• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 26
  • 17
  • 14
  • 12
  • 6
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 207
  • 42
  • 41
  • 37
  • 25
  • 20
  • 18
  • 18
  • 18
  • 18
  • 18
  • 16
  • 15
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Limnology and biota of Lake Yindarlgooda - an inland salt lake in Western Australia under stress

Campagna, Veronica January 2007 (has links)
Inland salt lakes of the arid and semi-arid zones of Western Australia are unique systems. An unpredictable rainfall pattern and a transient water regime ensure these lakes remain dry for much of the year. Lake Yindarlgooda in the Eastern Goldfields of Western Australia is a typical inland salt lake that has been subjected to additional stresses. This thesis is the outcome of investigations conducted on the lake from 2001 to 2003. Emphasis is on the limnology and biota of the lake, including an adjacent wetland, and impacts on the aquatic ecosystems caused predominantly by mining. Lake Yindarlgooda is a large, shallow hypersaline lake situated on the Yindarlgooda Palaeoriver. It is sodium chloride dominated and has naturally high background levels of nickel. Sites impacted by the leaching of hypersaline decant water from a leach residue storage facility (LRSF) were differentiated from control sites using multivariate statistics. Salinity was found to be a major determinant in the structure of the biological communities in the lake systems. / Different biotic communities with low taxonomic diversity were recorded in Lake Yindarlgooda and Swan Refuge, a nearby hyposaline clay pan. The benthic microbial communities were dominated by halotolerant diatoms, notably Amphora coffeaeformis, Navicula incertata and Hantzschia baltica. Variation in the diatom assemblages between the playa sites and the clay pan were noted, influenced by habitat type and salinity. Within Lake Yindarlgooda, the diatom assemblages in the control and impact sites were found to be similar. A narrow salinity spectrum dictated the taxa present. Many of the benthic diatoms collected during the dry phase were encysted, having entered dormancy. The invertebrate fauna in Lake Yindarlgooda and Swan Refuge belonged to the Crustacea. A larger percentage of hyposaline invertebrate taxa were recorded from Swan Refuge, while those in Lake Yindarlgooda were typically halotolerant species. The Ostracoda showed the greatest diversity and their abundance was higher in the southern control sites while the Anostracan, Parartemia sp., dominated the northern impact sites of the playa. / The riparian zone of Lake Yindarlgooda supported a diverse plant community, dominated by the Chenopodiaceae. The marginal vegetation communities along the shores of Lake Yindarlgooda were found to be similar, indicating habitat homeogeneity. Within the riparian zone both biological and physical soil crusts occupied large areas not inhabited by vascular plants. The biological soil crust identified was composed of an association between the filamentous cyanobacterium Microcoleus sp. and a moss species (Musci). Both biological and physical soil crusts were found to have functional roles in stabilising the surrounding low dunes. The soil crusts in the northern control sites were badly degraded as a result of trampling by livestock, while those in the southern control sites were protected and were intact. Only one Parartemia species was found to inhabit Lake Yindarlgooda, Parartemia n. sp. d. It was collected in salinities ranging from 50 to 140 g L-1. The population appeared to be oviparous, recruitment mostly from resting eggs. The male to female ratios varied between sites, as did the number of juveniles compared to the adults. The northern impact sites had a more mature Parartemia population than the southern control sites and appeared to have undergone a second recruitment. Examination of the surface sediment found a well established Parartemia “egg bank” in the northern impact sites with egg numbers much higher than in the southern control sites. / The ultrastructure of the Parartemia resting egg was identical to that of Artemia. Differences in the external features and internal structure of the resting egg of Parartemia n sp. d and Parartemia n. sp g from Lake Miranda, another saline lake, were identified. This study showed morphological variation of the egg within Parartemia, a finding not previously recorded. Rehydration trials on the Parartemia egg bank indicated that the increase in sediment salinity from the LRSF had a negative effect on the hatching of the resting eggs. In salinities above 60 mS cm-1 hatching was less successful. The conditions provided in the trials were similar to those in Lake Yindarlgooda. The hatching technique was repeated on sediment from Lake Miranda with similar results. These trials were considered a valuable monitoring tool in the assessment of impacts on the biota of temporary lakes in the absence of water. This study demonstrated that in the absence of water the egg and spore/seed bank can be used as a proxy for monitoring temporary lakes. It was also found to be valuable in understanding the distribution and diversity of the biotic communities in Lake Yindarlgooda. This study provides the first integrated reference information on a Western Australian inland salt lake against which any future impact may be assessed.
82

Common property rights and indigenous fishing practices in the inland openwater fisheries of Bangladesh: the case of the Koibortta fishing community of Kishoregonj

Rashid, Saifur January 2005 (has links)
Bangladesh contains one of the richest and largest inland fisheries in South Asia and the third highest inland capture fisheries in the world and has a long history, which continues to the present, of conflict and cooperation between fishers and other diverse fishing interests over access to a range of fishing environments managed under a variety of leasing and tenurial arrangements. Several fishing communities are of ancient origin and over a long period of time have developed and adapted their indigenous fishing knowledge, including technologies, fishing practices and knowledge of diverse fishing environments to manage fisheries in a variety of environmental and ecological conditions. This thesis provides a detailed ethnographic account of one such community, the Koibortta fishers of Krishnapur village in the northeast flood plain region of Bangladesh, focusing on their management practices and indigenous fishing knowledge in selected inland common property fisheries. It examines, using documentary and oral historical sources, the ways in which they have adapted aspects of their indigenous fishing knowledge to changing economic and environmental circumstances over the past 50 years. It also examines, using case studies of three water bodies, how they were able to gain short-term and insecure access to selected water bodies, partly by drawing on traditional social networks at village and multivillage levels to mobilise fishers in negotiations with leaseholders. / The thesis argues that these social networks and fishers’ capacity to adapt aspects of their fishing knowledge to new circumstances were insufficient to gain long term, secure and direct access to productive water bodies as fishers lacked strong government commitment to their long term security. The thesis concludes with a discussion of the capacity of Krishnapur fishers to manage fish resources equitably and sustainably.
83

Inland Saline Aquaculture: Overcoming Biological and Technical Constraints Towards the Development of an Industry.

gavin.partridge@challengertafe.wa.edu.au, Gavin Partridge January 2008 (has links)
Secondary salinisation has rendered over 100 million hectares of land throughout the world, and over 5 million hectares in Australia, unsuitable for conventional agriculture. The utilization of salinised land and its associated water resources for mariculture is an adaptive approach to this environmental problem with many potential economic, social and environmental benefits. Despite this, inland mariculture is yet to develop into an industrial-scale, rural enterprise. The main aim of this study was therefore to identify and address some of the technical and biological limitations to the development of an inland finfish mariculture industry. Three technical aspects essential to the development of an Australian inland mariculture industry were reviewed; potential sources of water, the species suitable for culture in these water sources and the production systems available to produce them. Based on factors such as their quantity, quality and proximity to infrastructure, the most appropriate water sources were deemed to be groundwater obtained from interception schemes and waters from operational or disused mines. In terms of species, mulloway (Argyrosomus japonicus) were identified as having many positive attributes for inland mariculture, including being temperate and therefore having the ability to be cultured year-round in the regions where the majority of secondary salinity occurs. Seasonal production of barramundi (Lates calcarifer) in ponds in the temperate climatic zones has potential, but may be more appropriate for those salinised water sources located in the warmer parts of the country. Rainbow trout (Oncorhynchus mykiss) were also identified as having excellent potential provided water temperature can be maintained below the upper lethal limit and also have potential for seasonal production, perhaps in rotation with barramundi. In terms of production systems, pond-based culture methods were found to have many advantages specific to inland mariculture. Static ponds enable culture in areas with low groundwater yield and more cost-effective potassium supplementation compared with flow through ponds. Static ponds also largely overcome the issues associated with the disposal of salt-laden and eutrophied waste water; however yields from static ponds are typically low and limited by the nutrient input into the pond. In response to the yield constraints of static pond culture, a new culture technology known as the Semi-Intensive Floating Tank System (SIFTS) was designed, patented and constructed in collaboration with the aquaculture industry and tested in a static inland saline pond in the wheatbelt of Western Australia. This technology was designed to reduce nutrient input into ponds by the collection of settleable wastes and to provide large volumes of well-oxygenated water to the target species, to ameliorate the loss of fish from low dissolved oxygen during strong microalgal blooms. The three species identified above has having excellent potential for inland mariculture (mulloway, rainbow trout, and barramundi) were grown in SIFTS held within a 0.13 ha static, inland saline water body (salinity 14 ppt) over a period of 292 days, yielding the equivalent of 26 tonnes/ha/year (total for all three species). Rainbow trout were grown with an FCR of 0.97 from 83 to 697 grams over 111 days (SGR, 1.91%/day) between June and September, when average daily water temperatures ranged from 12.3„aC to 18.2„aC. Over the same time period, mulloway grew only from 100 to 116 grams, however, once temperatures increased to approximately 21„aC in October, feed intake increased and mulloway grew to an average size of 384 grams over 174 days with an SGR and FCR of 0.68 %/day and 1.39, respectively. Barramundi stocked in November with an average weight of 40 grams increased to 435 grams in 138 days (SGR 1.73%/day) with an FCR of 0.90. The SIFTS significantly reduced nutrient input into the pond by removing settleable wastes as a thick sludge with a dry matter content of 5 to 10%. The total quantity of dry waste removed over the 292 day culture period was 527 kg (5 tonnes/ha/yr), which was calculated to contain 15 kg of nitrogen (144 kg/ha/yr) and 16 kg of phosphorus (153 kg/ha/yr). The release of soluble nutrients into the pond resulted in blooms of macro- and micro- algae which caused large and potentially lethal diurnal fluctuations in dissolved oxygen within the pond, however, comparatively stable levels of dissolved oxygen were maintained within each SIFT through the use of air lift pumps. It is well documented that saline groundwater is deficient in potassium which, depending on the extent of the deficiency, can negatively impact on the performance of marine species, including fish. The physiological effects of this deficiency on fish, however, have not been previously described. As such, I conducted a bioassay investigating the physiological effects of a hypersaline (45 ppt) groundwater source containing 25% of the potassium found in equivalent salinity seawater (i.e. 25% K-equivalence) on juvenile barramundi. Histopathological examination of moribund fish revealed severe degeneration and necrosis of skeletal muscles, marked hyperplasia of branchial chloride cells and renal tubular necrosis. Clinical chemistry findings included hypernatraemia and hyperchloridaemia of the blood plasma and lowered muscle potassium levels. It was concluded from this study that the principal cause of death of these barramundi was skeletal myopathy induced by unsustainable buffering of blood plasma potassium levels from the muscle. Although such hypokalaemic muscle myopathies have been previously described in mammals and birds, this was the first description of such myopathies in fish. It was hypothesized from the results described above that the physiological effects of potassium deficiency are dependent on salinity and that they would be ameliorated by potassium supplementation. These predictions were tested in a subsequent study which measured the effects of potassium supplementation between 25% and 100% K-equivalence on the growth, survival and physiological response of juvenile barramundi at hyperosmotic (45 ppt), near-isosmotic (15 ppt) and hyposmotic (5 ppt) salinities. Unlike those juvenile barramundi reared at 45 ppt and 25% K-equivalence in the previous study, those reared in 50% K-equivalence water at 45 ppt in this study survived for four weeks but lost weight; whereas at 75% and 100% K-equivalences fish both survived and gained weight. Homeostasis of blood plasma potassium was maintained by buffering from skeletal muscle. Fish reared in 50% K-equivalence at this salinity exhibited muscle dehydration, increased branchial, renal and intestinal (Na+-K+)ATPase activity and elevated blood sodium and chloride, suggesting they were experiencing osmotic stress. At 15 ppt, equal rates of growth were obtained between all K-equivalence treatments. Buffering of plasma potassium by muscle also occurred but appeared to be in a state of equilibrium. Barramundi at 5 ppt displayed equal growth among treatments. At this salinity, buffering of plasma potassium from muscle did not occur and at 25% K-equivalence blood potassium was significantly lower than at all other K-equivalence treatments but with no apparent effect on growth, survival or (Na+-K+)ATPase activities. These data confirmed the hypothesis that proportionally more potassium is required at hyperosmotic salinities compared to iso- and hypo- osmotic salinities and also demonstrated that barramundi have a lower requirement for potassium than other marine and estuarine species being investigated for culture in inland saline groundwater. In addition to ongrowing fish, saline groundwater has potential for hatchery production. Specific advantages include the vertical integration of inland saline farms and the production of disease-free certified stock through isolation from the pathogens and parasites found naturally in coastal water. To determine the potential of utilizing inland saline groundwater for hatchery production, barramundi larvae were reared from 2 to 25 days post hatch in 14 ppt saline groundwater with either no potassium supplementation (38% K-equivalence) or full potassium supplementation (100% K-equivalence). Growth, survival and swimbladder inflation of these larvae were compared against those grown in control treatments of seawater (32 ppt) and seawater diluted to 14 ppt. Those reared in saline groundwater with 38% K-equivalence exhibited complete mortality within 2 days, whilst those held in groundwater with full supplementation survived at a rate equal to both control treatments (pooled average 51.1 ¡Ó 0.5%). At 25 days post hatch, there was no significant difference in larval length or dry weight between those grown in the 14 ppt control treatment and those in the saline groundwater with full potassium supplementation. There were no significant differences in swim bladder inflation between any of the surviving treatments (average 93.3 ¡Ó 2.5%). This is the first description of rearing barramundi larvae both in low salinity seawater and in saline groundwater, and demonstrates that the requirement for potassium by larval barramundi is higher than for juveniles of the same species. In addition to a deficiency in potassium, saline groundwater in Western Australia often contains an elevated concentration of manganese relative to seawater as a result of anaerobic reduction of manganese oxides or the pedogenic weathering of manganese-bearing rock. The effects of elevated manganese on marine or estuarine fish have not been described and a study was therefore conducted to determine if manganese, at a concentration typical of that found in saline groundwater, has any impact on fish. The effects of 5 mg/L of dissolved manganese on juvenile mulloway at salinities of 5, 15 and 45 ppt were determined by comparing the survival, growth and blood and organ chemistry with those grown at the same salinities without manganese addition. Survival of mulloway at 45 ppt in the presence of 5 mg/L of manganese (73 ¡Ó 13%) was significantly lower than all other treatments, which achieved 100% survival. Those fish grown in seawater without manganese exhibited rapid growth, which was not affected by salinity (SGR = 4.05 ¡Ó 0.29%/day). Those fish grown at 5 ppt and 45 ppt in the presence of manganese lost weight over the two week trial (SGR 0.17 ¡Ó 0.42 and -0.44 ¡Ó 0.83%/day, respectively), whilst those at 15 ppt gained only a small amount of weight (SGR 1.70 ¡Ó 0.20%/day). Growth was therefore affected by manganese and by the interaction of manganese and salinity, but not salinity alone. Manganese was found to accumulate in the gills, liver and muscle of the fish. No gill epithelial damage or other significant histological findings were found, however, significant differences in blood chemistry were observed. Blood sodium and chloride of manganese exposed fish were significantly elevated in hyperosmotic salinity (45 ppt) and depressed at hyposmotic salinity (5 ppt) compared with unexposed fish; consistent with manganese causing apoptosis or necrosis to chloride cells. Blood potassium was significantly elevated and liver potassium significantly reduced at all salinities in the presence of manganese. These findings are consistent with manganese interfering with carbohydrate metabolism. There were no differences in blood sodium, chloride or potassium across salinities in fish not exposed to manganese, demonstrating mulloway are capable of efficient osmoregulation across this salinity range.
84

Optimal Channel Design

Aksoy, Bulent 01 September 2003 (has links) (PDF)
The optimum values for the section variables like channel side slope,bottom width,depth and radius for triangular,rectangular, trapezoidal and circular channels are computed by minimizing the cost of the channel section.Manning &rsquo / s uniform flow formula is treated as a constraint for the optimization model.The cost function is arranged to include the cost of lining,cost of earthwork and the increment in the cost of earthwork with the depth below the ground surface.The optimum values of section variables are expressed as simple functions of unit cost terms.Unique values of optimum section variables are obtained for the case of minimum area or minimum wetted perimeter problems.
85

Forecasting the Inland Empire's Economic Recovery

Franklin, Jesse C. 01 January 2010 (has links)
The Inland Empire -Riverside and San Bernardino Counties - was one of the hardest hit areas in all of the United States during the Great Recession. Home prices have declined over 50%, significantly more than the 25% decline in the surrounding Los Angeles County, and housing starts have declined to over 90% from 2005. The Inland Empire has one of the highest unemployment rates in the US at 14.8%. This paper attempts to forecast the recovery for the Inland Empire. Employing univariate forecasts along with VAR(12) forecasts, focusing on housing starts and unemployment rates as the underlying variables, we find that there is little hope for a recovery over the next 3 years. The model predicts unemployment to either rise even more or, at best, remain stagnant. Housing starts are predicted to remain constant over the next three years.
86

How Can We Grow if We Destroy our Roots? An Analysis of Roots as Metaphor for Growth and Urban Change

Vaughn, Alexis 30 April 2010 (has links)
Roots: They take hold; they grow, expand and change, creating networks and sub-networks as they start to break above the earth's surface and stretch up higher towards the sky day by day. Roots can be taken out (the stock, stem or trunk removed), but both the memory and the evidence of the roots' existence will continue to remain for a while to come. The idea of "roots" applies to so much: from artists taking inspiration from previous artists, even at times to mirror the change in the world which one artist had previously documented; from the places we establish our families and create our memories, to a good deal more.
87

Maritime Accidents Forecast Model For Bosphorus

Kucukosmanoglu, Alp 01 February 2012 (has links) (PDF)
A risk assessment model (MAcRisk) have been developed to forecast the probability and the risk of maritime accidents on Bosphorus. Accident archives of Undersecretariat Maritime Affairs Search and Rescue Department, weather conditions data of Turkish State Meteorological Service and bathymetry and current maps of Office of Navigation, Hydrography and Oceanography have been used to prepare the model input and to forecast the accident probability. Accident data has been compiled according to stated sub-regions on Bosphorus and event type of accidents such as collision, grounding, capsizing, fire and other. All data that could be obtained are used to clarify the relationship on accident reasons. An artificial neural network model has been developed to forecast the maritime accidents in Bosphorus.
88

Efficiency, risk and regulation compliance : applications to Lake Victoria fisheries in Tanzania /

Lokina, Razack Bakari, January 1900 (has links) (PDF)
Diss. (sammanfattning) Göteborg : Univ., 2005. / Härtill 3 uppsatser.
89

Relationships between Maritime Container Terminals and Dry Ports and their impact on Inter-port competition

Castrillon, Robert January 2012 (has links)
Globalization of the world’s economy, containerization, intermodalism and specialization have reshaped transport systems and the industries that are considered crucial for the international distribution of goods such as the port industry. Simultaneously, economies of location, economies of scope, economies of scale, optimization of production factors, and clustering of industries have triggered port regionalization and inland integration of port services especially those provided by container terminals. In this integration dry ports have emerged as a vital intermodal platform for the effective and efficient distribution of containerized cargo. Dry ports have enabled port and hinterland expansion increasing the competitiveness of container terminals at seaports. In consequence, container terminals and dry ports are establishing formal and informal relationships to strengthen the competitiveness of their hinterlands and to improve their role in the physical distribution of goods. This study assesses the characteristics of relationships between container terminals and dry ports. Such assessment is conducted based on a set of relationship characteristics proposed in a relationship assessment model for customer/supplier, in which dry ports are given the role of suppliers of port services to container terminals. In addition, the research assesses the impact of the relationships between container terminals and dry ports on inter-port competition. The main findings of the research led to conclude relationships between container terminals and dry ports are characterized by medium mutuality, low particularity, low co-operation, low conflict, low intensity, low interpersonal inconsistency, high power/dependence and medium trust. Additionally, it was concluded that such relationship characteristics impact inter-port competition in two main ways. In one hand by driving container terminals to maximize the utilization of dry port’s capabilities such as container transport/delivery, container storage, customs clearance, information systems and intermodal connections to industrial clusters. On the other hand, by constructing channels of interaction through which dry port’s benefits for hinterlands such as increase of container terminal capacity, reduction of road congestion, increase of modal shift and hinterland expansion are used as leverage in competition for containerized cargo.
90

Climate Change, Risk and Productivity: Analyses of Chinese Agriculture

Holst, Rainer 11 July 2013 (has links)
No description available.

Page generated in 0.1544 seconds