Spelling suggestions: "subject:"inhaler"" "subject:"inhalers""
51 |
Développement et évaluation de formulations pour inhalation à base d'anticancéreux dans le cadre du traitement des tumeurs pulmonaires / Development and evaluation of formulations for inhalation based on anticancer drugs for the treatment of lung tumorsWauthoz, Nathalie 07 December 2011 (has links)
Les tumeurs pulmonaires, qu’elles soient primaires (principalement représentées par le cancer du poumon non-à-petites cellules) ou secondaires (métastases), causent la mort de plusieurs centaines de milliers de personnes par an à travers le monde. Malgré les modalités de traitements existantes, un plateau thérapeutique a été atteint avec un taux de survie à 5 ans de maximum 15%. Actuellement, il est connu que le cancer du poumon non-à-petites cellules ainsi que les métastases sont intrinsèquement résistants à l’apoptose.<p>Pour apporter des réponses aux principales problématiques rencontrées avec l’administration systémique de la chimiothérapie conventionnelle qui est principalement constituée d’agents pro-apoptotiques, nous avons développé des formulations à base d’agents antinéoplasiques aux propriétés anticancéreuses non pro-apoptotiques qui sont destinées à être administrées de manière localisée par la voie inhalée. Il faut savoir que l’inhalation est la voie d’administration préférentielle des principales affections respiratoires telles que l’asthme, la bronchopneumonie chronique obstructive et la mucoviscidose. <p>La première partie de ce travail a consisté à produire et à évaluer des formulations à base de témozolomide destinées à être administrées chez la souris porteuse de pseudo-métastases pulmonaires (issues d’un mélanome expérimental, le modèle B16F10), soit via la voie intraveineuse (iv) conventionnelle soit via la voie inhalée à l’aide d’un dispositif endotrachéal approprié. La suspension pour inhalation a été produite à l’aide de technique de réduction de taille et a été stabilisée à l’aide de phospholipides compatibles avec la voie pulmonaire. L’activité anticancéreuse in vitro a été vérifiée pour le témozolomide formulé sous forme de suspension pour inhalation et de solution intraveineuse par rapport à du témozolomide non formulé sur des lignées de cellules cancéreuses de cancer humain NSCLC A549, de glioblastome humain T98G et de mélanome murin B16F10. Cette dernière lignée a été utilisée pour générer les pseudo-métastases pulmonaires chez la souris en injectant les cellules de mélanomes dans la voie systémique via la veine caudale. La reproductibilité de la dose et de l’aérosol générés à partir de la suspension pour inhalation à l’aide du dispositif d’administration endotrachéal et la déposition des gouttelettes dans les poumons de la souris ont pu être respectivement évaluées avec précision par une méthode de quantification du témozolomide qui a été validée par nos soins, par des techniques de diffraction laser et par des techniques de microscopie à fluorescence et d’analyse d’images histologiques. Enfin, l’activité antitumorale in vivo et la tolérance des traitements conventionnels ou localisés ont été vérifiées chez la souris porteuse de ces pseudo-métastases pulmonaires B16F10. Les résultats ont montré que le dispositif endotrachéal utilisé permettait de produire des doses et des aérosols reproductibles et de déposer les gouttelettes d’aérosol profondément dans les poumons des souris. De plus, lors de l’étude in vivo, les traitements administrés étaient bien tolérés et la dose de témozolomide administré sous forme de suspension pour inhalation à l’aide du dispositif endotrachéal avait permis d’obtenir une efficacité antitumorale similaire à une dose similaire de témozolomide administrée par la voie iv conventionnelle. De plus, 11% (3/27) de souris « long-survivantes » avaient été observées avec le groupe traité par inhalation trois fois par semaine pendant trois semaines consécutives et les poumons de ces long-survivants avaient présenté une éradication quasi complète des tumeurs pulmonaires. Ce phénomène n’avait pas été observé dans les groupes de souris traitées de manière conventionnelle.<p>Ensuite, la seconde partie de notre travail a consisté en l’élaboration du témozolomide sous forme de poudres sèches pour inhalation destinées à être délivrées à l’aide d’un dispositif à poudre sèche à usage humain. Pour ce faire, nous avons développé les poudres sèches pour inhalation à l’aide de techniques de réduction de taille pour microniser la poudre de départ et d’atomisation pour évaporer le solvant et élaborer un enrobage autour des particules micronisées. La nature de l’enrobage était soit hydrophile soit lipophile. Ensuite les caractéristiques physicochimiques telles que les propriétés thermiques, les propriétés cristallines, la distribution de taille particulaire et la morphologie des formulations de poudre sèche pour inhalation ont été évalués à l’aide de techniques appropriées telles que la calorimétrie différentielle à balayage, la diffraction des rayons X sur poudre, la diffraction de la lumière laser et la microscopie électronique à balayage. Les profils de déposition pulmonaire et de dissolution ont été respectivement déterminés in vitro à l’aide de l’essai de la pharmacopée européenne utilisant l’impacteur à cascade multi-étages et d’un test de dissolution adapté aux formes pulmonaires. Les quatre formulations élaborées présentaient des caractéristiques physicochimiques intéressantes pour la stabilité à long-terme de la substance active et des formulations. De plus, deux formulations de poudre sèche pour inhalation (les formulations F1 et F2) présentaient des propriétés aérodynamiques tout à fait attrayantes avec une fraction minimale de poudre déposée au niveau du tractus respiratoire supérieure et une fraction maximale de poudre déposée au niveau du tractus respiratoire inférieur où se localisent les tumeurs pulmonaires. De plus, l’ensemble des formulations ont montré que la fraction sélectionnée des particules fines des poudres sèches pour inhalation libérait 75% du témozolomide dans le liquide simulant le fluide pulmonaire endéans les dix premières minutes du test de dissolution in vitro adapté aux formes pulmonaires. <p>Enfin, nous avons comparé l’efficacité et la tolérance in vivo d’une de nos formulations de poudre sèche de témozolomide pour inhalation administrée soit sous forme de suspension, soit sous forme de poudre sèche, à l’aide du dispositif endotrachéal approprié chez la souris porteuse de pseudo-métastases pulmonaires. L’uniformité de la dose délivrée par les différents dispositifs a été évaluée à l’aide d’une technique quantitative validée. Les résultats de cette étude ont montré qu’en administrant une formulation de poudre sèche sous forme d’un mélange de poudres plutôt que sous forme d’une suspension liquide, les doses en témozolomide à administrer pour obtenir une efficacité comparable était au moins deux fois moins élevées. Cependant, le dispositif endotrachéal pour les formulations de poudre présentait plus de variabilité au niveau de la dose délivrée que le dispositif endotrachéal pour les formulations liquides ce qui induit une variabilité dans les doses délivrées. Pour clôturer ce travail, nous avons appliqué certaines techniques que nous avons développées pour le témozolomide à une nouvelle molécule de synthèse, le trivanillate polyphénolique 13c, qui montre des propriétés anticancéreuses intéressantes dans le cadre des tumeurs pulmonaires. En effet, une méthode quantitative a été développée et a été validée. Une étude de pré-formulation et des essais de formulation pour produire une suspension, des complexes d’inclusion et des microparticules lipidiques ont été entrepris avec de relativement bons résultats pour les complexes d’inclusion élaborés avec des gamma cyclodextrines qui permettaient d’augmenter la solubilité dans l’eau de la molécule de 13c d’un facteur d’au moins 1,5×106. De plus, les particules de 13c montraient la particularité de se solubiliser dans un mélange dichlorométhane/éthanol (1 :1 v/v) ce qui nous a permis d’élaborer des microparticules lipidiques pour lesquelles les propriétés de mouillage devront être améliorées dans l’avenir./<p>Primary lung tumors, mainly represented by non-small-cell lung cancers (cancers NSCLC), or secondary lung tumors (metastasis) cause the death of hundred thousand human beings worldwide. Despite the therapeutic modalities used, the five-year survival rate reaches only 15%. Nowadays, it is known that cancers NSCLC and metastasis are intrinsically resistant to apoptosis.<p>To overcome the main problems occurring with the systemic delivery of conventional chemotherapy which are mainly constituted of non-specific and non selective pro-apoptotic agents, we have developed some formulations based on non pro-apoptotic antineoplasic drugs which are designed to be delivered by a localized administration, the inhalation. Indeed, inhalation is the preferential route to treat the main pulmonary affections such as asthma, chronic obstructive pulmonary disease or cystic fibrosis.<p>The first part of this work consisted to produce and evaluate temozolomide-based formulations designed to be delivered to mice bearing pulmonary pseudo-metastases (using a experimental melanoma, the B16F10 model), either by the conventional intravenous (iv) route or by inhalation using an endotracheal device appropriate to mice. The suspension for inhalation was produced by means of a high pressure homogenizing technique using phospholipids compatible with the lungs to stabilize the suspension. The in vitro anticancer activity was evaluated for both temozolomide-based formulations in comparison with non-formulated temzolomide on three cancer cell lines, a human NSCLC cancer cells (A549), a human glioblastoma cancer cells (T98G) as positive control and a murine melanoma cancer cells (B16F10). The latter was used to generate lung tumors in mice by injecting the melanoma cells by iv. Reproducibility of delivered dose and generated aerosol by the endotracheal device from the suspension for inhalation and the deposition of droplets in the mouse lungs were precisely evaluated by means of a validated HPLC determination method, a laser diffraction technique and fluorescent microscopy and histological image analysis, respectively. Then, the tolerance and the antitumor efficacy of iv or inhaled temozolomide-based treatments were evaluated on mice bearing pulmonary pseudo-metastases B16F10. The results showed that endotracheal device produced reproducible doses and aerosols and that the aerosol droplets were deposited deeply in the mouse lungs. Moreover, the temozolomide-based treatments were well tolerated in terms of weight evolution and the inhaled based-temozolomide treatments were able to get the same antitumor efficacy in terms of median survival rate as the conventional iv based-temozolomide treatments delivered at a same frequency. Moreover with the group treated by inhalation three times a week during three consecutive weeks, 11% (3/27) mice survived with an almost complete eradication of lung tumors which was not observed with the groups treated by conventional route.<p>Then, the second part of our work consisted to produce temozolomide-based dry powders for inhalation able to be delivered with a dry powder inhaler for human use. We developed the dry powders for inhalation using a high-pressure homogenizing technique to micronize temozolomide particles and then spray-drying technique to coat temozolomide microparticles. The coating was either hydrophilic or lipophilic. Then, the physicochemical characteristics such as thermal or crystalline properties, the particle size distribution and the particle morphology were evaluated for the four dry powders for inhalation by means of differential scanning calorimetry, x-ray powder diffraction, laser light scattering and scanning electron microscopy, respectively. The in vitro pulmonary deposition and dissolution were respectively determined by European pharmacopeia assay for the aerodynamic assessment of fine particles using a multi-stage liquid impinger and by dissolution test optimized for inhaler products. The four formulations produced presented physicochemical properties promoting long-term stability of temozolomide and formulations.Moreover, two of them (dry powder without coating or with a thin lipid coating) showed attractive aerodynamic properties with a minimal fraction of powder deposited in the oropharyngeal and tracheal zones and maximal fraction deposited in the lungs (almost 50% of the nominal dose) where the lung tumors are localized. Moreover, fine particle fraction of all formulations showed a fast release and dissolution of temozolomide with more than 75% of temozolmide dissolved within 10 minutes in the simulated lung fluid during the in vitro dissolution test optimized for dry powders for inhalation.<p>Then, we compared the in vivo antitumor efficacy and tolerance of one of dry powders for inhalation on mice bearing pulmonary pseudo-metastases B16F10. The dry powder for inhalation was administered either by dispersing it as a extemporaneous suspension able to be delivered by the endotracheal device for liquid forms or by mixing it with a spray-dried diluent able to be delivered by the endotracheal device for dry powders. The uniformity of delivered dose by the different endotracheal device was evaluated by a validated quantitative method. The results showed that the delivery of the powder mixture presented the same antitumor efficacy as the extemporaneous suspension but for a half dose of temozolomide. However, the endotracheal device for dry powders presented a higher variability of delivered dose than the endotracheal device for liquid forms.<p>Finally, we apply the pulmonary application on a polyphenol developed in the Faculty of Pharmacy, the molecule 13c, that showed very interesting in vitro anticancer properties against lung tumors. So, a quantitative method was developed and was validated. A preformulation studie was performed and formulation developements are on-going.<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
52 |
Potential of Smart-Inhalers in Reducing Human and Economic Costs of Erroneous Inhaler Use / Potentialen för smarta inhalatorer att minska mänsklig och ekonomisk kostnad av felaktigt inhalatoranvändandeGrünfeld, Anton January 2022 (has links)
This thesis investigates the possibilities of increasing efficacy and general improvement of unsupervised medical treatments by implementing electronics and embedded systems (so-called smart devices) to allow the physician to monitor or track the treatment and adherence of the patient to it. The diseases in focus are respiratory: asthma and Chronic Obstructive lung [Pulmonary] Disease (COPD). This thesis will furthermore attempt to show that shortcomings in the current treatment of these diseases incur significant human costs by loss of quality of life for the patients and causes (avoidable) costs to health-care systems and societies on a macro-economic scale, both direct and indirect. It will find that the technology to create a smart-inhaler exists, and while not a panacea, it can address many of the identified issues with the current mode of treatment.This thesis was written in partnership with SHL Medical AB, and the author wishes to extend specialthanks to Plamen Balkandjiev and Mattias Myrman for their help, support, and patience. / Detta examensarbete undersöker möjligheterna att öka effektiviteten samt allmänna förbättringar av oövervakad medicinsk behandling genom implementering av elektronik och inbyggda system (så kallade smarta-apparater) för att möjliggöra för läkare att övervaka eller följa behandlingen samt huruvida patienten fullföljer den eller ej. Sjukdomarna i fokus är astma och Kronisk Obstruktiv Lungsjukdom (KOL). Vidare kommer detta arbete försöka visa att tillkortakommanden i den befintliga behandlingen av sjukdomar inte bara medför signifikanta minskningar i livskvalitet för patienten utan även orsakar (icke oundvikliga) kostnader för sjukvårdssystem och samhällen på en makro-ekonomisk skala, indirekt såsom direkt. Den kommer även visa att tekniken som krävs för att skapa en smartinhalator existerar, och medans denna inte är en panacé kan den likväl åtgärda många av de identifierade problemen med den befintliga behandlingsmetoden.Detta exmanensarbete skrevs i samarbete med SHL Medical AB och dess författare önskar utsträckaett särskilt tack till Plamen Balkandjiev och Mattias Myrman för deras hjälp, stöd och tålamod.
|
53 |
Development and Evaluation of Controlled-Release Cisplatin Dry Powders for Inhalation against Lung TumoursLevet, Vincent 10 April 2017 (has links) (PDF)
Lung cancer is the deadliest cancer in the world, with a global 5-year survival rate of about 15%. Despite a notable impact of the latest improvements in prevention, screening, detection and staging, the efficacy of conventional treatments is not sufficient and has reached a therapeutic plateau. These conventional treatments involve a combination of surgery, radiotherapy (RT) and chemotherapy (CT). CT is used in almost all stages: in operable and inoperable stages to limit tumour cell invasion and in latest stages as a palliative treatment. Cisplatin is one of the most frequently used and most potent drugs available. It is administered by parenteral route at doses limited by its high and cumulative nephrotoxicity but also by other systemic toxicities (e.g. ototoxicity). Its administration therefore requires many precautions (long hydration procedure, surveillance of the renal function), which mobilize medical personnel. A major limitation of parental CT is the low concentration of drug that successfully reaches the tumour or the metastases. A potential additional modality could be aerosolized CT to localize lung cancer treatment. It has shown a relative local tolerance for cisplatin through preclinical and clinical studies in humans by means of nebulized solutions or liposomal formulations. As a local treatment, aerosolized CT has a clear pharmacokinetic (PK) advantage, as it can increase local exposure while decreasing systemic exposure. However, because CT drugs, such as cisplatin, are active at rather high doses (in the mg range), the duration of administration from nebulizers is very long as it depends on the drug solubility or on drug encapsulation into liposomes. They also pose a high risk of environmental contamination and require HEPA-filtrated hoods during the nebulization procedure. Of all the inhalation devices available to deliver high drug doses, dry powder inhalers (DPIs) were chosen in this work. These were chosen to circumvent the above issues by providing higher deposited doses, in very short timeframes, using a patient-driven device that could help limit environmental exposure to only very low levels of drug. DPI in general also have the advantage of being applicable to both poorly-water-soluble and to water-soluble anticancer drugs. However, because direct deposition of high quantities of anticancer drugs to the lung parenchyma could pose a high risk of local irritation and pulmonary adverse effects, controlled release (CR) of cisplatin from deposited particles in the lung parenchyma was needed. However, in the lungs, foreign undissolved particles are rapidly eliminated by means of naturally occurring clearance mechanisms, in particular macrophage uptake in the alveoli. Therefore, formulation strategies able to limit the particles clearance are needed to assure high lung residence of these CR particles. The formulation strategy of this work was to develop DPI formulation based on solid-lipid microparticles (SLM) able to (i) be deposited into the lung, (ii) control the release of cisplatin and (iii) escape macrophage uptake in order to remain in the lung long enough and at a concentration able to optimize the therapeutic index (i.e. increase the potential therapeutic effect and decrease the potential side effects).The primary objectives of the SLM-based DPI formulations were to (i) exhibit aerodynamic properties compatible with lung cancer patients abilities and cisplatin requirements (e.g. a high deposited fraction, high deagglomeration abilities under low airflow within a low-resistance DPI, deposition in the mg range), (ii) provide a CR matrix for cisplatin in vitro, (iii) be able to be retained into the lung long enough in vivo, (iv) using scalable production techniques and (v) using only potentially well-tolerated excipients.Cisplatin was initially reduced to microcrystals under high-pressure homogenization (HPH) cycles up to 20 000 psi. This procedure permitted uncoated particles with mean diameters below 1.0 μm to be obtained. To assess the cisplatin release abilities of the DPI formulations on the deposited fraction only, a new dissolution test was adapted. This test used a classical paddle apparatus from the pharmacopoeia and a Fast Screening Impactor (FSI). An excipient-free formulation, obtained from the spray dried suspension of cisplatin microcrystals (100% cisplatin) was initially produced. It was compared to a 95:5 cisplatin/tocopheryl polyethylene glycol succinate (TPGS) formulation, which exhibited a higher deposition ability (fine particle fraction (FPF) of 24.2 vs. 51.5% of the nominal dose, respectively). Both exhibited immediate release (IR), with 90% dissolved under 10 minutes.Solid lipid microparticle (SLM)-based formulations were then produced using the cisplatin microcrystalline suspension and various lipid excipients. Those had previously been screened for their ability to be spray dried following their solubilisation in heated isopropanol. The addition of a triglyceride, tristearin (TS), as the main lipid component and if necessary a polyethylene glycol (PEG) excipient-comprising fraction with TPGS or distearoyl phosphoethanolamine polyethylene glycol 2000 (DSPE-mPEG-2000) as a surface modifier, provided spray dried particles with interesting characteristics. These formulations, comprised of at least 50% cisplatin, exhibited high CR abilities in simulated lung fluid at 37°C for more than 24 h (as low as 56% released after 24 h) and a low burst-effect (as low as 24% and 16% after 10 minutes with and without PEGylated excipients, respectively). They also showed high aerodynamic properties, with a high FPF ranging from 37.3 to 50.3% w/w of the nominal dose and a low median mass aerodynamic diameter (MMAD) between 2.0 and 2.4 μm. The process also offered high production yields (> 60%).The best IR DPI formulation (evaluated on the FPF, i.e. cisplatin/TPGS 95:5) and the most promising CR formulations without (i.e. cisplatin/TS 50:50) and with PEGylated excipients (evaluated on CR abilities, i.e. cisplatin/TS/TPGS 50:49.5:0.5) were then administered to CD 1 mice, concurrently to endotracheal nebulization (EN) of a cisplatin solution. This was done using specific endotracheal devices, the Penn-Century Inc. DP-4M© Dry Powder Insufflatorn and for the cisplatin solution, the Microsprayer™ IA-1C©. They were compared to intravenous (IV) injection during a PK study over 48 hours. The administration of DPI formulations required the development of a spray dried diluent (Mannitol:Leucine 10:1) and specific dilution method (3D mixing for 4 hours and double-sieving) to be able to deliver precise and repeatable quantities of powder into the lungs of mice at 1.25 mg/kg dose. A PK study was carried out of the lungs, blood, kidneys, liver, mediastinum and spleen of the mice. The study used a developed and validated electrothermal atomic absorption spectrometry (ETAAS) method. Results showed that endotracheal administration of DPI formulations permitted the exposure of the lungs to cisplatin, expressed as the area under the curve (AUC) to be greatly increased while decreasing the systemic exposure. More precisely, the only formulation that exhibited prolonged lung retention was the one comprising PEGylated excipient (cisplatin/TS/TPGS 50:49.5:0.5), which was observed for ~7 hours. This lung retention was associated with smoother concentration vs. time profiles in blood (higher tmax and lower Cmax), which also confirmed its CR abilities in vivo as dissolved cisplatin is a highly permeable drug. The overall exposure, established by the AUC, helped calculate the target efficiency (Te: the ratio of AUC in the lungs to the sum of AUC in non-target organs) and the target advantage (Ta: ratio of AUC in the lungs by the tested route to the AUC in the lungs by the IV route). For instance, the Ta of the aforementioned formulation (cisplatin/TS/TPGS 50:49.5:0.5) was of 10.9, as compared to 1 for IV, 3.3 for EN, 2.6 for the IR DPI formulation (cisplatin/TPGS 95:5) and 3.7 for the non-PEGylated CR DPI formulation (cisplatin/TS 50:50). In the meantime, the Te for the same formulations were 1.6, 0.09, 1.1, 0.4 and 0.9, respectively, showing again the great efficiency of the inhaled route vs. the IV route in targeting the lungs. More importantly, it showed the added efficiency of the CR DPI formulation with lung retention abilities, provided by the addition of PEGylated excipients. In the last part of the work, maximum tolerated doses (MTD) of formulations were established. These showed that the best candidate, selected based on the PK results (CR DPI with lung retention abilities composed of cisplatin/TS/TPGS 50:49.5:0.5) had better overall tolerance than IR approaches (DPI formulation at cisplatin/TPGS 95:5 and EN of a cisplatin solution). More precisely, it was possible to double the administered dosage for the CR formulation (1.0 mg/kg) vs. the IR DPI and EN (both at 0.5 mg/kg) under a repeated administration scheme (3 times a week for 2 weeks).Moreover, an assessment of the lung tolerance of this best candidate was realized and compared to the IR DPI, EN and the IV route. It was done through analysis of the broncho-alveolar lavage fluid (BALF) 24 hours following a single administration at the pre-determined MTD. IL-1β, IL-6 and TNF-α cytokines were not increased following the administrations. No evidence of tissue damage or cytotoxicity could be observed through quantification of the protein content and of lactate dehydrogenase (LDH) activity. The only observations were a decrease in total cells and an increase in polynuclear neutrophils (PN) cells in the BALF, which was not observed by IV or following the administration of the vehicle of the CR formulation alone (i.e. PEGylated SLM and dry diluent). This increase was not directly linked to the formulation but rather to cisplatin, as it was observed in each cisplatin inhalation experiments, and not with the vehicle of the CR formulation, which was comparable to the non-treated mice.In parallel, we realized a survival study following the administration of the best DPI formulation candidate (cisplatin/TS/TPGS 50:49.5:0.5) vs. the IR DPI candidate (cisplatin/TPGS 95:5), both at their respective MTD under the aforementioned repeated dosing scheme. Cisplatin was administered to mice bearing a grafted orthotopic M109-HiFR lung tumour model, previously developed in the laboratory. The DPI formulations were evaluated against IV administration at each dose (0.5 and 1.0 mg/kg, respectively). This study first confirmed the lower toxicity of the CR approach, as the IR DPI formulation caused a much higher number of deaths during treatment of the grafted mice. The CR formulation administered at 1.0 mg/kg showed a higher survival than the negative control but a tumour response comparable to IV administered at half this dose (0.5 mg/kg). This unexpected outcome with regard to the PK results is explained by the fact that the tumour model is highly metastatic. Mice treated with inhaled formulations died due to distant tumour involvement, while those treated systemically died due to pulmonary tumour involvement. This led us to believe that this kind of treatment may have greater potential in combination, adjuvant to the parenteral route.This work helped establish the proof-of-concept of a cisplatin CR DPI formulation with an up-scalable process. The SLM approach confirmed that encapsulation of drugs exhibiting low solubility, such as cisplatin, was possible using highly hydrophobic excipients and that surface modification was mandatory to provide notable lung retention in vivo. The SLM approach showed good signs of tolerance during the exploratory study but still needs to be confirmed under a chronic scheme using other determinants such as histopathological analyses of the lung tissue. Moreover, comparison of the nephrotoxicity of formulations against that of the IV route should be conducted with appropriate and sensitive methods. Finally, the survival study of the CR DPI formulation showed mitigated results, partly because of the orthotopic model characteristics. This could be proof that inhaled CT has a role to play combined with classical systemic CT. This needs to be assessed in a further study.Le cancer du poumon est le cancer ayant le taux de mortalité le plus élevé au monde, avec un taux de survie global à 5 ans d'environ 15%. Malgré un impact notable des dernières améliorations en matière de prévention, de dépistage, et de classification du cancer du poumon, l'efficacité des traitements classiques n'est toujours pas suffisante et semble avoir atteint un plateau thérapeutique. Ces traitements classiques comprennent de la chirurgie, de la radiothérapie et de la chimiothérapie, le plus souvent en combinaison. La chimiothérapie est utilisée à presque tous les stades: dans les stades opérables et inopérables afin de limiter l'invasion par les cellules tumorales jusqu’aux derniers stades en tant que traitement palliatif. Le cisplatine est l'un des médicaments anticancéreux les plus fréquemment utilisés et les plus puissants actuellement disponibles. Il est administré par voie parentérale à des doses qui sont limitées par sa néphrotoxicité élevée et cumulative mais également par d'autres toxicités systémiques (par exemple, de l'ototoxicité). Son administration nécessite donc de nombreuses précautions (longue procédure d'hydratation, surveillance de la fonction rénale), ce qui mobilise fortement le personnel médical. Une limitation importante de la chimiothérapie parentérale est la faible concentration d’actif qui atteint avec succès la tumeur ou les métastases. Une autre voie d’accès potentielle pourrait être la chimiothérapie inhalée pour traiter le cancer du poumon. Cette approche a montré une relativement bonne tolérance locale pour le cisplatine à travers différentes études précliniques et cliniques chez l'homme au moyen de solutions ou de formulations liposomales nébulisées. En tant que traitement via la voie pulmonaire, la chimiothérapie inhalée présente un avantage pharmacocinétique évident, car elle permet d’augmenter l'exposition locale tout en diminuant l'exposition systémique. Cependant, du fait que les médicaments chimiothérapeutiques, tels que le cisplatine, soient actifs à des doses relativement élevées (dans la gamme du mg), la durée d'administration à partir des nébuliseurs s’avère en pratique très longue car elle dépend principalement de la solubilité de l’actif ou de son encapsulation dans les liposomes. Les nébuliseurs présentent également un risque élevé de contamination de l'environnement et nécessitent de lourds appareillages (hottes filtrantes en particulier) pendant la procédure d’administration.Parmi tous les dispositifs d'inhalation existants, capables de délivrer des doses élevées de médicaments, les inhalateurs de poudre sèche (DPI) semblent être de bons candidats. Ceux-ci ont été choisis dans ce travail afin de contourner les problèmes énumérés ci-dessus, en fournissant des doses pulmonaires plus élevées, dans des délais très courts. De plus, ces dispositifs sont activés par le flux inspiratoire du patient, ce qui pourrait aider à limiter l'exposition environnementale à des niveaux très faibles. Les inhalateurs à poudre sèche présentent également l'avantage d'être utilisables à la fois avec des médicaments solubles et des médicaments peu solubles dans l’eau. Malgré tout, étant donné que la déposition directe de quantités élevées de médicaments chimiothérapeutiques dans le parenchyme pulmonaire pourrait présenter un risque élevé d'irritation et d'effets indésirables locaux, une libération contrôlée du cisplatine à partir de particules déposées dans le parenchyme pulmonaire s’avère nécessaire. Cependant, dans les poumons, ces particules non dissoutes d’origine étrangère sont rapidement éliminées par les mécanismes d’élimination, en particulier par la clairance par les macrophages au niveau des alvéoles. Par conséquent, des stratégies de formulation capables de limiter la clairance des particules sont nécessaires pour assurer une résidence pulmonaire élevée de ces particules à libération contrôlée.La stratégie de formulation de ce travail a donc consisté à développer une formulation pour inhalateur à poudre sèche à base de microparticules lipidiques solides capable de (i) être déposées dans le poumon, (ii) de contrôler la libération du cisplatine et (iii) de rester dans le poumon suffisamment longtemps dans le but d’optimiser l'indice thérapeutique (c'est-à-dire augmenter le potentiel thérapeutique du cisplatine et diminuer ses potentiels effets secondaires).Les objectifs principaux des formulations basées sur les microparticules lipidiques solides étaient (i) de présenter des hautes charges en cisplatine au sein des microparticules lipidiques tout en présentant des propriétés aérodynamiques compatibles avec la capacité pulmonaire des patients atteints de cancer du poumon (par exemple, une fraction déposée élevée et une capacité élevée à la désagglomération sous faible débit d'air dans un inhalateur de faible résistance), (ii) de fournir une matrice capable de libérer le cisplatine de manière contrôlée in vitro, (iii) d’être capable de rester dans le poumon suffisamment longtemps in vivo, tout cela (iv) en utilisant des techniques de production ayant une bonne capacité d’augmentation d’échelle et (v) de n’utiliser que des excipients potentiellement bien tolérés au niveau du poumon.Le cisplatine a été initialement réduit sous forme microcristalline à l’aide de cycles d'homogénéisation à haute pression jusqu'à 20 000 psi. Cette procédure a permis d'obtenir des particules non enrobées ayant un diamètre moyen inférieur à 1.0 μm. Afin d’évaluer les capacités de libération du cisplatine des formulations à partir de la fraction capable théoriquement de se déposer dans les poumons, un nouveau test de dissolution a été adapté à partir d’un appareil à palettes classique de la pharmacopée et d’un impacteur à cascade « Fast Screening Impactor ». Une formulation sans excipient, obtenue à partir de la suspension de cisplatine, soumise à la technique de séchage par l’atomisation (100% de cisplatine) a été produite comme point de départ. Celle-ci a ensuite été comparée à une formulation de cisplatine/tocophéryl polyéthylène glycol succinate (TPGS) (95:5), qui présentait une capacité de déposition pulmonaire in vitro (fraction de particules fines (FPF) de 24.2% pour la première et de 51.5% pour la deuxième, exprimée par rapport à la dose nominale). Toutes deux ont démontré des capacités de libération immédiate, avec 90% du cisplatin dissous en moins de 10 minutes.D’autres formulations, cette fois élaborées sous la forme de microparticules lipidiques solides ont ensuite été produites à partir de la suspension microcristalline de cisplatine et de divers excipients lipidiques. Ces microparticules avaient préalablement été testées pour leur aptitude à être séchées par atomisation après solubilisation des excipients dans de l'isopropanol chaud. L’ajout d’un triglycéride, la tristéarine (TS), comme excipient lipidique principal et également d’une fraction comprenant un excipient contenant du polyéthylène glycol (PEG), à l’aide de TPGS ou de distéaroyl phosphoéthanolamine polyéthylène glycol 2000 (DSPE-mPEG-2000) a montré des résultats intéressants. Ces formulations, ayant une teneur en cisplatine d’au moins 50%, ont présenté des aptitudes élevées pour la libération contrôlée dans le fluide pulmonaire simulé in vitro à 37 °C, et ce, pendant plus de 24 h (jusqu'à 56% libérées après 24 h) ainsi qu’un faible « burst-effect » (de seulement 24% et 16% après 10 minutes avec et sans excipients PEGylés, respectivement). Elles ont également montré des propriétés aérodynamiques élevées, avec une FPF élevée allant de 37.3 à 50.3% m/m par rapport à la dose nominale et un diamètre aérodynamique compris entre 2.0 et 2.4 μm. Le meilleur candidat à libération immédiate (évaluée sur base de la FPF, soit la formulation cisplatine/TPGS 95:5 m/m) et les formulations à libération contrôlée les plus prometteuses n’incluant pas d’excipients PEGylés (cisplatine/TS 50:50 m/m) et incluant des excipients PEGylés (évalués sur les capacités de libération contrôlée, c'est-à-dire la formulation cisplatin/TS/TPGS 50:49.5:0.5 m/m/m) ont ensuite été administrées à des souris CD-1, en comparaison d’une nébulisation endotrachéale d'une solution de cisplatine. Ceci a été fait à l’aide de dispositifs endotrachéaux dédiés aux poudres pour le DP-4M© « Dry Powder Insufflator » et aux solutions pour le Microsprayer™ IA-1C© de Penn-Century. Ces formulations ont été comparées à l'injection intraveineuse (IV) au cours d’une étude pharmacocinétique étendue sur 48 heures.L'administration de formulations de poudres sèches pour inhalation a nécessité le développement préalable d'un diluant par atomisation (Mannitol:Leucine 10:1 m/m) ainsi que d’une méthode de dilution des poudres (mélange tridimensionnel pendant 4 heures et suivi d’un double-tamisage) afin de pouvoir délivrer des quantités précises et répétables de poudre dans les poumons de souris à la dose d’1.25 mg/kg. Le suivi des paramètres pharmacocinétiques a ainsi pu être réalisé au niveau des poumons, du sang, des reins, du foie, du médiastin et de la rate des souris. Ceci a été fait à l’aide d’une méthode de spectrométrie d'absorption atomique électrothermique, qui a été préalablement développée et validée. Les résultats obtenus ont montré que l'administration endotrachéale de formulations de poudres sèches permettait d’augmenter fortement l'exposition des poumons par le cisplatine, exprimée en aire sous la courbe (AUC) tout en diminuant l'exposition systémique. Plus précisément, la seule formulation présentant une rétention pulmonaire prolongée était celle qui comprenait un excipient PEGylé (cisplatine/TS/TPGS 50:49.5:0.5 m/m/m), ce qui a été observé pendant environ 7 heures. Cette rétention pulmonaire a été associée à des profils de concentration en fonction du temps plus réguliers dans le sang (tmax supérieur et Cmax inférieur), ce qui a également confirmé ses capacités de libération contrôlée in vivo car la perméabilité de l’épithélium pulmonaire pour le cisplatine dissous s’est avérée très élevée. L'exposition globale établie à partir de l’AUC a permis de calculer l’efficacité de ciblage (Te: rapport de l'AUC mesurée dans les poumons et de la somme des AUC mesurées dans les organes non cibles) et l’avantage du ciblage (Ta: rapport de l’AUC mesuré dans les poumons suite à l’administration pulmonaire et de l'AUC mesurée dans les poumons suite à l’administration par la voie IV). Par exemple, le Ta de la formulation décrite ci-dessus (cisplatine/TS/TPGS 50:49.5:0.5 m/m/m) était de 10.9, comparativement à 1 pour l’IV, 3.3 pour la nébulisation endotrachéale, 2.6 pour la formulation de poudre sèche à libération immédiate (cisplatine/TPGS 95:5 w/w) et 3.7 pour la formulation de poudre sèche à libération contrôlée ne comprenant pas d’excipient PEGylé (cisplatine/TS 50:50). Dans le même temps, le Te mesuré pour les mêmes formulations était de 1.6, 0.09, 1.1, 0.4 et 0.9, respectivement, démontrant également le rendement élevé de la voie inhalée par rapport à la voie IV dans sa capacité à cibler les poumons. Plus important encore, ceci a démontré le grand avantage des capacités de rétention pulmonaire de la formulation à libération contrôlée comprenant un excipient PEGylé.Dans la dernière partie de ce travail, les doses maximales tolérées (DMT) des formulations ont été déterminées. Le meilleur candidat, choisi en fonction des résultats de pharmacocinétique (formulation à libération contrôlée ayant des capacités de rétention pulmonaire composé de cisplatine/TS/TPGS 50:49.5:0.5 m/m/m), avait une meilleure tolérance globale que les deux approches à libération immédiate testées (formulation de poudre sèche cisplatine/TPGS 95:5 et la nébulisation endotrachéale d'une solution de cisplatine). Plus précisément, il s’est avéré possible de doubler le dosage administré pour la formulation à libération contrôlée (1.0 mg/kg) par rapport à la poudre sèche à libération immédiate et à la nébulisation endotrachéale (toutes les deux à 0.5 mg/kg) suivant un schéma d'administration chronique (3 fois par semaine pendant 2 semaines). De plus, une évaluation de la tolérance pulmonaire de cette formulation à libération prolongée a été réalisée et comparée à la poudre sèche à libération immédiate, à la nébulisation endotrachéale et à la voie IV. Elle a été réalisée par analyse du liquide provenant du lavage broncho-alvéolaire, 24 heures après une administration unique à la dose maximale tolérée préalablement déterminée pour chaque formulation. Aucune augmentation des cytokines IL-1β, IL-6 et TNF-α n’a pu être détectée à la suite des administrations. Aucunes preuves de lésion tissulaire ou de cytotoxicité n'ont pu être observées au travers du dosage de la teneur en protéines totale et de l'activité de la lactate déshydrogénase. Les seules observations qui ont pu être faites ont été une diminution des cellules totales et une augmentation des polynucléaires neutrophiles dans le lavage broncho-alvéolaire, ce qui n'a pas été observé suite à l’administration IV ou après l'administration du véhicule de la formulation à libération contrôlée seul (c'est-à-dire les microparticules lipidiques solides PEGylées et le diluant). Cette augmentation ne semble pas liée aux microparticules lipidiques solides ou au diluent mais probablement à l’exposition pulmonaire au cisplatine, car cette augmentation a été observée pour chaque groupe inhalé contenant du cisplatine. Le cisplatine a ensuite été administré à des souris qui ont été greffées de manière orthotopique par une lignée murine de carcinome pulmonaire M109-HiFR, modèle préclinique préalablement développé au sein de notre laboratoire. Les formulations de poudres sèches ont été évaluées par rapport à l'administration IV à chaque dose testée (0.5 et 1.0 mg/kg, respectivement). Cette étude a d'abord confirmé la toxicité plus faible de l'approche à libération contrôlée, car la formulation à libération immédiate a causé un nombre beaucoup plus élevé de décès pendant le traitement des souris greffées. La formulation à libération contrôlée administrée à 1.0 mg/kg, a montré une survie plus élevée que le contrôle négatif, mais une réponse comparable à la dose IV administrée à la moitié de la dose (0.5 mg/kg). Ce résultat inattendu par rapport aux résultats de l’étude pharmacocinétique s'explique probablement par le fait que le modèle de tumeur utilisé est hautement métastatique. Les souris traitées avec des formulations inhalées sont mortes en raison de tumeurs secondaires distantes par rapport à la tumeur primaire implantée au niveau du poumon, alors que celles traitées par la voie systémique sont mortes en raison d’un envahissement tumoral pulmonaire. Cela nous amène à penser que ce type de traitement inhalé pourrait avoir un plus grand potentiel en combinaison à la voie parentérale. Ce travail a ainsi permis d’établir la preuve du concept de formulation à base de poudre sèche de cisplatine à libération contrôlée, en utilisant un processus de fabrication capable de subir une mise à l’échelle industrielle. L’utilisation de microparticules lipidiques solides a confirmé que l'encapsulation d’actifs présentant une certaine hydrophilie, comme le cisplatine, était possible en utilisant des excipients hautement hydrophobes et qu'une modification de leur surface était cependant obligatoire pour obtenir une rétention pulmonaire intéressante in vivo. Les microparticules lipidiques solides ont montré de bons signes de tolérance au cours de l'étude exploratoire, mais celle-ci doit encore être confirmée avec une administration chronique des poudres. Ceci doit être fait en suivant des paramètres supplémentaires, tels que des analyses histologiques du tissu pulmonaire. De plus, la comparaison de la néphrotoxicité des formulations avec celle mesurée par la voie IV doit être effectuée avec des méthodes appropriées et sensibles. Enfin, l'étude de survie de la formulation à libération prolongée a montré des résultats mitigés, en partie à cause des caractéristiques du modèle orthotopique de tumeur pulmonaire. Cependant, il semblerait que la chimiothérapie inhalée à un rôle important à jouer en combinaison avec la chimiothérapie systémique classique. Ceci doit être évalué dans une étude future. / Doctorat en Sciences biomédicales et pharmaceutiques (Pharmacie) / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0438 seconds