Spelling suggestions: "subject:"ingenuity pathway 2analysis"" "subject:"ingenuity pathway 3analysis""
1 |
Analyse protéomique de lignées cellulaires et de tissus de cancer colorectal par spectrométrie de masse. / Proteomic analysis of colorectal cancer cell lines and tissues by mass spectrometry.Mathieu, Alex-Ane January 2015 (has links)
Résumé : L’adénocarcinome colorectal est parmi les plus importants cancers au Canada en terme de mortalité et morbidité. Cependant, nous n’en connaissons encore que peu, entres autres sur les voies cellulaires importantes et les protéines présentant un potentiel comme biomarqueur. Cette étude fut divisée en deux sous-projets.
Sous-projet A. Il n’y a présentement aucun biomarqueur permettant de prédire la réponse à la radiothérapie comme modalité de traitement pour le cancer colorectal. Le but de ce sous-projet était de mettre au point les méthodes permettant d’effectuer une étude prospective ou rétrospective par spectrométrie de masse sur la réponse à la radiothérapie en utilisant des échantillons de tissu de patient. Des échantillons de tissu de souris et de tissu humains anonymisés ont été utilisés pour évaluer la faisabilité d’une telle étude. Différentes techniques d’extraction protéique ont été évaluées. Les extraits totaux et fractionnements subcellulaires de tissu frais ont permis une analyse appropriée des protéines cellulaires. Il en était de même pour l’extraction totale de tissus fixés. Cependant, les protéines extraites suite à microdissection au laser de tissu fixé étaient inadéquates et en nombre insuffisant.
Sous-projet B. Afin d’investiguer l’importance de fonctions, voies ou protéines dans différents types de cancer colorectaux, neuf lignées cellulaires de cancer colorectal et de côlon normal ont été fractionnées en quatre compartiments subcellulaires et analysées par spectrométrie de masse. Aucun groupe de recherche n’avait analysé jusqu’à présent plus de cinq lignées et plus d’un compartiment subcellulaire à la fois. Les résultats montraient que certaines voies canoniques et fonctions cellulaires étaient de haute importance dans plusieurs des lignées analysées, dont la voie de signalisation par eIF2. De plus, les régulateurs de transcription TP53, MYC et TGFB1, pouvant être responsables des caractéristiques cellulaires observées, ont été identifiés.
En conclusion, ce projet nous a permis d’améliorer nos connaissances sur les caractéristiques moléculaires d’importance dans le cancer colorectal et de mettre au point des techniques qui pourraient permettre la découverte de nouveaux biomarqueurs. / Abstract : Colorectal adenocarcinoma is one of the most important cancers in Canada in terms of mortality and morbidity. However, we still know very little on its molecular features. This study was divided into two sub-projects.
Sub-project A. At this time, no biomarker has the capacity of predicting a patient’s response to radiotherapy, which is a commonly used treatment of colorectal cancer. The goal of this section was to develop the methods to conduct a prospective or retrospective mass spectrometry study on the patient response to radiotherapy, through the use of human tissues. Mouse tissues and tissues of an anonymous patient were obtained in order to evaluate the feasibility of such a study. Different protein extraction techniques were evaluated. Total lysates and subcellular fractionations of fresh tissues allowed for a successful analysis of the samples. The same was true of total lysates of fixed tissues. However, proteins extracted from cells isolated through laser capture microdissection were insufficient in numbers and their types were inconsistent with the expected results.
Sub-project B. In order to study the importance of proteins and cellular functions or pathways in different types of colorectal cancers. nine cell lines originating from colorectal carcinoma and from normal colon were fractionated according to four subcellular compartments and analysed through mass spectrometry. Until now, no research group had analysed, in a single study more than 5 cell lines as well as more than one subcellular compartment at once. Some cellular functions and canonical pathways were shown to be of high importance in many of the studied cell lines, such as the signalling through eIF2 pathway. Furthermore, the transcription regulators TP53, MYC and TGFB1were identified as potentially responsible for the observed proteomic characteristics.
In conclusion, this study allowed for a better understanding of important molecular caracteristics of colorectal cancer and allowed for the optimization of techniques that may serve in the discovery of new biomarkers relative to the use of radiotherapy as a treatment.
|
2 |
Novel Mechanisms Underlying Homocysteine-Suppressed Endothelial Cell GrowthJan, Michael January 2014 (has links)
Cardiovascular disease (CVD) is the leading cause of death worldwide, and is projected to remain so for at least the next decade. Ever since its discovery in the urine and blood of children with inborn errors of metabolism, homocysteine (Hcy) at elevated plasma concentrations has been associated with CVD clinically and epidemiologically. Observational studies and meta-analyses have noted that changes in plasma Hcy by 5μM increase the odds ratio of developing coronary artery disease by 1.6-1.8 among other CVD. Clinical trials aimed at reducing plasma Hcy for benefit against development of subsequent cardiovascular events have had unconvincing results, but have moreover failed to address the mechanisms by which Hcy contributes to CVD. Recommendations from national agencies like the American Heart Association and the United States Preventive Services Task Force emphasize primordial prevention as a way to combat CVD. Reducing plasma Hcy as secondary and primary interventions does not fulfill this recommendation. In order to best understand the role of Hcy in CVD, an investigation into its mechanisms of action must be undertaken before measures of primordial prevention can be devised. Numerous experimental studies in the literature identify vascular endothelium as a target for the pathological effects of Hcy. Endothelial injury and impairment are contributory processes to atherosclerosis, and Hcy has been demonstrated to inhibit endothelial cell (EC) growth and proliferation through mechanisms involving cell cycle arrest, oxidative stress, and programmed cell death in vitro. Animal models have also confirmed that high levels of Hcy accelerate atherosclerotic plaque development and lead to impairment of vascular reendothelialization following injury. Hcy has been shown to have the opposite effect in vascular smooth muscle cells (SMC), causing their proliferation and again contributing to atherosclerosis. The cell-type specificity of Hcy remains to be understood, and among the aims of this research was to further characterize the effects of Hcy in EC. The overarching goal was discovery in order to direct future investigations of Hcy-mediated pathology. To begin, the first investigation considered the transcriptional and regulatory milieu in EC following exposure to Hcy. High-throughput screening using microarrays determined the effect of Hcy on 26,890 mRNA and 1,801 miRNA. Two different in vitro models of hyperhomocysteinemia (HHcy) were considered in this analysis. The first used a high dose of 500µ Hcy to mimic plasma concentrations of patients wherein the transsulfuration pathway of Hcy metabolism is impaired as in inborn cystathionine-ß-synthase deficiency. The other set of conditions used 50µ Hcy in the presence of adenosine to approximate impairment of the remethylation pathway of Hcy metabolism wherein s-adenosylhomocysteine accumulates, thus inhibiting s-adenosylmethionine formation and methylation reactions. These distinctions are important because most clinical trials do not distinguish between causes of HHcy, thereby ignoring the specific derangements underlying HHcy. mRNA and miRNA expression changes for both sets of treatment conditions identified CVD as a common network of Hcy-mediated pathology in EC. Moreover, methylation-specific conditions identified cell cycle modulation as a major contributory mechanism for this pathology, which agrees with recent findings in the literature. Analysis of significant mRNA changes and significant miRNA changes independently identified roles for Hcy in CVD and cell cycle regulation, thereby suggesting that miRNA may mediate the effects of Hcy in addition to gene expression changes alone. To investigate the role of Hcy in the cell cycle further, the next set of investigations considered the effect of Hcy under conditions approximating impaired remethylation in early cell cycle events. Previous studies have demonstrated that Hcy inhibits cyclin A transcription in EC via demethylation of its promoter. Conversely, Hcy induces cyclin A expression in SMC, again making the case for a cell type-specific mechanism in EC. Preceding cyclin A transcription and activation, canonical events in the early cell cycle include D-type cyclin activation, retinoblastoma protein (pRB) phosphorylation, and transcription factor E2F1 activation. In a series of in vitro experiments on EC, it was seen that Hcy inhibits expression of cyclin D2 and cyclin D3, but not cyclin D1. Next, pRB phosphorylation was seen to be decreased following treatment with Hcy. This also led to decreased E2F1 expression. However, this series of events could be reversed with E2F1 supplementation, allowing the cell cycle to proceed. As Hcy exerts a number of its effects via regulation of gene transcription, a final series of investigations aimed to predict potential targets of Hcy by examining patterns of transcription factor binding among known targets of Hcy regulation. Gene promoters of Hcy-modulated genes were analyzed in order to determine common transcription factors that potentially control their regulation. The locations of CpG-rich regions in promoters were identified to determine which regions would be most susceptible to regulation by DNA methylation. Next, high-throughput next-generation sequencing (NGS) and bisulfite NGS was performed for DNA from EC treated with Hcy in order to determine methylation changes after Hcy treatment. A number of potential transcription factors and their binding sites were identified as potential mediators of Hcy-mediated gene regulation. Taken together, these investigations represent an exploration of Hcy-mediated pathology in CVD, by focusing upon novel regulatory mechanisms in EC. Objective high-throughput arrays identified roles for Hcy in CVD and cell cycle pathways regulated by miRNA and gene expression, which were confirmed experimentally in vitro. These observations led to an investigation and identification of common transcription factors that potentially regulate Hcy-altered gene expression. This framework may be used to guide future investigations into the complex pathological network mediating the effects of Hcy in CVD. First, identification of a role for miRNA in mediating the effects of Hcy represents a novel regulatory mechanism, heretofore largely unexplored. Next, expanding the role of Hcy in EC cell cycle regulation to identify upstream mediators greatly adds to the published literature. Finally, noting that these changes center upon transcriptional and post-transcriptional regulation gives import to developing methods to characterize promoter and transcription factor regulation. The investigations presented herein and their results provide evidence that the future of Hcy research is vibrant, relevant, and not nearly surfeit. / Pharmacology
|
3 |
THE PROGNOSTIC POTENTIAL OF THE EPIDERMAL GROWTH FACTOR RECEPTOR AND NUCLEAR FACTOR KAPPA B PATHWAYS AND ASSOCIATED THERAPEUTIC STRATEGIES IN PATIENTS WITH SQUAMOUS CELL CARCINOMA OF THE HEAD AND NECKWirth, Pamela 01 January 2010 (has links)
Little is known about the signaling pathways that contribute to treatment response in advanced stage head and neck tumors. Increased expression of epidermal growth factor receptor (EGFR) and downstream pathways such as nuclear factor kappa B (NFκB) are implicated in aggressive tumor phenotypes and limited response to therapy. This study explored the rationale for combining the proteasome inhibitor bortezomib with the EGFR inhibitor gefitinib in a subset of head and neck squamous cell carcinomas with high EGFR gene amplification. Drug responses of gefitinib and bortezomib as single agents and in combination within head and neck squamous cell carcinoma cell lines were analyzed using MTS assays. The effects of gefitinib on the activation of EGFR and itsthree major downstream pathways, Akt, STAT3 and MAPK were determined by western blotting. The activation status of NFκB and the effects of bortezomib on the canonical pathway were assessed by DNA binding assays. Resistance to lower doses of gefitinib was associated with elevated EGFR and activated Akt expression. Gefitinib was able to effectively inhibit activation of STAT3, Akt and MAPK in HNSCC to varying degrees depending on EGFR expression status. Bortezomib treatment inhibited TNFα –induced nuclear NFκB/RelA expression but demonstrated variability in levels of baseline nuclear NFκB/RelA expression between sensitive and resistant cell lines. Bortezomib effectively suppresses NFκB/RelA nuclear activation but demonstrates additional modes of cellular toxicity beyond the NFκB pathway in sensitive cell lines. Further understanding of tumor response to the targeted inhibitors gefitinib and bortezomib may provide novel approaches in managing HNSCCs.
|
4 |
Effect of Maternal Age on Transcriptome of Granulosa Cells from Bovine Dominant Follicles2014 January 1900 (has links)
Advanced maternal age has been shown to influence follicular and luteal dynamics in bovine ovary resulting in reduced fertility. The overall objective of the four studies presented in this thesis is to identify the maternal age-associated transcriptional changes in granulosa cells of the dominant follicles during follicle development.
In the first study, mRNA expression levels of housekeeping genes were measured by real–time quantitative PCR (RT-qPCR) in granulosa cells of dominant follicles and FSH-stimulated follicles to select and validate suitable reference genes for relative gene expression analyses during maternal and follicular aging. Stability of six reference genes (GAPDH, ACTB, EIF2B2, UBE2D2, SF3A1 and RNF20) was analyzed using GeNorm, DeltaCT and NormFinder programs and comprehensive ranking order was determined based on these programs. Geometric mean of multiple genes (UBE2D2, EIF2B2, GAPDH and SF3A1) was more appropriate reference control than individual genes for the comparison of relative gene expression among dominant and FSH-stimulated follicles during maternal and/or follicular aging studies.
In the second study, maternal age-associated changes in the transcriptome of granulosa cells recovered at the time of selection of the dominant follicle from aged (n=3) and young cows (n=3) were determined by EmbryoGENE bovine oligo-microarrays (EMBV3, Agilent Technology). The mRNA expression of five transcripts (CYP19A1, PCNA, GJA1, TPM2, and VNN1) was confirmed in a different set of granulosa cell samples by RT-qPCR to validate microarray data. A total of 169 genes/isoforms were differentially expressed (≥ 2-fold-change; P ≤ 0.05) in aged cows vs. young cows. These transcripts revealed inefficient 1) control of gonadotropins, and gonadotropin-induced changes in the cytoskeleton and extracellular matrix, 2) lipid metabolism and steroidogenesis 3) cell proliferation, cell cycle control and intercellular communication, and 4) higher oxidative stress responses in aged cows vs. young cows.
In the third study, changes in the transcriptome of granulosa cells of the preovulatory follicle 24 h after LH treatment from aged (n= 3) and young (n=3) were determined. A total of 1340 genes were expressed differentially (≥ 2-fold change; P ≤ 0.05) in aged cows vs. young cows. The mRNA expression of five transcripts (RGS2, PTGS2, TNFAIP6, VNN1, NR5A2 and GADD45B) was confirmed in a different set of granulosa cell samples to validate microarray data. These transcripts were related to delayed 1) response to LH treatment 2) cellular differentiation and luteinization and 3) progesterone synthesis. Intra-follicle levels of progesterone were lower (P < 0.05) in aged cows compared to young and mid-aged cows.
The fourth study compared the aged-associated changes in the transcriptome of granulosa cells during follicle development from the time of dominant follicle selection to preovulatory stage (24 h after LH). In comparison to young cows, aged cows expressed fewer differentially expressed genes/isoforms (1206 vs. 2260, respectively) at ≥ 2-fold-change (P ≤ 0.05) in the granulosa cells of the preovulatory (24 h after LH treatment) vs. the dominant follicle at selection. These transcripts in aged cows were related to late and inefficient 1) organization of cytoskeleton and cytoplasm, 2) differentiation, 3) lipid and cholesterol metabolism, 4) proliferation and 5) higher response to oxidative stress and free radical scavenging in the preovulatory follicles vs. the dominant follicle at selection. In conclusion, maternal age-alters the gene expression of granulosa cells of the dominant follicles during follicle development and results in a compromised follicular environment.
|
5 |
Micro RNA-Mediated regulation of the full-length and truncated isoforms of human neurotrophic tyrosine kinase receptor type 3 (NTRK 3)Guidi, Mònica 13 January 2009 (has links)
Neurotrophins and their receptors are key molecules in the development of thenervous system. Neurotrophin-3 binds preferentially to its high-affinity receptorNTRK3, which exists in two major isoforms in humans, the full-length kinaseactiveform (150 kDa) and a truncated non-catalytic form (50 kDa). The twovariants show different 3'UTR regions, indicating that they might be differentiallyregulated at the post-transcriptional level. In this work we explore howmicroRNAs take part in the regulation of full-length and truncated NTRK3,demonstrating that the two isoforms are targeted by different sets of microRNAs.We analyze the physiological consequences of the overexpression of some of theregulating microRNAs in human neuroblastoma cells. Finally, we providepreliminary evidence for a possible involvement of miR-124 - a microRNA with noputative target site in either NTRK3 isoform - in the control of the alternativespicing of NTRK3 through the downregulation of the splicing repressor PTBP1. / Las neurotrofinas y sus receptores constituyen una familia de factores crucialespara el desarrollo del sistema nervioso. La neurotrofina 3 ejerce su funciónprincipalmente a través de una unión de gran afinidad al receptor NTRK3, del cualse conocen dos isoformas principales, una larga de 150KDa con actividad de tipotirosina kinasa y una truncada de 50KDa sin dicha actividad. Estas dos isoformasno comparten la misma región 3'UTR, lo que sugiere la existencia de unaregulación postranscripcional diferente. En el presente trabajo se ha exploradocomo los microRNAs intervienen en la regulación de NTRK3, demostrando que lasdos isoformas son reguladas por diferentes miRNAs. Se han analizado lasconsecuencias fisiológicas de la sobrexpresión de dichos microRNAs utilizandocélulas de neuroblastoma. Finalmente, se ha estudiado la posible implicación delmicroRNA miR-124 en el control del splicing alternativo de NTRK3 a través de laregulación de represor de splicing PTBP1.
|
Page generated in 0.0734 seconds