Spelling suggestions: "subject:"inpainting."" "subject:"inkpainting.""
71 |
Champs à phase aléatoire et champs gaussiens pour la mesure de netteté d’images et la synthèse rapide de textures / Random phase fields and Gaussian fields for image sharpness assessment and fast texture synthesisLeclaire, Arthur 26 June 2015 (has links)
Dans cette thèse, on étudie la structuration des phases de la transformée de Fourier d'images naturelles, ce qui, du point de vue applicatif, débouche sur plusieurs mesures de netteté ainsi que sur des algorithmes rapides pour la synthèse de texture par l'exemple. Le Chapitre 2 présente dans un cadre unifié plusieurs modèles de champs aléatoires, notamment les champs spot noise et champs gaussiens, en prêtant une attention particulière aux représentations fréquentielles de ces champs aléatoires. Le Chapitre 3 détaille l'utilisation des champs à phase aléatoire à la synthèse de textures peu structurées (microtextures). On montre qu'une microtexture peut être résumée en une image de petite taille s'intégrant à un algorithme de synthèse très rapide et flexible via le modèle spot noise. Aussi on propose un algorithme de désocclusion de zones texturales uniformes basé sur la simulation gaussienne conditionnelle. Le Chapitre 4 présente trois mesures de cohérence globale des phases de la transformée de Fourier. Après une étude théorique et pratique établissant leur lien avec la netteté d'image, on propose un algorithme de déflouage aveugle basé sur l'optimisation stochastique de ces indices. Enfin, dans le Chapitre 5, après une discussion sur l'analyse et la synthèse directe de l'information de phase, on propose deux modèles de textures à phases cohérentes qui permettent la synthèse de textures plus structurées tout en conservant quelques garanties mathématiques simples. / This thesis deals with the Fourier phase structure of natural images, and addresses no-reference sharpness assessment and fast texture synthesis by example. In Chapter 2, we present several models of random fields in a unified framework, like the spot noise model and the Gaussian model, with particular attention to the spectral representation of these random fields. In Chapter 3, random phase models are used to perform by-example synthesis of microtextures (textures with no salient features). We show that a microtexture can be summarized by a small image that can be used for fast and flexible synthesis based on the spot noise model. Besides, we address microtexture inpainting through the use of Gaussian conditional simulation. In Chapter 4, we present three measures of the global Fourier phase coherence. Their link with the image sharpness is established based on a theoretical and practical study. We then derive a stochastic optimization scheme for these indices, which leads to a blind deblurring algorithm. Finally, in Chapter 5, after discussing the possibility of direct phase analysis or synthesis, we propose two non random phase texture models which allow for synthesis of more structured textures and still have simple mathematical guarantees.
|
72 |
Champs à phase aléatoire et champs gaussiens pour la mesure de netteté d’images et la synthèse rapide de textures / Random phase fields and Gaussian fields for image sharpness assessment and fast texture synthesisLeclaire, Arthur 26 June 2015 (has links)
Dans cette thèse, on étudie la structuration des phases de la transformée de Fourier d'images naturelles, ce qui, du point de vue applicatif, débouche sur plusieurs mesures de netteté ainsi que sur des algorithmes rapides pour la synthèse de texture par l'exemple. Le Chapitre 2 présente dans un cadre unifié plusieurs modèles de champs aléatoires, notamment les champs spot noise et champs gaussiens, en prêtant une attention particulière aux représentations fréquentielles de ces champs aléatoires. Le Chapitre 3 détaille l'utilisation des champs à phase aléatoire à la synthèse de textures peu structurées (microtextures). On montre qu'une microtexture peut être résumée en une image de petite taille s'intégrant à un algorithme de synthèse très rapide et flexible via le modèle spot noise. Aussi on propose un algorithme de désocclusion de zones texturales uniformes basé sur la simulation gaussienne conditionnelle. Le Chapitre 4 présente trois mesures de cohérence globale des phases de la transformée de Fourier. Après une étude théorique et pratique établissant leur lien avec la netteté d'image, on propose un algorithme de déflouage aveugle basé sur l'optimisation stochastique de ces indices. Enfin, dans le Chapitre 5, après une discussion sur l'analyse et la synthèse directe de l'information de phase, on propose deux modèles de textures à phases cohérentes qui permettent la synthèse de textures plus structurées tout en conservant quelques garanties mathématiques simples. / This thesis deals with the Fourier phase structure of natural images, and addresses no-reference sharpness assessment and fast texture synthesis by example. In Chapter 2, we present several models of random fields in a unified framework, like the spot noise model and the Gaussian model, with particular attention to the spectral representation of these random fields. In Chapter 3, random phase models are used to perform by-example synthesis of microtextures (textures with no salient features). We show that a microtexture can be summarized by a small image that can be used for fast and flexible synthesis based on the spot noise model. Besides, we address microtexture inpainting through the use of Gaussian conditional simulation. In Chapter 4, we present three measures of the global Fourier phase coherence. Their link with the image sharpness is established based on a theoretical and practical study. We then derive a stochastic optimization scheme for these indices, which leads to a blind deblurring algorithm. Finally, in Chapter 5, after discussing the possibility of direct phase analysis or synthesis, we propose two non random phase texture models which allow for synthesis of more structured textures and still have simple mathematical guarantees.
|
73 |
Restauration d'images par temps de brouillard et de pluie : applications aux aides à la conduiteHalmaoui, Houssam 30 November 2012 (has links) (PDF)
Les systèmes d'aide à la conduite (ADAS) ont pour objectif d'assister le conducteur et en particulier d'améliorer la sécurité routière. Pour cela, différents capteurs sont généralement embarqués dans les véhicules afin, par exemple, d'avertir le conducteur en cas de danger présent sur la route. L'utilisation de capteurs de type caméra est une solution économiquement avantageuse et de nombreux ADAS à base de caméra voient le jour. Malheureusement, les performances de tels systèmes se dégradent en présence de conditions météorologiques défavorables, notamment en présence de brouillard ou de pluie, ce qui obligerait à les désactiver temporairement par crainte de résultats erronés. Hors, c'est précisément dans ces conditions difficiles que le conducteur aurait potentiellement le plus besoin d'être assisté. Une fois les conditions météorologiques détectées et caractérisées par vision embarquée, nous proposons dans cette thèse de restaurer l'image dégradée à la sortie du capteur afin de fournir aux ADAS un signal de meilleure qualité et donc d'étendre la gamme de fonctionnement de ces systèmes. Dans l'état de l'art, il existe plusieurs approches traitant la restauration d'images, parmi lesquelles certaines sont dédiées à nos problématiques de brouillard ou de pluie, et d'autres sont plus générales : débruitage, rehaussement du contraste ou de la couleur, "inpainting"... Nous proposons dans cette thèse de combiner les deux familles d'approches. Dans le cas du brouillard notre contribution est de tirer profit de deux types d'approches (physique et signal) afin de proposer une nouvelle méthode automatique et adaptée au cas d'images routières. Nous avons évalué notre méthode à l'aide de critères ad hoc (courbes ROC, contraste visibles à 5 %, évaluation sur ADAS) appliqués sur des bases de données d'images de synthèse et réelles. Dans le cas de la pluie, une fois les gouttes présentes sur le pare-brise détectées, nous reconstituons les parties masquées de l'image à l'aide d'une méthode d'"inpainting" fondée sur les équations aux dérivées partielles. Les paramètres de la méthode ont été optimisés sur des images routières. Enfin, nous montrons qu'il est possible grâce à cette approche de construire trois types d'applications : prétraitement, traitement et assistance. Dans chaque famille, nous avons proposé et évalué une application spécifique : détection des panneaux dans le brouillard ; détection de l'espace navigable dans le brouillard ; affichage de l'image restaurée au conducteur.
|
74 |
Numerical simulation of shallow water equations and some physical models in image processingHaro Ortega, Glòria 11 July 2005 (has links)
There are two main subjects in this thesis: the first one deals with the numerical simulation of shallow water equations, the other one is the resolution of some problems in image processingThe first part of this dissertation is devoted to the shallow waters. We propose a combined scheme which uses the Marquina's double flux decomposition (extended to the non homogeneous case) when adjacent states are not close and a single decomposition otherwise. This combined scheme satisfies the exact C property. Furthermore, we propose a special treatment of the numerical scheme at dry zones.The second subject is the digital simulation of the Day for Night (or American Night in Europe). The proposed algorithm simulates a night image coming from a day image and considers some aspects of night perception. In order to simulate the loss of visual acuity we introduce a partial differential equation that simulates the spatial summation principle of the photoreceptors in the retina.The gap restoration (inpainting) on surfaces is the object of the third part. For that, we propose some geometrical approaches based on the mean curvature. Then, we also use two interpolation methods: the resolution of the Laplace equation, and an Absolutely Minimizing Lipschitz Extension (AMLE). Finally, we solve the restoration problem of satellite images. The variational problem that we propose manages to do irregular to regular sampling, denoising, deconvolution and zoom at the same time. / Los temas tratados en esta tesis son, por un lado, la simulación numérica de las ecuaciones de aguas someras ("shallow waters") y por otro, la resolución de algunos problemas de procesamiento de imágenes. En la primera parte de la tesis, dedicada a las aguas someras, proponemos un esquema combinado que usa la técnica de doble descomposición de flujos de Marquina (extendida al caso no homogéneo) cuando los dos estados adyacentes no están próximos y una única descomposición en caso contrario. El esquema combinado verifica la propiedad C exacta. Por otro lado, proponemos un tratamiento especial en las zonas secas.El segundo tema tratado es la simulación digital de la Noche Americana ("Day for Night"). El algoritmo propuesto simula una imagen nocturna a partir de una imagen diurna considerando varios aspectos de la percepción visual nocturna. Para simular la pérdida de agudeza visual se propone una ecuación en derivadas parciales que simula el principio de sumación espacial de los fotoreceptores situados en la retina.La restauración de agujeros ("inpainting") en superficies es objeto de la tercera parte. Para ello se proponen varios enfoques geométricos basados en la curvatura media. También se utilizan dos métodos de interpolación: la resolución de la ecuación de Laplace y el método AMLE (Absolutely Minimization Lipschitz Extension).Por último, tratamos la restauración de imágenes satelitales. El método propuesto consigue obtener una colección de muestras regulares a partir de un muestreo irregular, eliminando a la vez el ruido, deconvolucinando la imagen y haciendo un zoom.
|
75 |
Champs à phase aléatoire et champs gaussiens pour la mesure de netteté d’images et la synthèse rapide de textures / Random phase fields and Gaussian fields for image sharpness assessment and fast texture synthesisLeclaire, Arthur 26 June 2015 (has links)
Dans cette thèse, on étudie la structuration des phases de la transformée de Fourier d'images naturelles, ce qui, du point de vue applicatif, débouche sur plusieurs mesures de netteté ainsi que sur des algorithmes rapides pour la synthèse de texture par l'exemple. Le Chapitre 2 présente dans un cadre unifié plusieurs modèles de champs aléatoires, notamment les champs spot noise et champs gaussiens, en prêtant une attention particulière aux représentations fréquentielles de ces champs aléatoires. Le Chapitre 3 détaille l'utilisation des champs à phase aléatoire à la synthèse de textures peu structurées (microtextures). On montre qu'une microtexture peut être résumée en une image de petite taille s'intégrant à un algorithme de synthèse très rapide et flexible via le modèle spot noise. Aussi on propose un algorithme de désocclusion de zones texturales uniformes basé sur la simulation gaussienne conditionnelle. Le Chapitre 4 présente trois mesures de cohérence globale des phases de la transformée de Fourier. Après une étude théorique et pratique établissant leur lien avec la netteté d'image, on propose un algorithme de déflouage aveugle basé sur l'optimisation stochastique de ces indices. Enfin, dans le Chapitre 5, après une discussion sur l'analyse et la synthèse directe de l'information de phase, on propose deux modèles de textures à phases cohérentes qui permettent la synthèse de textures plus structurées tout en conservant quelques garanties mathématiques simples. / This thesis deals with the Fourier phase structure of natural images, and addresses no-reference sharpness assessment and fast texture synthesis by example. In Chapter 2, we present several models of random fields in a unified framework, like the spot noise model and the Gaussian model, with particular attention to the spectral representation of these random fields. In Chapter 3, random phase models are used to perform by-example synthesis of microtextures (textures with no salient features). We show that a microtexture can be summarized by a small image that can be used for fast and flexible synthesis based on the spot noise model. Besides, we address microtexture inpainting through the use of Gaussian conditional simulation. In Chapter 4, we present three measures of the global Fourier phase coherence. Their link with the image sharpness is established based on a theoretical and practical study. We then derive a stochastic optimization scheme for these indices, which leads to a blind deblurring algorithm. Finally, in Chapter 5, after discussing the possibility of direct phase analysis or synthesis, we propose two non random phase texture models which allow for synthesis of more structured textures and still have simple mathematical guarantees.
|
76 |
Décomposition Modale Empirique : Contribution à la Modélisation Mathématique et Application en Traitement du Signal et de l'ImageNiang, Oumar 20 September 2007 (has links) (PDF)
La Décomposition Modale Empirique (EMD), est une méthode de décomposition multi-résolution de signaux en fonctions Modes Intrinsèques (IMF) et cela, de manière auto-adaptative. En la couplant avec la transformée de Hilbert, elle devient une méthode d'analyse Temps-Fréquence , la transformée de Hilbert-Huang, permettant d'étudier bon nombre de classes de signaux. Malgré ces nombreuses applications, l'une des plus importantes limites de l'EMD est son manque de formalisme mathématique. A la place d'une interpolation par splines cubiques utilisée dans l'EMD classique, nous avons estimé l'enveloppe moyenne par une solution d'un système d'EDP. Par une méthode variationnelle, nous avons établi un cadre théorique pour prouver les résultats de convergence, d'existence de modes et la propriété de presque orthogonalité de l'EMD. La comparaison avec des bancs de filtres itératifs et les ondelettes, montre l'aspect multi-résolution de l'EMD. Deux nouvelles applications en traitement du signal et de l'image sont présentées : l'extraction des intermittences et mode mixing et la restauration par shrinkage par EMD. Enfin le modèle peut servir de base pour l'étude de l'unicité de la décomposition.
|
Page generated in 0.0659 seconds