temps discret / Discrete sliding mode control : analysis and implementation

Huber, Olivier 05 May 2015 (has links)
Le contrôle par mode glissant est une technique d'automatique qui possède une longue histoire, la littérature remontant jusqu'au année 50. Son essence est la suivante : le contrôle est définit comme étant l'image d'une fonction discontinue de la variable de glissement, contraignant le système à évolué sur une variété, le système glisse alors dessus, d'où le nom. Cette variable de glissement est elle définie à partir de l'état du système. Les développements ont mené à la constitution d'une théorie bien établie à propos de cette technique, avec de nombreuses propriétés théoriques fort intéressante. Toutefois ceci ne porte que sur la version continue, c'est à dire quand le contrôle peut changer de valeur à chaque instant. En comparaison la version discrète du ce contrôleur est définie par le fait que la valeur du contrôle ne peut changer qu'à des instants isolés discrets. On a alors une fonction en escalier, constante sur la période d'échantillonnage. Cette situation est rencontrée par exemple lorsque le contrôleur est implémenté à l'aide d'un micro-contrôleur, ce qui est le cas dans nombre d'applications industrielles. Le principal problème avec le mode glissant est l'apparition d'un phénomène largement indésirable, le chattering (ou broutement) avec la version discrète du contrôleur, où même déjà en simulation. Dans ce dernier cas, nous appelons ceci du chattering numérique que nous attribuons à une mauvaise discrétisation du contrôle. L'approche développée ici se focalise sur ce point et est largement inspirée par les travaux effectués en mécanique non régulière, où ce type de comportement a aussi été observé lors de la simulation de système avec frottements et/où impacts. L'idée principale est de discretisé le contrôle de manière implicite et non explicite. Ceci permet d'éliminer le chattering numérique dans les cas simples (systèmes linéaires par exemple) où bien de le réduire grandement. Pour mener à bien l'analyse, des outils provenant de l'analyse convexe ainsi que des inégalités variationnelles en dimension finie sont utilisés. Le contrôleur proposé possède des propriétés intéressantes et proches de celles du temps continu. Ainsi on peut montrer que la variable de glissement est régie par une dynamique stable en temps finie, avec une fonction de Lyapunov. Le contrôle discret convergence vers celui du cas continu quand la période d'échantillonnage tends vers 0. Une atténuation d'éventuelles perturbations de type "matching" peut être établie. Ces travaux ont essentiellement portés sur le contrôle par mode glissant classique. L'algorithme dit twisting a pu être discrétisé avec la même technique et sa stabilité en temps finie grâce à une fonction de Lyapunov a pu être montrée. Ces propriétés ont été vérifiée en simulation, mais aussi de manière expérimentale. Ainsi des essais ont pu être menés sur deux banc d'essai: le premier est basé sur un système electropneumatique où à la fois le contrôle par mode glissant classique ainsi que le twisting ont pu être implémentés. L'objectif étant de suivre une trajectoire de référence. Le second système est un pendule inverse où le système doit être stabilisé à la position d'équilibre instable. Ici seul le contrôleur classique a été testé. L'analyse des données expérimentales a permis de mettre en lumière les performances supérieures des contrôleurs proposés par rapport à ceux classiquement usités. Les objectifs de contrôle sont mieux atteint et le chattering est grandement diminué. / Sliding Mode Control is a control technique with a long history, with research efforts dating back to the 50's. The basic idea is to define the control input as a discontinuous function of the sliding variable, which solely depends on the state, and to constraint the system to evolve on a manifold, hence the term sliding. Over the years a strong theory was build around this technique, but only in continuous time. In our context, this means that control input value can change value at any time. The discrete-time case is when the control input can only change at isolated time instants and the dynamical system on which the control is still a continuous-time process. The control input is therefore a step function. This case appears when the controller is digitally implemented, for instance with the help of a microcontroller. This kind of setup is nowadays ubiquitous in benchmarks and industrial applications. One of the main limitation of the applicability of sliding mode control is the chattering phenomenon that is witnessed when this control technique is applied in practice, but already in simulations. In contrast to previous approaches, we single out the chattering that is already witnessed in simulation, even with no disturbance and with perfect knowledge of the dynamics. This is called the numerical chattering and one of its distinct feature is the constant chattering, or high-frequency bang-bang behavior, of the control input. This naturally induces a chattering of the sliding variable. The claim that this type of chattering is usually predominant and that it is due to a bad discretization of the signum multifunction. The approach developed in this work was inspired by the research effort in the nonsmooth mechanical to properly simulate some systems like those with dry friction and/or unilateral constraints. The main point is to discretize the signum in an implicit fashion, that is its argument is the value of the sliding variable at the end of the next sampling period. With this change, the numerical chattering can be removed in the simplest cases, largely attenuated. The research effort was focused on classical sliding mode controller, rather than the higher order ones. The frameworks used to perform the analysis are convex analysis and variational inequalities. This discrete-time controller enjoys several interesting theoretical properties. First it is finite-time Lyapunov stable: the sliding variable goes to 0 in finite-time. The discrete-time control input converges to the continuous-time one as the sampling period goes to 0. The control action also attenuates the effect of matched perturbations. Also the increase of the gain of the controller does not affect the performances when the system is sliding. The twisting controller can be discretized in the same way and is also finite-time Lyapunov stable. This good theoretical properties have been verified in simulations, but also on experimental setups. Two tests were conducted: the first one on an electropneumatic system, where both the classical first-order sliding mode controller and the twisting algorithm were tested. The objective was to track a reference trajectory. The second one was an inverted pendulum on a cart with only the classical SMC. The goal was to stabilize the system at the unstable equilibrium. The analysis from the data collected during those experiments shows that the proposed controllers perform better than the their explicitly discretized versions. The performances are better and the chattering is effectively reduced.

Page generated in 0.0742 seconds