• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lasso peptides from Actinobacteria - Chemical diversity and ecological role / Peptides lasso des actinobactéries - diversité chimique et rôle écologique

Mevaere, Jimmy 14 November 2016 (has links)
Les peptides lasso sont des peptides bioactifs bactériens issus de la voie de biosynthèse ribosomale et subissant des modifications post-traductionnelles, caractérisés par une structure entrelacée dite en lasso. Ils possèdent un cycle macrolactame en position N-terminale, traversé par la queue C-terminale. Cette topologie de type rotaxane, maintenue par piégeage de la queue C-terminale dans le cycle via des acides aminés encombrant et/ou des ponts disulfure, confère à ces peptides une structure compacte et stable. Les actinobactéries recèlent la plus grande diversité et gamme d'activités biologiques parmi les peptides lasso (antibactériens, anti-VIH, antagonistes de récepteurs..), et l'exploration de génomes suggère une diversité encore plus grande, puisque certains clusters portent des gènes codant des enzymes de modifications post-traductionnelles jamais observées auparavant. Cependant, l'expression de ces peptides semble être rigoureusement contrôlée, rendant leur production en laboratoire difficile à partir de la bactérie productrice. Le rôle écologique et les mécanismes de régulation des peptides lasso ne sont pas très documentés. Leur compréhension permettrait d'améliorer la production et de mieux exploiter les activités biologiques des peptides lasso. / Lasso peptides are ribosomally synthesized and post-translationally modified peptides produced by bacteria, characterized by a remarkable mechanically-interlocked structure. The lasso topology, reminiscent to a rotaxane, consists in an N-terminal macrolactam ring threaded by a C-terminal tail. This compact and stable structure is stabilized by steric entrapping of the tail in the ring, through bulky amino acid(s) and/or disulphide bonds. Lasso peptides produced by Actinobacteria display the greatest chemical diversity and a range of biological activities (antibacterial, anti-HIV, receptor antagonist…), therefore are of high pharmaceutical interest. Genome mining revealed that Actinobacteria have enormous potential to biosynthesize novel lasso peptides, e.g. harbouring new post-translational modifications. However, the expression of these peptides is generally controlled by complex regulatory systems, making their production under laboratory conditions difficult. Understanding the ecological role and regulation mechanisms of lasso peptides would help to improve production and better exploit the biotechnological potential of these molecules. The first part of my work deals with the identification of new lasso peptides from Actinobacteria, using heterologous expression in Streptomyces hosts. The second part of my work deals with the regulation mechanism and ecological role of lasso peptides using sviceucin, a lasso peptide produced by Streptomyces sviceus, as the model for study.
2

Bioproduction d'hydrogène par la cyanobactérie synechocystis sp. PCC 6803

Cano, Melissa 24 September 2013 (has links)
Les microorganismes photosynthétiques suscitent un intérêt biotechnologique important pour la production de dihydrogène. La cyanobactérie Synechocystis sp. PCC 6803 est capable d'initier une photoproduction d'hydrogène catalysée par une hydrogénase [NiFe] bidirectionnelle qui se présente sous la forme d'un complexe pentamérique (HoxEFUYH). Toutefois l'inhibition de cette enzyme par l'oxygène émis par le photosystème II rend cette photoproduction transitoire et constitue un verrou majeur au développement de tels procédés. L'exploitation de ces organismes impose une meilleure compréhension des bases moléculaires associées à la sensibilité de l'hydrogénase envers l'oxygène ainsi que des composantes limitant son activité de production d'H2, ce qui implique la connaissance détaillée des jeux d'interactions avec ses partenaires physiologiques NAD(P)+/NAD(P)H.Diverses substitutions d'acides aminés potentiellement impliqués dans la sensibilité de l'enzyme à l'O2 et situés au cœur du site actif (Ileu64, Leu107, Leu112) de la sous-unité catalytique HoxH ont été réalisées. Les résultats in vitro et in vivo indiquent une sensibilité envers l'O2 moindre chez le mutant I64M, qui présente une diffusion limitée et un biais vers l'activité de production d'H2.L'étude des interactions de mutants de délétion des gènes diaphorase hoxE et hoxF avec les cofacteurs NAD(P) a montré que NAD+/NADH semblent être les partenaires privilégiés de l'hydrogénase pour le transfert d'électrons, tandis que le NADPH a un effet activateur sur l'enzyme.Ces études apportent des éléments importants pour envisager une optimisation ciblée et maîtrisée pour la bioproduction d'H2. / Oxygenic photosynthetic organisms are a matter of great biotechnological interest for the production of dihydrogen using what seem to be infinite resources, water and solar energy. The cyanobacterium Synechocystis sp. PCC 6803 encodes a bidirectional [NiFe] hydrogenase consisting of a pentameric complex (HoxEFUYH) that allows it to carry H2 photoproduction. However, it is a transient process, mainly due to the oxygen sensitivity of hydrogenases, O2 being produced at PSII during photosynthesis. Future exploitation of these organisms in bioprocesses requires a better understanding of the molecular bases of O2 sensitivity of the hydrogenase and of the elements limiting H2 evolution which involves detailed knowledge of the interactions of the enzyme with its physiological partners NAD(P)+/NAD(P)H.Various mutants of the Synechocystis hydrogenase were created by genetic engineering, targeting specific amino acid residues (Ileu64, Leu107, Leu112) in the catalytic subunit HoxH identified as putative critical elements for O2 sensitivity. Results obtained in vitro and in vivo indicate that the substitution I64M slightly improves O2 tolerance and alters gas diffusion kinetics with a bias towards H2 production. Studying the interaction of diaphorase gene-deletion mutants hoxF and hoxE with partners NAD(P) showed that NAD+/NADH are the preferential electron acceptor/donor of the hydrogenase, while NADPH is more efficient for enzyme activation.These studies provide first insights on the determinants of the oxygen sensitivity of the hydrogenase of Synechocystis and its activation, which are critical elements to consider in targeted optimization for bioproduction of H2.
3

Ingénierie génétique de la levure oléagineuse Yarrowia Lipolytica pour la production de lipides

Beopoulos, Athanasios 10 November 2009 (has links) (PDF)
Yarrowia lipolytica est une levure oléagineuse qui possède un remarquable potentiel de croissance et d'accumulation de lipides dans des milieux hydrophobes. Au cours de cette étude nous avons approfondi nos connaissances du métabolisme lipidique chez cette levure en mettant l'accent sur la capacité d'accumulation et de dégradation des lipides, la régulation et les interactions des différentes voies métaboliques. L'étude des enzymes du métabolisme des microorganismes oléagineux et de leurs particularités fonctionnelles, en comparaison avec celles des microorganismes non oléagineux, a permis de se focaliser sur des enzymes candidates pour être impliquées dans le caractère oléagineux. L'objectif de cette étude est de combiner les connaissances physiologiques sur cette levure avec les outils génétiques existants afin d'utiliser Y. lipolytica comme une usine cellulaire pour la production de grandes quantités de lipides ayant un intérêt industriel. Afin de rediriger les flux de carbone vers la synthèse de lipides, le gène GUT2, qui code l'un de deux isomères de la glycérol-3-phosphate déshydrogénase, ainsi que la voie de la β-oxydation ont été invalidés chez Y. lipolytica, conduisant à une forte augmentation de l'accumulation des lipides. Afin d'identifier l'étape limitante de la synthèse des TAG et de construire des souches aux profils lipidiques modifiés nous avons joué sur le niveau d'expression des acyltransférases et des désaturases. La contribution relative des acyltransférases dépend de la phase de croissance et leurs affinités vis-à-vis des substrats donneurs d'acyle sont complémentaires. La modification des désaturases a permis d'accumuler des acides gras spécifiques, démontrant ainsi qu'il est possible de moduler le profil des lipides accumulés chez Y. lipolytica. Cette étude nous a permis de construire des souches hyperaccumulatrices aux profils lipidiques tels qu'ils permettront de leur trouver des applications biotechnologiques dans la filière des biocarburants ou dans l'industrie oléochimique en tant qu'unités alternatives pour la production de substrats spécifiques.
4

Étude quantitative des basses concentrations de DnaA dans Escherichia coli, en utilisant le système d’expression uhp / Quantitative study of the effects of low DnaA concentrations in Escherichia coli, using the uhp pathway as an inducible expression system

Chelli Ponce de Leon, Bernard 25 April 2017 (has links)
La protéine DnaA, ou un homologue, est présente dans la plupart des organismes vivants parce qu'elle joue un rôle clé pour la réplication de l'ADN. Dans Escherichia coli, l'expression de DnaA, l'initiateur central de la réplication de l'ADN, est donc étroitement régulée. Des études antérieures ont montré qu'une forte surexpression de cette protéine conduit à une diminution de la viabilité cellulaire, alors que son absence induit l'arrêt de la division cellulaire. Même si ces conditions extrêmes sont bien étudiées, la transition entre l'arrêt de la division et la croissance normale n'a pas été analysée quantitativement.Nous avons modifié génétiquement Escherichia coli pour mettre l'expression de l'ARN polymérase et de DnaA sous le contrôle deux systèmes inductibles distincts. Pour contrôler l’expression de DnaA, nous avons utilisé un système d’induction se trouvant déjà dans la cellule, le système uhp. Le promoteur du gène uhpT est induit par le glucose-6-phosphate extracellulaire. Nous avons tout d’abord étudié les caractéristiques d’induction de ce système et ensuite caractérisé les phénomènes biologiques déclenchées par les variations de la concentration de DnaA. Les méthodes utilisées combinent des mesures sur une population des bactéries, avec celles en cellule unique, en utilisant la microscopie in vivo en temps réel et des systèmes microfluidiques. Les expériences de microscopie révèlent des phénomènes stochastiques en raison du faible nombre de molécules des composants du système d'induction uhp. En corrélant les observations de population et de cellules uniques, nous donnons une interprétation quantitative du comportement observé. Comme une application potentielle de notre système de contrôle, nous envisageons la possibilité d’arrêter la division cellulaire afin de transformer la cellule en un «sac d'enzymes» pour la production biotechnologique de métabolites. / The DnaA protein, or a homologue, is present in most living organisms because it plays a key role for DNA replication. In Escherichia coli, the expression of DnaA, the central initiator of DNA replication, is therefore tightly regulated. Previous studies have shown that a large overexpression of this protein leads to a decrease in cell viability, while its absence induces the arrest of cell division. Even though these extreme conditions are well studied, the transition from division arrest to normal growth has not been quantitatively analyzed.We genetically engineered Escherichia coli to put the expression of RNA polymerase and the expression of DnaA under the control of two distinct, inducible systems. For the control of DnaA expression, we used a regulatory system already present in the cell, the uhp system. The promoter of the uhpT gene is induced via extracellular glucose-6-phosphate. We characterized the induction characteristics of this system and studied the biological phenomena triggered by varying concentrations of DnaA, using population measurements and single cell, time lapse microscopy of microcolonies or cells grown in a microfluidics device. The microscopy experiments reveal stochastic phenomena due to the low number of molecules of components of the induction system and of DnaA. Confronting population and single cell observations we are able to give a quantitative interpretation of the observed behavior. As a potential application of our control system, we explored the possibility of freezing cell division in order to turn the cell into a “bag of enzymes” for the biotechnological production of metabolites.

Page generated in 0.0443 seconds