1 |
Reduced models and numerical methods for kinetic equations applied to photon transport / Modèles réduits et méthodes numériques pour des équations cinétiques appliquées au transport des photonsLeroy, Thomas 05 January 2016 (has links)
La modélisation d'expériences de fusion par confinement inertiel fait intervenir des équations cinétiques dont la discrétisation peut être très coûteuse. La recherche de modèles simplifiés permet de réduire la taille et donc la complexité de ces systèmes. La justification mathématique de ces modèles simplifiés devient alors un enjeu central. Dans ce travail nous étudions plusieurs modèles réduits pour l'équation du transfert radiatif dans différents contextes, tant du point de vue théorique que du point de vue numérique. En particulier nous étudions l'équation du transfert radiatif relativiste dans le régime de diffusion hors équilibre, et nous montrons la convergence de la solution de cette équation vers la solution d'une équation de drift diffusion, dans laquelle les effets Doppler sont modélisés par un terme de transport en fréquence. Cette équation de transport est discrétisée par une nouvelle classe de schémas "bien équilibrés" (well-balanced), pour lesquels nous montrons que ces nouveaux schémas sont consistants lorsque la vitesse d'onde tends vers zero, par opposition aux schémas de type Greenberg-Leroux. Nous étudions également de nouveaux modèles réduits pour le scattering Compton (collision inélastique photon-électron). Une hiérarchie d'équations cinétiques non linéaires généralisant l'équation de Kompaneets pour des distributions anisotropes sont dérivées et leurs propriétés étudiées. Les modèles aux moments de type P_1 et M_1 sont dérivés à partir de l'une de ces équations, et nous montrons que la prise en compte de l'anisotropie du rayonnement peut modifier le phénomène de condensation de Bose expliqué par Caflisch et Levermore. Ce manuscrit se termine avec les comptes rendus de deux projets. Le premier est une preuve technique de la convergence uniforme du schéma de Gosse-Toscani sur maillages non structurés. Ce schéma est "asymptotic preserving", au sens ou il préserve au niveau discret la limite de diffusion pour l'équation de la chaleur hyperbolique, et cette preuve de convergence uniforme sur maillage non structurés en 2D est originale. Le second concerne la dérivation d'un modèle cinétique pour le Bremsstrahlung électron-ion qui préserve la limite thermique. / The modeling of inertial confinement experiments involves kinetic equations whose discretization can become very costly. The research of reduced models allows to decrease the size and the complexity of these systems. The mathematical justification of such reduced models becomes an important issue. In this work we study several reduced models for the transfer equation in several contexts, from the theoretical and numerical point of view. In particular we study the relativistic transfer equation in the non-equilibrium diffusion regime, and we prove the convergence of the solution of this equation to the solution of a drift diffusion equation, in which the Doppler effects are modeled by a frequency transport term. This transport equation is discretized by a new class of well-balanced schemes, and we show that these schemes are consistant as the wave velocity tends to zero, by opposition to the Greenberg-Leroux type schemes. We also study several original reduced models for the Compton scattering (inelastic electron-photon collision). A hierarchy of nonlinear kinetic equations generalizing the Kompaneets equation for anisotropic distributions are derived and their properties are studied. The M_1 and P_1 angular moments models are derived from one of these equations, and we show that the anisotropic part of a radiation beam can modify the Bose condensation phenomena observed by caflisch and Levermore. This work ends with the reports of two side projects. The first one is a technical proof of the uniform convergence of the Gosse-Toscani scheme on unstructured meshes. This scheme is asymptotic preserving, since it preserves at the discrete level the diffusion limit of the hyperbolic heat equation, and this proof on unstructured meshes in 2D is original. The second one is devoted to the derivation of a kinetic model for the electron-ion Bremsstrahlung that preserves the thermal limit.
|
2 |
An Adaptive Well-Balanced Positivity Preserving Central-Upwind Scheme for the Shallow Water Equations Over Quadtree GridsGhazizadeh Fard, Seyed Mohammad Ali 17 April 2020 (has links)
Shallow water equations are widely used to model water flows in the field of hydrodynamics and civil engineering. They are complex, and except for some simplified cases, no analytical solution exists for them. Therefore, the partial differential equations of the shallow water system have been the subject of various numerical analyses and studies in past decades. In this study, we construct a stable and robust finite volume scheme for the shallow water equations over quadtree grids. Quadtree grids are two-dimensional semi-structured Cartesian grids that have different applications in several fields of engineering, such as computational fluid dynamics. Quadtree grids refine or coarsen where it is required in the computational domain, which gives the advantage of reducing the computational cost in some problems.
Numerical schemes on quadtree grids have different properties. An accurate and robust numerical scheme is able to provide a balance between the flux and source terms, preserve the positivity of the water height and water surface, and is capable of regenerating the grid with respect to different conditions of the problem and computed solution. The proposed scheme uses a piecewise constant approximation and employs a high-order Runge-Kutta method to be able to make the solution high-order in space and time. Hence, in this thesis, we develop an adaptive well-balanced positivity preserving scheme for the shallow water system over quadtree grids utilizing different techniques. We demonstrate the formulations of the proposed scheme over one of the different configurations of quadtree cells. Six numerical benchmark tests confirm the ability of the scheme to accurately solve the problems and to capture small perturbations.
Furthermore, we extend the proposed scheme to the coupled variable density shallow water flows and establish an extended method where we focus on eliminating nonphysical oscillations, as well as well-balanced, positivity preserving, and adaptivity properties of the scheme. Four different numerical benchmark tests show that the proposed extension of the scheme is accurate, stable, and robust.
|
3 |
Contribution à l'approximation numérique des systèmes hyperboliquesDesveaux, Vivien 26 November 2013 (has links) (PDF)
Dans ce travail, on s'intéresse à plusieurs aspects de l'approximation numérique des systèmes hyperboliques de lois de conservation. La première partie est dédiée à la construction de schémas d'ordre élevé sur des maillages 2D non structurés. On développe une nouvelle technique de reconstruction de gradients basée sur l'écriture de deux schémas MUSCL sur deux maillages imbriqués. Cette procédure augmente le nombre d'inconnues numériques, mais permet d'approcher la solution avec une grande précision. Dans la deuxième partie, on étudie la stabilité des schémas d'ordre élevé. On montre dans un premier temps que les inégalités d'entropie discrètes usuelles vérifiées par les schémas d'ordre élevé ne sont pas pertinentes pour assurer le bon comportement dans le régime de convergence. On propose alors une extension des techniques de limitation {\it a posteriori} pour forcer la vérification des inégalités d'entropie discrètes requises. Dans la dernière partie, on s'intéresse à la construction de schémas well-balanced pour le modèle de Saint-Venant, le modèle de Ripa et les équations d'Euler avec gravité. On propose plusieurs stratégies permettant d'obtenir des schémas numériques capables de préserver tous les régimes stationnaires au repos. On développe également des extensions d'ordre élevé.
|
4 |
Modélisation d'écoulements fluides en milieu encombré d'obstacles / Modeling fluid flows in obstructed mediaMartin, Xavier 24 November 2015 (has links)
On s'intéresse dans ce document à la modélisation d'écoulements compressibles en conduite unidimensionnelle (1D) à section variable et dans des domaines bi ou tridimensionnelles encombrés d'obstacles. Le travail est motivé par la modélisation d'écoulements dans les circuits de refroidissement de réacteurs à eau pressurisée (REP). Ainsi ce travail a pour objectif de proposer une nouvelle formulation pour de tels écoulements. L'idée de base consiste a utiliser une formulation intégrale sur la base des équations aux dérivées partielles. Le système de lois de conservation associé aux équations d'Euler (masse, dynamique et énergie) est examiné.Le premier chapitre examine le cas de conduite 1D à section continue ou discontinue. La formulation intégrale est présentée et les résultats numériques sont comparés avec (i) l'approche Well-Balanced et (ii) la solution de référence obtenue sur maillage très fin.Les second et troisième chapitres examinent la modélisation d'écoulements compressibles dans des domaines contenant de nombreux tubes. La formulation intégrale est donnée, et les schémas numériques présentés, afin de gérer les interfaces fluide/fluide et les parois. Les schémas peuvent être explicites (chapitre 2), ou implicites (chapitre 3). Quelques cas tests analytiques sont présentés. On se concentre sur l'écoulement d'un fluide abordant une zone de tubes alignés de petite taille. Ici encore, la comparaison est faite avec la référence fluide; les résultats sont également comparés avec ceux issus de l'approche équilibre classique, et ceux associés à la formulation intégrale unidimensionnelle présentée dans le premier chapitre. / This document focuses on the modeling of compressible flows in one-dimensional (1D) pipes with variable cross-section, and in two or three-dimensional domains containing many small obstacles. The basic motivation is urged by the modeling of flows in the coolant circuit of pressurised water reactors (PWR). Thus this work aims at providing a new formulation for such a variety of flows. The basic idea consists in using an integral approach that is applied to the governing set of partial differential equations. Here the keystone is the conservative Euler set of equations, including mass, momentum and energy balance for any equation of state.Hence, the first chapter investigates the case of one-dimensional pipes with continuous or discontinuous cross-section. Once the 1D+ integral formulation has been presented, numerical results are compared with : (i) the classical Well-Balanced (WB) approach, and (ii) the reference solution obtained with a multi-dimensional code with huge mesh refinement.The second and third chapters provide some new insight on the numerical modeling of compressible flows in domains obstructed with many tubes. The integral formulation is derived, and numerical schemes are detailed, in order to handle fluid/fluid interfaces and wall boundaries. Schemes may be explicit (chapter 2), or implicit (chapter 3). A few analytic test cases are investigated. Focus is made on the flow incoming a region containing many tiny and aligned tubes. Here again, a comparison with the reference "fluid" solution is achieved; results are also compared with those arising from the WB approach, and with those coming from the 1D+ integral approach proposed in the first chapter.
|
5 |
Numerical Modelling of Shallow Water Flows over Mobile BedsLiu, Xin January 2016 (has links)
This Ph.D. thesis aims to develop numerical models for two-dimensional and three-dimensional shallow water systems over mobile beds. In order to accomplish the goal of this dissertation, the following sub-projects are defined and completed.
1: The first sub-project consists in developing a robust two-dimensional coupled numerical model based on an unstructured mesh, which can simulate rapidly varying flows over an erodible bed involving wet–dry fronts that is a complex yet practically important problem. In this task, the central-upwind scheme is extended to simulation of bed erosion and sediment transport, a modified shallow water system is adopted to improve the model, a wetting and drying scheme is proposed for tracking wet-dry interfaces and stably predict the bed erosion near wet-dry area. The shallow water, sediment transport and bed evolution equations are coupled in the governing system. The proposed model can efficiently track wetting and drying interfaces while preserving stability in simulating the bed erosion near the wet-dry fronts. The additional terms in shallow water equations can improve the accuracy of the simulation when intense sediment-exchange exists; the central-upwind method adopted in the current study shows great accuracy and efficiency compared with other popular solvers; the developed model is robust, efficient and accurate in dealing with various challenging cases.
2: The second sub-project consists in developing a novel numerical scheme for a coupled two-dimensional hyperbolic system consisting of the shallow water equations with friction terms coupled with the equations modeling the sediment transport and bed evolution. The resulting 5*5 hyperbolic system of balance laws is numerically solved using a Godunov-type central-upwind scheme on a triangular grid. A spatially second-order and temporally third-order central-upwind scheme has been derived to discretize the conservative hyperbolic sub-system. However, such schemes need a correct evaluation of local wave speeds to avoid instabilities. To address such an issue, a mathematical result by the Lagrange theorem is used in the proposed scheme. Consequently, a computationally expensive process of finding all of the eigenvalues of the Jacobian matrices is avoided: The upper/lower bounds on the largest/smallest local speeds of propagation are estimated using the Lagrange theorem. In addition, a special discretization of the bed-slope term is proposed to guarantee the well-balanced property of the designed scheme.
3: The third sub-project consists in designing a novel scheme to estimate bed-load fluxes which can produce more accurate results than the previously reported coupled model. Using a pair of local wave speeds different from those used for the flow, a novel wave estimator in conjunction with the central upwind method is proposed and successfully applied to the coupled water-sediment system involving a rapid bed-erosion process. It was demonstrated that, in comparison with the decoupled model, applying the proposed novel scheme to approximate the bed-load fluxes can successfully avoid the numerical oscillations caused by simple and less stable schemes, e.g. simple upwind methods; in comparison with the coupled model using same flux-estimator for both hydrodynamic and morphological systems, the proposed numerical scheme successfully prevents excessive numerical diffusion for prediction of bed evolution. Consequently, the proposed scheme has advantages in terms of accuracy which are shown in several numerical tests. In addition, analytical expressions have been provided for calculating the eigenvalues of the coupled shallow-water-Exner system, which greatly enhances the efficiency of the proposed method.
4: The fourth sub-project consists in developing a three-dimensional numerical model for the simulation of unsteady non-hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics-based scheme which simulates sub- and super-critical flows. Three-dimensional velocity components are considered in a collocated arrangement with a sigma coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term. The unstructured grid in the horizontal direction and the sigma coordinate in the vertical direction facilitate the use of the model in complicated geometries.
5: The fifth sub-project consists in developing a well-balanced three-dimensional shallow water model which is able to simulate shock waves over dry bed. Due to the hydrostatic simplification of the vertical momentum equation, the governing system of equations is not hyperbolic and can not be solved using standard hyperbolic solvers. That is, one can not use a high-order Godunov-type scheme to compute all fluxes through cell-interfaces. This may cause the model to fail in simulations of some unsteady-flows with discontinuities, e.g., dam-break flows and floods. To overcome this difficulty, a novel numerical scheme for the three-dimensional shallow water equations is proposed using a relaxation approach in order to convert the system to a hyperbolic one. Thus, a high-order Godunov-type central-upwind scheme based on the finite volume method can be applied to approximate the numerical fluxes. The proposed model can also preserve the ``lake at rest'' state and positivity of water depth over irregular bottom topographies based on special reconstruction of the corresponding parameters.
6: The sixth sub-project consists in extending the result of the fifth sub-project to development of a three-dimensional numerical model for shallow water flows over mobile beds, which is able to simulate morphological evolutions under shock waves, e.g. dam-break flows. The hydrodynamic model solves the three-dimensional shallow water equations using a finite volume method on prismatic cells in sigma coordinates based on the scheme prposed in sub-project 5. The morphodynamic model solves an Exner equation consisting of bed-load sediment transportation. The performance of the proposed model has been demonstrated by several laboratory experiments of dam-break flows over mobile beds.
|
6 |
Analyse de quelques schémas numériques pour des problèmes de shallow water / Analysis of several numerical scheme designed for shallow water problemsLhebrard, Xavier 27 April 2015 (has links)
Nous élaborons et analysons mathématiquement des approximations numériques par des méthodes de type volumes finis de solutions faibles de systèmes hyperboliques pour des écoulements géophysiques. Dans une première partie nous approchons les solutions du système de la magnétohydrodynamique en faible épaisseur avec un fond plat. Nous développons un schéma de type Godunov utilisant un solveur de Riemann approché défini via une méthode de relaxation. Des expressions explicites sont établies pour les vitesses de relaxation, qui permettent d'obtenir un schéma satisfaisant un ensemble de bonnes propriétés de consistance et de stabilité. Il conserve la masse, préserve la positivité de la hauteur de fluide, vérifie une inégalité d'entropie discrète, résout les discontinuités de contact même résonantes, donne des vitesses de propagations contrôlées par les données initiales. Des tests numériques sont effectués, validant les résultats théoriques énoncés. Dans une seconde partie nous approchons les solutions du système de la magnétohydrodynamique en faible épaisseur avec fond variable. Nous développons un schéma équilibre pour certains états stationnaires au repos. Nous utilisons la méthode de reconstruction hydrostatique, avec des états reconstruits pour la hauteur d'eau et les composantes du champ magnétique. Nous trouvons des termes correctifs pour les flux numériques par rapport au cadre habituel, et nous prouvons que le schéma obtenu préserve la positivité de la hauteur d'eau, vérifie une inégalité d'entropie semi-discrète et est consistant. Des tests numériques sont effectués, validant les résultats théoriques. Dans une troisième partie nous établissons la convergence d'un schéma cinétique avec reconstruction hydrostatique pour le système de Saint-Venant avec topographie. De nouvelles estimations sur le gradient des solutions approchées sont obtenues par l'analyse de la dissipation d'énergie. La convergence est obtenue par la méthode de compacité par compensation, sous des hypothèses sur les données initiales et la régularité du fond / We build and analyze mathematically numerical approximations by finite volume methods of weak solutions to hyperbolic systems for geophysical flows. In a first part we approximate the solutions of the shallow water magneto hydrodynamics system with flat bottom. We develop a Godunov scheme using an approximate Riemann solver defined via a relaxation method. Explicit formulas are established for the relaxation speeds, that lead to a scheme satisfying good properties of consistency and stability. It preserves mass, positivity of the fluid height, satisfies a discrete entropy inequality, resolves contact discontinuities, and involves propagation speeds controlled by the initial data. Several numerical tests are performed, endorsing the theoretical results. In a second part we approximate the solutions of the shallow water magneto hydrodynamics system with non-flat bottom. We develop a well-balanced scheme for several steady states at rest. We use the hydrostatic reconstruction method, with reconstructed states for the fluid height and the magnetic field. We get some new corrective terms for the numerical fluxes with respect to the classical framework, and we prove that the obtained scheme preserves the positivity of height, satisfies a semi-discrete entropy inequality, and is consistent. Several numerical tests are presented, endorsing the theoretical results. In a third part we prove the convergence of a kinetic scheme with hydrostatic reconstruction for the Saint-Venant system with topography. Some new estimates on the gradient of approximate solutions are established, by the analysis of energy dissipation. The convergence is obtained by the compensated compactness method, under some hypotheses concerning the initial data and the regularity of the topography
|
7 |
Source term treatment of SWEs using surface gradient upwind methodPu, Jaan H., Cheng, N., Tan, S.K., Shao, Songdong 16 January 2012 (has links)
No / Owing to unpredictable bed topography conditions in natural shallow flows, various numerical methods have been developed to improve the treatment
of source terms in the shallow water equations. The surface gradient method is an attractive approach as it includes a numerically simple approach
to model flows over topographically-varied channels. To further improve the performance of this method, this study deals with the numerical
improvement of the shallow-flow source terms. The so-called surface gradient upwind method (SGUM) integrates the source term treatment in the
inviscid discretization scheme. A finite volume model (FVM) with the monotonic upwind scheme for conservative laws is used. The Harten–Lax–van
Leer-contact approximate Riemann solver is used to reconstruct the Riemann problem in the FVM. The proposed method is validated against published
analytical, numerical, and experimental data, indicating that the SGUM is robust and treats the source terms in different flow conditions well.
|
8 |
Simulation numérique d'écoulements compressibles complexes par des méthodes de type Lagrange-projection : applications aux équations de Saint-Venant / Numerical simulation of complex compressible flows by Lagrange-projection type methods : applications to shallow water equationsStauffert, Maxime 05 October 2018 (has links)
On étudie dans le cadre de la thèse une famille de schémas numériques permettant de résoudre les équations de Saint-Venant. Ces schémas utilisent une décomposition d'opérateur de type Lagrange-projection afin de séparer les ondes de gravité et les ondes de transport. Un traitement implicite du système acoustique (relié aux ondes de gravité) permet aux schémas de rester stable avec de grands pas de temps. La correction des flux de pression rend possible l'obtention d'une solution approchée précise quel que soit le régime d'écoulement vis-à-vis du nombre de Froude. Une attention toute particulière est portée sur le traitement du terme source qui permet la prise en compte de l'influence de la topographie. On obtient notamment la propriété dite équilibre permettant de conserver exactement certains états stationnaires, appelés état du "lac au repos". Des versions 1D et 2D sur maillages non-structurés de ces méthodes ont été étudiées et implémentées dans un cadre volumes finis. Enfin, une extension vers des méthodes ordres élevés Galerkin discontinue a été proposée en 1D avec des limiteurs classiques ainsi que combinée avec une boucle MOOD de limitation a posteriori. / In this thesis we study a family of numerical schemes solving the shallow water equations system. These schemes use a Lagrange-projection like splitting operator technique in order to separate the gravity waves and the transport waves. An implicit-explicit treatment of the acoustic system (linked to the gravity waves) allows the schemes to stay stable with large time step. The correction of the pressure fluxes enables the obtain of a precise approximation solution whatever the regime flow is with respect to the Froude number. A particular attention has been paid over the source term treatment which permits to take the topography into account. We especially obtain the so-called well-balanced property giving the exact conservation of some steady states, namely the "lake at rest" state. 1D and 2D versions of this methods have been studied and implemented in the finite volumes framework. Finally, a high order discontinuous Galerkin extension has been proposed in 1D with classical limiters along with a combined MOOD loop a posteriori limiting strategy.
|
9 |
Numerical simulation of shallow water equations and some physical models in image processingHaro Ortega, Glòria 11 July 2005 (has links)
There are two main subjects in this thesis: the first one deals with the numerical simulation of shallow water equations, the other one is the resolution of some problems in image processingThe first part of this dissertation is devoted to the shallow waters. We propose a combined scheme which uses the Marquina's double flux decomposition (extended to the non homogeneous case) when adjacent states are not close and a single decomposition otherwise. This combined scheme satisfies the exact C property. Furthermore, we propose a special treatment of the numerical scheme at dry zones.The second subject is the digital simulation of the Day for Night (or American Night in Europe). The proposed algorithm simulates a night image coming from a day image and considers some aspects of night perception. In order to simulate the loss of visual acuity we introduce a partial differential equation that simulates the spatial summation principle of the photoreceptors in the retina.The gap restoration (inpainting) on surfaces is the object of the third part. For that, we propose some geometrical approaches based on the mean curvature. Then, we also use two interpolation methods: the resolution of the Laplace equation, and an Absolutely Minimizing Lipschitz Extension (AMLE). Finally, we solve the restoration problem of satellite images. The variational problem that we propose manages to do irregular to regular sampling, denoising, deconvolution and zoom at the same time. / Los temas tratados en esta tesis son, por un lado, la simulación numérica de las ecuaciones de aguas someras ("shallow waters") y por otro, la resolución de algunos problemas de procesamiento de imágenes. En la primera parte de la tesis, dedicada a las aguas someras, proponemos un esquema combinado que usa la técnica de doble descomposición de flujos de Marquina (extendida al caso no homogéneo) cuando los dos estados adyacentes no están próximos y una única descomposición en caso contrario. El esquema combinado verifica la propiedad C exacta. Por otro lado, proponemos un tratamiento especial en las zonas secas.El segundo tema tratado es la simulación digital de la Noche Americana ("Day for Night"). El algoritmo propuesto simula una imagen nocturna a partir de una imagen diurna considerando varios aspectos de la percepción visual nocturna. Para simular la pérdida de agudeza visual se propone una ecuación en derivadas parciales que simula el principio de sumación espacial de los fotoreceptores situados en la retina.La restauración de agujeros ("inpainting") en superficies es objeto de la tercera parte. Para ello se proponen varios enfoques geométricos basados en la curvatura media. También se utilizan dos métodos de interpolación: la resolución de la ecuación de Laplace y el método AMLE (Absolutely Minimization Lipschitz Extension).Por último, tratamos la restauración de imágenes satelitales. El método propuesto consigue obtener una colección de muestras regulares a partir de un muestreo irregular, eliminando a la vez el ruido, deconvolucinando la imagen y haciendo un zoom.
|
10 |
Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant / Multiscale modelling and numerical simulation of soil erosion by water from the plot scale to the catchment scaleLe, Minh Hoang 26 November 2012 (has links)
L’objectif global de ce travail est d’étudier une modélisation multi échelle et de développer une méthode adaptée pour la simulation numérique du processus d’érosion à l’échelle du bassin versant. Après avoir passé en revue les différents modèles existants, nous dérivons une solution analytique non triviale pour le système couplé modélisant le transport de sédiments par charriage. Ensuite, nous étudions l’hyperbolicité de ce système avec diverses lois de sédimentation proposées dans la littérature. Concernant le schéma numérique, nous présentons le domaine de validité de la méthode de splitting, pour les équations modélisant l’écoulement et celle décrivant l’évolution du fond. Pour la modélisation du transport en suspension à l’échelle de la parcelle, nous présentons un système d’équations couplant les mécanismes d’infiltration, de ruissellement et le transport de plusieurs classes de sédiments. L’implémentation et des tests de validation d’un schéma d’ordre élevé et de volumes finis bien équilibré sont également présentés. Ensuite, nous discutons sur l’application et la calibration du modèle avec des données expérimentales sur dix parcelles au Niger. Dans le but d’aboutir la simulation à l’échelle du bassin versant, nous développons une modélisation multi échelle dans laquelle nous intégrons le taux d’inondation dans les équations d’évolution afin de prendre en compte l’effet à petite échelle de la microtopographie. Au niveau numérique, nous étudions deux schémas bien équilibrés : le schéma de Roe basé sur un chemin conservatif, et le schéma avec reconstruction hydrostatique généralisée. Enfin, nous présentons une première application du modèle avec les données expérimentales du bassin versant de Ganspoel qui nécessite la parallélisation du code. / The overall objective of this thesis is to study a multiscale modelling and to develop a suitable method for the numerical simulation of soil erosion on catchment scale. After reviewing the various existing models, we derive an analytical solution for the non-trivial coupled system modelling the bedload transport. Next, we study the hyperbolicity of the system with different sedimentation laws found in the literature. Relating to the numerical method, we present the validity domain of the time splitting method, consisting in solving separately the Shallow-Water system (modelling the flow routing) during a first time step for a fixed bed and updating afterward the topography on a second step using the Exner equation. On the modelling of transport in suspension at the plot scale, we present a system coupling the mechanisms of infiltration, runoff and transport of several classes of sediment. Numerical implementation and validation tests of a high order wellbalanced finite volume scheme are also presented. Then, we discuss on the model application and calibration using experimental data on ten 1 m2 plots of crusted soil in Niger. In order to achieve the simulation at the catchment scale, we develop a multiscale modelling in which we integrate the inundation ratio in the evolution equations to take into account the small-scale effect of the microtopography. On the numerical method, we study two well-balanced schemes : the first one is the Roe scheme based on a path conservative, and the second one is the scheme using a generalized hydrostatic reconstruction. Finally, we present a first model application with experimental data of the Ganspoel catchment where the parallel computing is also motived.
|
Page generated in 0.043 seconds