Spelling suggestions: "subject:"instabilities"" "subject:"unstabilities""
311 |
Experimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configurationMalmberg, Jenny-Ann January 2003 (has links)
<p>It is relatively straightforward to establish equilibrium inmagnetically confined plasmas, but the plasma is frequentlysucceptible to a variety of instabilities that are driven bythe free energy in the magnetic field or in the pressuregradient. These unstable modes exhibit effects that affect theparticle, momentum and heat confinement properties of theconfiguration. Studies of the dynamics of several of the mostimportant modes are the subject of this thesis. The studies arecarried out on plasmas in the reversed field pinch (RFP)configuration.</p><p>One phenomenon commonly observed in RFPs is mode walllocking. The localized nature of these phase- and wall lockedstructures results in localized power loads on the wall whichare detrimental for confinement. A detailed study of the walllocked mode phenomenon is performed based on magneticmeasurements from three RFP devices. The two possiblemechanisms for wall locking are investigated. Locking as aresult of tearing modes interacting with a static field errorand locking due to the presence of a non-ideal boundary. Thecharacteristics of the wall locked mode are qualitativelysimilar in a device with a conducting shell system (TPE-RX)compared to a device with a resistive shell (Extrap T2). Atheoretical model is used for evaluating the threshold valuesfor wall locking due to eddy currents in the vacuum vessel inthese devices. A good correlation with experiment is observedfor the conducting shell device.</p><p>The possibility of succesfully sustaining discharges in aresistive shell RFP is introduced in the recently rebuiltdevice Extrap T2R. Fast spontaneous mode rotation is observed,resulting in low magnetic fluctuations, low loop voltage andimproved confinement. Wall locking is rarely observed. The lowtearingmode amplitudes allow for the theoretically predictedinternal nonresonant on-axis resistive wall modes to beobserved. These modes have not previously been distinguisheddue to the formation of wall locked modes. The internal andexternal nonresonant resistive wall modes grow on the timescale of the shell penetration time. These growth rates dependon the RFP equilibrium. The internal nonresonant resistive wallmodes dominate in Extrap T2R, especially for shallow reverseddischarges. The external nonresonant modes grow solely in deepreversal discharges.</p><p><b>Keywords</b>Nuclear fusion, reversed field pinch, resistiveinstabilities, wall locked modes, tearing modes, resistiveshell modes, field errors, EXTRAP-T2, EXTRAP-T2R, TPE-RX</p>
|
312 |
Fully kinetic PiC simulations of current sheet instabilities for the Solar coronaMuñoz Sepúlveda, Patricio A. 25 June 2015 (has links)
No description available.
|
313 |
Fluid instabilities in precessing ellipsoidal shells / Fluid instabilities in precessing ellipsoidal shellsLorenzani, Silvia 13 November 2001 (has links)
No description available.
|
314 |
ULF Waves in the Magnetosphere and their Association with Magnetopause Instabilities and OscillationsNedie, Abiyu Z Unknown Date
No description available.
|
315 |
Experimental analysis of the unsteady flow and instabilities in a high-speed multistage compressorCourtiade, Nicolas 22 November 2012 (has links) (PDF)
The present work is a result of collaboration between the LMFA (Laboratoire de Mécanique des Fluides et d'Acoustique, Ecole Centrale de Lyon - France), Snecma and the Cerfacs. It aims at studying the flow in the 3.5-stages high-speed axial compressor CREATE (Compresseur de Recherche pour l'Etude des effets Aérodynamique et TEchnologique - rotation speed: 11543 RPM, Rotor 1 tip speed: 313 m/s), designed and built by Snecma and investigated at LMFA on a 2-MW test rig. Steady measurements, as well as laser velocimetry, fast-response wall static and total pressure measurements have been used to experimentally investigate the flow. The analysis focuses on two main aspects: the study of the flow at stable operating points, with a special interest on the rotor-stator interactions, and the study of the instabilities arising in the machine at low mass flow rates.The description of the unsteady flow field at stable operating points is done through measurements of wall-static pressure, total pressure and velocity, but also total temperature, entropy and angle of the fluid. It is shown that the complexity and unsteadiness of the flow in a multistage compressor strongly increases in the rear part of the machine, because of the interactions between steady and rotating rows. Therefore, a modal analysis method developed at LMFA and based on the decomposition of Tyler and Sofrin is presented to analyze these interactions. It is first applied to the pressure measurements, in order to extract the contributions of each row. It shows that all the complex pressure interactions in CREATE can be reduced to three main types of interactions. The decomposition method is then applied to the entropy field extracted from URANS CFD calculations performed by the Cerfacs, in order to evaluate the impact of the interactions on the performance of the machine in term of production of losses.The last part of this work is devoted to the analysis of the instabilities arising in CREATE at low mass flows. It shows that rotating pressure waves appear at stable operating points, and increase in amplitude when going towards the surge line, until reaching a critical size provoking the onset a full span stall cell bringing the machine to surge within a few rotor revolutions. The study of these pressure waves, and the understanding of their true nature is achieved through the experimental results and the use of some analytical models. A precise description of the surge transient through wall-static pressure measurements above the rotors is also provided, as well as a description of a complete surge cycle. An anti-surge control system based on the detection of the amplitude of the pressure waves is finally proposed.
|
316 |
Autoresonance in Stimulated Raman ScatteringThomas, Chapman 22 November 2011 (has links) (PDF)
La diffusion Raman Stimulée (DRS) est étudiée dans le contexte des plasmas qui sont pertinents pour la Fusion par Confinement Inertielle (FCI). Dans un plasma inhomogène le processus d'auto-résonance de l'onde Langmuir, générée par DRS, peut se produire dans le régime cinétique (k_L*lambda_D>0.25) et conduire à des amplitudes au delà du niveau de l'amplification attendue due à l'inhomogénéité selon Rosenbluth [M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972)]. On démontre que des effets cinétiques faibles, comme le piégeage d'électrons donnent lieu à un décalage de fréquence non-linéaire (dépendant de l'amplitude), et peuvent compenser le déphasage de la résonance de DRS des trois ondes, observé dans les plasmas inhomogènes. Un modèle analytique du processus d'auto-résonance décrivant à la fois la croissance, la saturation et la phase des ondes de Langmuir a été développé. Ce modèle est en excellent accord avec les résultats des simulations cinétiques (particle-in-cell) pour des paramètres proches des conditions des plasmas des expériences de la fusion laser (Laser Mégajoule, National Ignition Facility). Une application possible de l'autorésonance est proposée sous la forme d'un amplificateur de Raman.
|
317 |
Etudes expérimentales et numériques des écoulements inertiels de fluides à seuil autour d'un cylindreMossaz, Stephane 02 December 2011 (has links) (PDF)
Les écoulements rampants, recirculants et instationnaires d'un fluide viscoplastique autour d'un cylindre ont été étudiés.Numériquement, les morphologies des écoulements, la localisation des zones rigides, les champs de contraintes et pression autour du cylindre ainsi que le coefficient de traînée, ont été déterminés sur un large domaine des nombres de Reynolds et d'Oldroyd.Expérimentalement, les fluides étudiés sont des gels de polymère Carbopol®. Le comportement élastoviscoplastique de ces gels a été modélisé par une loi d'Herschel-Bulkley adaptée. Le montage expérimental conçu et réalisé a été validé par l'étude de l'écoulement d'un fluide newtonien autour d'un cylindre et la mise en place d'une procédure adaptée pour les fluides à seuil.On a pu constater l'influence des conditions d'interface avec l'apparition d'une morphologie de lâchers de tourbillons simultanés et symétriques.
|
318 |
Numerical study of pump-turbine instabilities : pumping mode off-design conditions / Étude numérique d'écoulements instables dans une turbine-pompe : analyses des régimes "off-design" en mode pompeJeše, Uroš 13 November 2015 (has links)
Actuellement, la flexibilité et le stockage de l'énergie sont parmi les principaux défis de l'industrie de l'énergie. Les stations de transfert d'énergie par pompage (STEP), en utilisant des turbines-pompes réversibles, comptent parmi les solutions les plus rentables pour répondre à ces besoins. Pour assurer un réglage rapide du réseau électrique, les turbines-pompes sont sujettes à de rapides changements entre modes pompage et turbinage. Elles sont souvent exposées à un fonctionnement prolongé dans des conditions hors nominal. Pour assurer la stabilité du réseau, la zone d'exploitation continue de turbines-pompes réversibles doit être libre de toute instabilité hydraulique. Deux sources principales d'instabilités en mode pompage peuvent limiter la plage de fonctionnement continu. Il s'agit de la présence de cavitation et de décollement tournant, tous deux survenant à charge partielle. La cavitation peut conduire à des vibrations, des pertes de performance et parfois même à l'érosion de la turbine-pompe. En outre, en raison de décollements tournants (apparition et décomposition périodique de zones de recirculation dans les régions du distributeur), la machine peut être exposée à un changement incontrôlable entre les points de fonctionnement, avec une modification de charge et une baisse significative des performances. Les deux phénomènes sont très complexes, tri-dimensionnels et délicats à étudier. Surtout le phénomène de décollement tournant dans les turbines-pompes est peu abordé dans la littérature. Le premier objectif de l'étude du doctorat présenté a été d'utiliser un code numérique, testé au laboratoire, et de développer une méthodologie de calcul pour permettre la prévision des phénomènes à charge partielle. L'étude a été faite sur une géométrie à échelle réduite d'une turbine-pompe de haute chute. Des calculs numériques ont été effectués en utilisant le code FINE/Turbo avec le modèle de cavitation barotrope qui a été développé au laboratoire. L'analyse des écoulements cavitants a été faite pour des débits et de niveaux de cavitation différents. Les principales analyses portent sur des valeurs naissantes de cavitation, des courbes de chute et sur le prédiction des formes de cavitation pour différents débits et valeurs de NPSH. Une attention particulière a été portée sur l'interaction entre les formes de cavitation à l'entrée de la roue et la baisse de performance (zone de feston), causée par le décollement tournant qui apparaît dans la région du distributeur. Les résultats numériques ont montré un bon accord avec les données expérimentales disponibles. La deuxième partie de la thèse a concerné la prédiction et l'analyse de décollements tournants. Des simulations ont été utilisées pour prédire les régions d'exploitation stables et instables de la machine. La méthodologie mentionnée pourrait fournir des résultats globaux précis pour différents points de fonctionnement avec un faible coût de calcul. Afin d'obtenir des informations détaillées sur les écoulements instables, des simulations instationnaires plus précises ont été réalisées. L'analyse locale des écoulements a permis la description des mécanismes gouvernant le phénomène de décollement tournant. Les analyses permettent l'étude du nombre, de l'intensité et des fréquences de rotation des cellules tournants. En outre, les calculs instationnaires donnent une très bonne prédiction de la performance de la turbine-pompe. L'approche proposée est fiable, robuste et précise. La méthodologie de calcul proposée peut être utilisée sur plusieurs géométries de turbine-pompe (ou pompe centrifuge), pour une large gamme de débits et de géométries de directrices. Les simulations proposées peuvent être utilisées à l'échelle industrielle pour étudier les effets de géométrie, d'angles d'ouverture de directrices ou de l'influence du jeu entre la roue et le distributeur afin de réduire ou même éliminer les effets négatifs des décollements tournants. / Flexibility and energy storage seem to be the main challenges of the energy industry at the present time. Pumped Storage Power Plants (PSP), using reversible pump-turbines, are among the most cost-efficient solutions to answer these needs. To provide a rapid adjustment to the electrical grid, pump-turbines are subjects of quick switching between pumping and generating modes and to extended operation under off-design conditions. To maintain the stability of the grid, the continuous operating area of reversible pump-turbines must be free of hydraulic instabilities. Two main sources of pumping mode instabilities are the presence of the cavitation and the rotating stall, both occurring at the part load. Presence of cavitation can lead into vibrations, loss of performance and sometimes erosion. Moreover, due to rotating stall that can be observed as periodic occurrence and decay of recirculation zones in the distributor regions, the machine can be exposed to uncontrollable shift between the operating points with the significant discharge modification and the drop of the efficiency. Both phenomena are very complex, three-dimensional and demanding for the investigation. Especially rotating stall in the pump-turbines is poorly addressed in the literature. First objective of the presented PhD study has been to develop the cost-efficient numerical methodology in order to enable the accurate prediction and analysis of the off-design part load phenomena. The investigations have been made on the reduce-scaled high head pump-turbine design (nq = 27rpm) provided by Alstom Hydro. Steady and unsteady numerical calculations have been performed using code FINE/Turbo with barotropic cavitation model implemented and developed before in the laboratory. Some of the numerical results have been compared to the experimental data. Cavitating flow analysis has been made for various flow rates and wide range of cavitation levels. Flow investigation has been focused on the cavitation influence on the flow behavior and on the performance of the machine. Main analyses include incipient cavitation values, head drop curves and cavitation forms prediction for wide ranges of flow rates and NPSH values. Special attention has been put on the interaction between cavitation forms and the performance drop (hump zone) caused by the rotating stall. Cavitation results showed good agreement with the provided experimental data. Second part of the thesis has been focused on the prediction and analysis of the rotating stall flow patterns. Computationally fast steady simulations has been presented and used to predict stable and unstable operating regions. The analyses have been done on 4 different guide vanes openings and 2 guide vanes geometries. In order to get detailed information about the unsteady flow patterns related to the rotating stall, more exact unsteady simulations have been performed. Local flow study has been done to describe in details the governing mechanisms of the rotating stall. The analyses enable the investigations of the rotating stall frequencies, number of stalled cells and the intensity of the rotating stall. Moreover, the unsteady calculations give very good prediction of the pump-turbine performance for both, stable and unstable operating regions. Numerical results give very good qualitative and quantitative agreement with the available experimental data. The approach appears to be very reliable, robust and precise. Even though the numerical results (rotating stall frequencies, number of cells...) on the actual geometry should be confirmed experimentally, author believes that the methodology could be used on any other pump-turbine (or centrifugal pump) geometry. Moreover, the simulations can be used industrially to study the effects of the guide vanes geometries, guide vanes opening angles and influence of the gap between the impeller and the distributor in order to reduce or even eliminate the negative effects of the rotating stall.
|
319 |
Ray Tracing and Spectral Modelling of Excited Hydroxyl Radiation from Cryogenic Flames in Rocket Combustion ChambersPerovšek, Jaka January 2018 (has links)
A visualisation procedure was developed which predicts excited hydroxyl (OH*) radiation from the Computational Fluid Dynamics (CFD) solutions of cryogenic hydrogen-oxygen rocket flames. The model of backward ray tracing through inhomogeneous media with a continuously changing refractive index was implemented. It obtains the optical paths of light rays that originate in the rocket chamber, pass through the window and enter a simulated camera. Through the use of spectral modelling, the emission and absorption spectra eλ and κλ are simulated on the ray path from information about temperature, pressure and concentration of constituent species at relevant points. By solving a radiative transfer equation with the integration of emission and absorption spectra along the ray line-by-line, a spectral radiance is calculated, multiplied with the spectral filter transmittance and then integrated into total radiance. The values of total radiances at the window edge are visualised as a simulated 2D image. Such images are comparable with the OH* measurement images. The modelling of refraction effects results in up to 20 % of total radiance range absolute difference compared to line-of-sight integration. The implementation of accurate self-absorption corrects significant over-prediction, which occurs if the flame is assumed to be optically thin. Modelling of refraction results in images with recognisable areas where the effect of a liquid oxygen (LOx) jet core can be observed, as the light is significantly refracted. The algorithm is parallelised and thus ready for use on big computational clusters. It uses partial pre-computation of spectra to reduce computational effort.
|
320 |
Large Eddy Simulation of thermoacoustic instabilities in annular combustion chambers / Simulation aux Grandes Echelles des instabilités thermoacoustiques dans les chambres de combustion annulairesWolf, Pierre 21 November 2011 (has links)
La conception des turbines à gaz est aujourd'hui contrainte par des normes d'émissions de plus en plus draconiennes, couplées à l'urgente nécessité d'économiser les ressources en carburant fossile. Les choix technologiques adoptés pour répondre à ces exigences entraînent parfois l'apparition d'instabilités de combustion. Dans les chambres de combustion annulaires, ces instabilités prennent souvent la forme de modes azimutaux. Prédire ces modes reste un défi à l'heure actuelle et impose de considérer la totalité de la géométrie annulaire, ce qui n'est rendu possible, dans le domaine de la simulation numérique en mécanique des fluides, que par l'avènement très récent des supercalculateurs massivement parallèles. Dans ce travail de thèse, les modes azimutaux pouvant apparaître dans les chambres de combustion annulaires sont abordés avec plusieurs approches: un modèle analytique 1D, un solveur acoustique de Helmholtz 3D et enfin des Simulations aux Grandes Echelles. Combiner ces méthodes permet une meilleure compréhension de la structure de ces modes et peut amener à considérer des solutions innovantes pour concevoir des chambres inconditionnellement stables. / Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. Combustion instabilities arise from the coupling of acoustics and combustion. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must consider the full combustion chamber, which, in the numerical simulation domain, remained out of reach until very recently and the development of massively parallel computers. In this work, azimuthal modes that may develop in annular combustors are studied with different numerical approaches: a low order model, a 3D Helmholtz solver and Large Eddy Simulations. Combining these methods allows a better understanding of the structure of the instabilities and may provide guidelines to build intrinsically stable combustion chambers.
|
Page generated in 0.2976 seconds