Spelling suggestions: "subject:"infinite dimensional"" "subject:"infinite bimensional""
41 |
Erdős-Kaplansky SatsenLundin, Edvin January 2023 (has links)
Inom linja ̈r algebra har varje vektorrum ett s ̊a kallat dualrum, vilket är ett vektorrum bestående av alla linjära funktioner från det ursprungliga rummet till sin kropp. Att beräkna dimensionen av ett dualrum tillhörande ett ändlig-dimensionellt vektorrum är relativt enkelt, för oändlig-dimensionella vektorrum är det mer komplicerat. Den sats vi ska diskutera, Erdős–Kaplansky Satsen, ämnar lösa den frågan med påståendet att ett dualrum tillhörande ett oändlig-dimensionellt vektorrum har dimension lika med sin kardinalitet.
|
42 |
Optimal H-infinity controller design and strong stabilization for time-delay and mimo systemsGumussoy, Suat 29 September 2004 (has links)
No description available.
|
43 |
Feynman path integral for Schrödinger equation with magnetic fieldCangiotti, Nicolò 14 February 2020 (has links)
Feynman path integrals introduced heuristically in the 1940s are a powerful tool used in many areas of physics, but also an intriguing mathematical challenge. In this work we used techniques of infinite dimensional integration (i.e. the infinite dimensional oscillatory integrals) in two different, but strictly connected, directions. On the one hand we construct a functional integral representation for solutions of a general high-order heat-type equations exploiting a recent generalization of infinite dimensional Fresnel integrals; in this framework we prove a a Girsanov-type formula, which is related, in the case of Schrödinger equation, to the Feynman path integral representation for the solution in presence of a magnetic field; eventually a new phase space path integral solution for higher-order heat-type equations is also presented. On the other hand for the three dimensional Schrödinger equation with magnetic field we provide a rigorous mathematical Feynman path integral formula still in the context of infinite dimensional oscillatory integrals; moreover, the requirement of independence of the integral on the approximation procedure forces the introduction of a counterterm, which has to be added to the classical action functional (this is done by the example of a linear vector potential). Thanks to that, it is possible to give a natural explanation for the appearance of the Stratonovich integral in the path integral formula for both the Schrödinger and the heat equation with magnetic field.
|
44 |
Longitudinal dynamics of semiconductor lasersSieber, Jan 23 July 2001 (has links)
Die vorliegende Arbeit untersucht die longitudinale Dynamik von Halbleiterlasern anhand eines Modells, in dem ein lineares hyperbolisches System partieller Differentialgleichungen mit gewöhnlichen Differentialgleichungen gekoppelt ist. Zunächst wird mit Hilfe der Theorie stark stetiger Halbgruppen die globale Existenz und Eindeutigkeit von Lösungen für das konkrete System gezeigt. Die anschließende Untersuchung des Langzeitverhaltens der Lösungen erfolgt in zwei Schritten. Zuerst wird ausgenutzt, dass Ladungsträger und optisches Feld sich auf unterschiedlichen Zeitskalen bewegen, um mit singulärer Störungstheorie invariante attrahierende Mannigfaltigkeiten niedriger Dimension zu finden. Der Fluss auf diesen Mannigfaltigkeiten kann näherungsweise durch Moden-Approximationen beschrieben werden. Deren Dimension und konkrete Gestalt ist von der Lage des Spektrums des linearen hyperbolischen Operators abhängig. Die zwei häufigsten Situationen werden dann einer ausführlichen numerischen und analytischen Bifurkationsanalyse unterzogen. Ausgehend von bekannten Resultaten für die Ein-Moden-Approximation, wird die Zwei-Moden-Approximation in dem speziellen Fall untersucht, dass die Phasendifferenz zwischen den beiden optischen Komponenten sehr schnell rotiert, so dass sie sich in erster Ordnung herausmittelt. Mit dem vereinfachten Modell können die Mechanismen verschiedener Phänomene, die bei der numerischen Simulation des kompletten Modells beobachtet wurden, erklärt werden. Darüber hinaus lässt sich die Existenz eines anderen stabilen Regimes voraussagen, das sich im gemittelten Modell als "bursting" darstellt. / We investigate the longitudinal dynamics of semiconductor lasers using a model which couples a linear hyperbolic system of partial differential equations with ordinary differential equations. We prove the global existence and uniqueness of solutions using the theory of strongly continuous semigroups. Subsequently, we analyse the long-time behavior of the solutions in two steps. First, we find attracting invariant manifolds of low dimension benefitting from the fact that the system is singularly perturbed, i. e., the optical and the electronic variables operate on different time-scales. The flow on these manifolds can be approximated by the so-called mode approximations. The dimension of these mode approximations depends on the number of critical eigenvalues of the linear hyperbolic operator. Next, we perform a detailed numerical and analytic bifurcation analysis for the two most common constellations. Starting from known results for the single-mode approximation, we investigate the two-mode approximation in the special case of a rapidly rotating phase difference between the two optical components. In this case, the first-order averaged model unveils the mechanisms for various phenomena observed in simulations of the complete system. Moreover, it predicts the existence of a more complex spatio-temporal behavior. In the scope of the averaged model, this is a bursting regime.
|
45 |
Optimizing Reflected Brownian Motion: A Numerical StudyZihe Zhou (7483880) 17 October 2019 (has links)
This thesis focuses on optimization on a generic objective function based on reflected Brownian motion (RBM). We investigate in several approaches including the partial differential equation approach where we write our objective function in terms of a Hamilton-Jacobi-Bellman equation using the dynamic programming principle and the gradient descent approach where we use two different gradient estimators. We provide extensive numerical results with the gradient descent approach and we discuss the difficulties and future study opportunities for this problem.
|
46 |
A Study of Smooth Functions and Differential Equations on FractalsPelander, Anders January 2007 (has links)
<p>In 1989 Jun Kigami made an analytic construction of a Laplacian on the Sierpiński gasket, a construction that he extended to post critically finite fractals. Since then, this field has evolved into a proper theory of analysis on fractals. The new results obtained in this thesis are all in the setting of Kigami's theory. They are presented in three papers.</p><p>Strichartz recently showed that there are first order linear differential equations, based on the Laplacian, that are not solvable on the Sierpiński gasket. In the first paper we give a characterization on the polynomial p so that the differential equation p(Δ)u=f is solvable on any open subset of the Sierpiński gasket for any f continuous on that subset. For general p we find the open subsets on which p(Δ)u=f is solvable for any continuous f.</p><p>In the second paper we describe the infinitesimal geometric behavior of a large class of smooth functions on the Sierpiński gasket in terms of the limit distribution of their local eccentricity, a generalized direction of gradient. The distribution of eccentricities is codified as an infinite dimensional perturbation problem for a suitable iterated function system, which has the limit distribution as an invariant measure. We extend results for harmonic functions found by Öberg, Strichartz and Yingst to larger classes of functions.</p><p>In the third paper we define and study intrinsic first order derivatives on post critically finite fractals and prove differentiability almost everywhere for certain classes of fractals and functions. We apply our results to extend the geography is destiny principle, and also obtain results on the pointwise behavior of local eccentricities. Our main tool is the Furstenberg-Kesten theory of products of random matrices.</p>
|
47 |
On the Riemannian geometry of Seiberg-Witten moduli spacesBecker, Christian January 2005 (has links)
<p>In this thesis, we give two constructions for Riemannian metrics on
Seiberg-Witten moduli spaces. Both these constructions are
naturally induced from the L2-metric on the configuration space.
The construction of the so called quotient L2-metric is very similar
to the one construction of an L2-metric on Yang-Mills moduli spaces as
given by Groisser and Parker. To construct a Riemannian metric on
the total space of the Seiberg-Witten bundle in a similar way, we define the reduced gauge group as a subgroup of the gauge group. We show, that the quotient of the premoduli space by the reduced gauge group is
isomorphic as a U(1)-bundle to the quotient of the premoduli space by the based gauge group. The total space of this new representation of the Seiberg-Witten bundle carries a natural quotient L2-metric, and the bundle projection is a
Riemannian submersion with respect to these metrics. We compute explicit formulae for the sectional curvature of the moduli space in terms of Green operators of the elliptic complex associated with a monopole. Further, we construct a Riemannian metric on the cobordism between moduli spaces for
different perturbations. The second construction of a Riemannian metric on
the moduli space uses a canonical global gauge fixing, which represents the total space of the Seiberg-Witten bundle as a finite dimensional submanifold of the configuration space.</p>
<p>We consider the Seiberg-Witten moduli space on a simply
connected Käuhler surface. We show that the moduli space
(when nonempty) is a complex projective space, if the perturbation
does not admit reducible monpoles, and that the moduli space consists of a single point otherwise. The Seiberg-Witten bundle can then be identified with the Hopf fibration.
On the complex projective plane with a special Spin-C structure, our Riemannian metrics on the
moduli space are Fubini-Study metrics. Correspondingly, the metrics on
the total space of the Seiberg-Witten bundle are Berger
metrics. We show that the diameter of the moduli space shrinks to 0 when the perturbation approaches the wall of reducible perturbations.
Finally we show, that the quotient L2-metric on the Seiberg-Witten moduli space
on a Kähler surface is a Kähler metric.</p> / <p>In dieser Dissertationsschrift geben wir zwei Konstruktionen Riemannscher Metriken auf Seiberg-Witten-Modulräumen an. Beide Metriken werden in natürlicher Weise durch die L2-Metrik des Konfiguartionsraumes induziert. Die Konstruktion der sogenannten Quotienten-L2-Metrik entspricht der durch Groisser und Parker angegebenen Konstruktion einer L2-Metrik auf Yang-Mills-Modulräumen. Zur Konstruktion einer Quotienten-Metrik auf dem Totalraum des Seiberg-Witten-Bündels führen wir die sogenannte reduzierte Eichgruppe ein. Wir zeigen, dass der Quotient des Prämodulraumes nach der reduzierten Eichgruppe als U(1)-Bündel isomorph ist zu dem Quotienten nach der basierten Eichgruppe. Dadurch trägt der Totalraum des Seiberg-Witten Bündels eine natürliche Quotienten-L2-Metrik, bzgl. derer die Bündelprojektion eine Riemannsche Submersion ist. Wir berechnen explizite Formeln für die Schnittrümmung des Modulraumes in Ausdrücken der Green-Operatoren des zu einem Monopol gehörigen elliptischen Komplexes. Ferner konstruieren wir eine Riemannsche Metrik auf dem Kobordismus zwischen Modulräumen zu verschiedenen Störungen. Die zweite Konstruktion einer Riemannschen Metrik auf Seiberg-Witten-Modulräumen benutzt eine kanonische globale Eichfixierung, vermöge derer der Totalraum des Seiberg-Witten-Bündels als endlich-dimensionale Untermannigfaltigkeit des Konfigurationsraumes dargestellt werden kann.</p>
<p>Wir betrachten speziell die Seiberg-Witten-Modulräume auf einfach zusammenhängenden Kähler-Mannigfaltigkeiten. Wir zeigen, dass der
Seiberg-Witten-Modulraum (falls nicht-leer) im irreduziblen Fall ein komplex projektiver Raum its und im reduziblen Fall aus einem einzelnen Punkt besteht.
Das Seiberg-Witten-Bündel läßt sich mit der Hopf-Faserung identifizieren. Die L2-Metrik des Modulraumes auf der komplex projektiven Fläche CP2 (mit einer speziellen Spin-C-Struktur) ist die Fubini-Study-Metrik; entsprechend sind die Metriken auf dem Totalraum Berger-Metriken. Wir zeigen, dass der Durchmesser des Modulraumes gegen 0 konvergiert, wenn die Störung sich dem reduziblen Fall nähert. Schließlich zeigen wir, dass die Quotienten-L2-Metrik auf dem Seiberg-Witten-Modulraum einer Kählerfläche eine Kähler-Metrik ist.</p>
|
48 |
A Study of Smooth Functions and Differential Equations on FractalsPelander, Anders January 2007 (has links)
In 1989 Jun Kigami made an analytic construction of a Laplacian on the Sierpiński gasket, a construction that he extended to post critically finite fractals. Since then, this field has evolved into a proper theory of analysis on fractals. The new results obtained in this thesis are all in the setting of Kigami's theory. They are presented in three papers. Strichartz recently showed that there are first order linear differential equations, based on the Laplacian, that are not solvable on the Sierpiński gasket. In the first paper we give a characterization on the polynomial p so that the differential equation p(Δ)u=f is solvable on any open subset of the Sierpiński gasket for any f continuous on that subset. For general p we find the open subsets on which p(Δ)u=f is solvable for any continuous f. In the second paper we describe the infinitesimal geometric behavior of a large class of smooth functions on the Sierpiński gasket in terms of the limit distribution of their local eccentricity, a generalized direction of gradient. The distribution of eccentricities is codified as an infinite dimensional perturbation problem for a suitable iterated function system, which has the limit distribution as an invariant measure. We extend results for harmonic functions found by Öberg, Strichartz and Yingst to larger classes of functions. In the third paper we define and study intrinsic first order derivatives on post critically finite fractals and prove differentiability almost everywhere for certain classes of fractals and functions. We apply our results to extend the geography is destiny principle, and also obtain results on the pointwise behavior of local eccentricities. Our main tool is the Furstenberg-Kesten theory of products of random matrices.
|
49 |
Validated Continuation for Infinite Dimensional ProblemsLessard, Jean-Philippe 07 August 2007 (has links)
Studying the zeros of a parameter dependent operator F defined on a Hilbert space H is a fundamental problem in mathematics. When the Hilbert space is finite dimensional, continuation provides, via predictor-corrector algorithms, efficient techniques to numerically follow the zeros of F as we move the parameter. In the case of infinite dimensional Hilbert spaces, this procedure must be applied to some finite dimensional approximation which of course raises the question of validity of the output. We introduce a new technique that combines the information obtained from the predictor-corrector steps with ideas from rigorous computations and verifies that the numerically produced zero for the finite dimensional system can be used to explicitly define a set which contains a unique zero for the infinite dimensional problem F: HxR->Im(F).
We use this new validated continuation to study equilibrium solutions of partial differential equations, to prove the existence of chaos in ordinary differential equations and to follow branches of periodic solutions of delay differential equations. In the context of partial differential equations, we show that the cost of validated continuation is less than twice the cost of the standard continuation method alone.
|
50 |
A computational framework for the solution of infinite-dimensional Bayesian statistical inverse problems with application to global seismic inversionMartin, James Robert, Ph. D. 18 September 2015 (has links)
Quantifying uncertainties in large-scale forward and inverse PDE simulations has emerged as a central challenge facing the field of computational science and engineering. The promise of modeling and simulation for prediction, design, and control cannot be fully realized unless uncertainties in models are rigorously quantified, since this uncertainty can potentially overwhelm the computed result. While statistical inverse problems can be solved today for smaller models with a handful of uncertain parameters, this task is computationally intractable using contemporary algorithms for complex systems characterized by large-scale simulations and high-dimensional parameter spaces. In this dissertation, I address issues regarding the theoretical formulation, numerical approximation, and algorithms for solution of infinite-dimensional Bayesian statistical inverse problems, and apply the entire framework to a problem in global seismic wave propagation. Classical (deterministic) approaches to solving inverse problems attempt to recover the “best-fit” parameters that match given observation data, as measured in a particular metric. In the statistical inverse problem, we go one step further to return not only a point estimate of the best medium properties, but also a complete statistical description of the uncertain parameters. The result is a posterior probability distribution that describes our state of knowledge after learning from the available data, and provides a complete description of parameter uncertainty. In this dissertation, a computational framework for such problems is described that wraps around the existing forward solvers, as long as they are appropriately equipped, for a given physical problem. Then a collection of tools, insights and numerical methods may be applied to solve the problem, and interrogate the resulting posterior distribution, which describes our final state of knowledge. We demonstrate the framework with numerical examples, including inference of a heterogeneous compressional wavespeed field for a problem in global seismic wave propagation with 10⁶ parameters.
|
Page generated in 0.1079 seconds