• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 76
  • 18
  • 15
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 406
  • 110
  • 88
  • 59
  • 58
  • 42
  • 41
  • 36
  • 36
  • 31
  • 28
  • 25
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Investigation of Magnetohydrodynamic Fluctuation Modes in the STOR-M Tokamak

Gamudi Elgriw, Sayf 31 July 2009
While magnetohydrodynamic (MHD) instabilities are considered one of the intriguing topics in tokamak physics, a feasibility study was conducted in the Saskatchewan Torus-Modified (STOR-M) tokamak to investigate the global MHD activities during the normal (L-mode) and improved (H-mode) confinement regimes. The experimental setup consists of 32 discrete Mirnov coils arranged into four poloidal arrays and mounted on STOR-M at even toroidal distances. The perturbed magnetic field fluctuations during STOR-M discharges were acquired and processed by the Fourier transform (FT), the wavelet analysis and the singular value decomposition (SVD) techniques. In L-mode discharges, the poloidal MHD mode numbers varied from 2 to 4 with peak frequencies in the range 20-40 kHz. The dominant toroidal modes were reported between 1 and 2 oscillating at frequencies 15-35 kHz. In another experiment, a noticeable MHD suppression was observed during the H-mode-like phase induced by the compact torus (CT) injection into STOR-M. However, a burst-like mode called the gong mode was triggered prior to the H-L transition, followed by coherent Mirnov oscillations. Mirnov oscillations with strong amplitude modulations were observed in the STOR-M tokamak. Correlations between Mirnov signals and soft x-ray (SXR) signals were found.
242

Investigation of Magnetohydrodynamic Fluctuation Modes in the STOR-M Tokamak

Gamudi Elgriw, Sayf 31 July 2009 (has links)
While magnetohydrodynamic (MHD) instabilities are considered one of the intriguing topics in tokamak physics, a feasibility study was conducted in the Saskatchewan Torus-Modified (STOR-M) tokamak to investigate the global MHD activities during the normal (L-mode) and improved (H-mode) confinement regimes. The experimental setup consists of 32 discrete Mirnov coils arranged into four poloidal arrays and mounted on STOR-M at even toroidal distances. The perturbed magnetic field fluctuations during STOR-M discharges were acquired and processed by the Fourier transform (FT), the wavelet analysis and the singular value decomposition (SVD) techniques. In L-mode discharges, the poloidal MHD mode numbers varied from 2 to 4 with peak frequencies in the range 20-40 kHz. The dominant toroidal modes were reported between 1 and 2 oscillating at frequencies 15-35 kHz. In another experiment, a noticeable MHD suppression was observed during the H-mode-like phase induced by the compact torus (CT) injection into STOR-M. However, a burst-like mode called the gong mode was triggered prior to the H-L transition, followed by coherent Mirnov oscillations. Mirnov oscillations with strong amplitude modulations were observed in the STOR-M tokamak. Correlations between Mirnov signals and soft x-ray (SXR) signals were found.
243

Spinodal Instabilities In Symmetric Nuclear Matter Within A Nonlinear Relativistic Mean-field Approach

Acar, Fatma 01 August 2011 (has links) (PDF)
Spinodal instability mechanism and early development of density fluctuations for symmetric nuclear matter at finite temperature are studied. A stochastic extension of Walecka-type relativistic mean-field model including non-linear self-interactions of scalar mesons with NL3 parameter set is employed in the semi-classical approximation. The growth rates of unstable collective modes are investigated below the normal density and at low temperatures. The system exhibits most unstable behavior in longer wave lengths at baryon densities &rho / B = 0.4 &rho / 0 , while most unstable behavior occurs in shorter wavelengths at lower baryon densities &rho / B = 0.2 &rho / 0 . The unstable response of the system shifts towards longer wavelengths with the increasing temperature at both densities. The early growth of the density correlation functions are calculated, which provide valuable information about the initial size of the condensation and the average speed of condensing fragments. Furthermore, the relativistic results are compared with Skyrme type non-relativistic calculations. Qualitatively similar results are found in both non-relativistic and relativistic descriptions.
244

An experimental and theoretical investigation of a fuel system tuner for the suppression of combustion driven oscillations

Scarborough, David E. 06 April 2010 (has links)
Manufacturers of commercial, power-generating, gas turbine engines continue to develop combustors that produce lower emissions of nitrogen oxides (NOx) in order to meet the environmental standards of governments around the world. Lean, premixed combustion technology is one technique used to reduce NOx emissions in many current power and energy generating systems. However, lean, premixed combustors are susceptible to thermo-acoustic oscillations, which are pressure and heat-release fluctuations that occur because of a coupling between the combustion process and the natural acoustic modes of the system. These pressure oscillations lead to premature failure of system components, resulting in very costly maintenance and downtime. Therefore, a great deal of work has gone into developing methods to prevent or eliminate these combustion instabilities. This dissertation presents the results of a theoretical and experimental investigation of a novel Fuel System Tuner (FST) used to damp detrimental combustion oscillations in a gas turbine combustor by changing the fuel supply system impedance, which controls the amplitude and phase of the fuel flowrate. When the FST is properly tuned, the heat release oscillations resulting from the fuel-air ratio oscillations damp, rather than drive, the combustor acoustic pressure oscillations. A feasibility study was conducted to prove the validity of the basic idea and to develop some basic guidelines for designing the FST. Acoustic models for the subcomponents of the FST were developed, and these models were experimentally verified using a two-microphone impedance tube. Models useful for designing, analyzing, and predicting the performance of the FST were developed and used to demonstrate the effectiveness of the FST. Experimental tests showed that the FST reduced the acoustic pressure amplitude of an unstable, model, gas-turbine combustor over a wide range of operating conditions and combustor configurations. Finally, combustor acoustic pressure amplitude measurements made in using the model combustor were used in conjunction with model predicted fuel system impedances to verify the developed design rules. The FST concept and design methodology presented in this dissertation can be used to design fuel system tuners for new and existing gas turbine combustors to reduce, or eliminate altogether, thermo-acoustic oscillations.
245

Temporal variations of monsoon systems

Vieira Agudelo, Sara C. 09 September 2010 (has links)
It has been proposed that the Asian-Australasian monsoon system is influenced by large-scale sea-surface temperature (SST) variability in the three tropical oceans although how this influence is manifested has remained a largely open question. Closure of this issue is important because it is needed to explain trends in monsoon precipitation and circulation that have occurred in the last 30 years. Using an atmospheric general circulation model, we run a series of experiments with different configurations of global SST relating to various epochs occurring during the last century to evaluate their influence on the monsoon. Comparisons of circulation fields show that a colder SST configuration generates a weaker large-scale monsoonal circulation. On the other hand, warmer SST states generate stronger large scale circulations with more vigorous centers of divergence and convergence. Warmer SST configurations are associated with positive anomalies of precipitation in the eastern Bay of Bengal, Eastern Indian Ocean and South East Asia. Cooler SST configurations are associated with negative anomalies of precipitation in the Arabian Sea and Indian peninsula, especially at the beginning of the summer. Since SST gradients determine, to a large degree, the low level flow, they are also going to influence the transport of atmospheric moisture. Comparison of vertically integrated moisture transport fields between the different experiments show that cold SST configuration favors an increased inter-hemispheric flow of moisture but decreases in the westerly moisture flow in to the Bay of Bengal and India. Warm SST configurations, on the other hand, strengthens westerly flow into the eastern Indian Ocean. An increasing availability of moisture in a region of stronger convergence constitutes a favorable environment for the production of monsoonal precipitation. African easterly waves (AEW) constitute an important component of the African and tropical Atlantic Ocean climate during the boreal summer. An understanding of this component is essential since AEW are closely related with tropical Atlantic storm activity. We adopt an idealized modeling approach using the WRF model initialized with ERA-40 reanalysis data to study the mechanisms that trigger the formation and maintenance of AEW. The model domain includes the African continent, central and eastern Atlantic Ocean and the western Indian Ocean. Experiments are designed to test the relative importance of the thermal effect of the eastern African topography and the influence of the cross-equatorial pressure gradient, induced by the sea surface temperature (SST) on the origins and maintenance of AEW. Topography and SST variation are selectively added and removed. The control experiment shows that the model reproduces many of the mean features observed during the boreal summer. Westward propagating disturbances of 3-8 day period that originate between 30 and 40E at the surface levels and in the mid troposphere are well depicted. In addition, the model provides a reasonable representation of the AEJ. When all topographic features are removed, there is a weakening of the AEJ over land and ocean, however, longitude-time sections of meridional velocity still exhibit westward propagating disturbances that reach the western African coast at the surface and at the jet level with the same 3-8 day period. Spectral analysis of meridional velocity show that the variability associated with AEWs is reduced over East Africa and West Africa at 850-hPa and is reduced west of 20E along the southern flank of the jet and over northern Africa at the jet level. Maximum amplitude of the disturbances occurs right at the coast. The spatial distribution of barotropic and baroclinic energy conversions explains the reduction in AEWs over land and the intensification of these features at the coast. When the zonal SST gradient is removed, a weaker AEJ displaces southward and a weaker monsoon flow ensues. Spectral analysis of meridional velocity displays a variance reduction in the 3-8 day band at the 850-hP a level in western and eastern Africa and at the coast. At the 650-hPa level significant changes are not observed at the latitude of the AEJ (15N), however, a decrease in the variance associated with AEW occurs at the southern flank of the jet. A southward displacement of the jet favors a weakening of the baroclinic energy conversions. Barotropic conversions also appear to be weaker when the SST gradient is removed. The present study suggests that orography plays an important role in determining the variability of meridional wind associated with AEW over Eastern Africa at the lower levels. Further, zonal SST gradients over the Atlantic favor intensification of waves when they reach the coast and the maintenance of disturbances across the Ocean. Also, results could suggest that SST gradients support genesis of AEW just off the coast of Africa.
246

On the effect of Lüders bands on the bending of steel tubes

Hallai, Julian de Freitas 01 February 2012 (has links)
In several practical applications, hot-finished steel pipe that exhibits Lüders bands is bent to strains of 2-3%. Lüders banding is a material instability that leads to inhomogeneous plastic deformation in the range of 1-4%. This work investigates the influence of Lüders banding on the inelastic response and stability of tubes under rotation controlled pure bending. It starts with the results of an experimental study involving tubes of several diameter-to-thickness ratios in the range of 33.2 to 14.7 and Lüders strains of 1.8% to 2.7%. In all cases, the initial elastic regime terminates at a local moment maximum and the local nucleation of narrow angled Lüders bands of higher strain on the tension and compression sides of the tube. As the rotation continues, the bands multiply and spread axially causing the affected zone to bend to a higher curvature while the rest of the tube is still at the curvature corresponding to the initial moment maximum. With further rotation of the ends, the higher curvature zone(s) gradually spreads while the moment remains essentially unchanged. For relatively low D/t tubes and/or short Lüders strains, the whole tube eventually is deformed to the higher curvature entering the usual hardening regime. Subsequently it continues to deform uniformly until the usual limit moment instability is reached. For high D/t tubes and/or materials with longer Lüders strains, the propagation of the larger curvature is interrupted by collapse when a critical length is Lüders deformed leaving behind part of the structure essentially undeformed. The higher the D/t and/or the longer the Lüders strain is, the shorter the critical length. This class of problems is analyzed using 3D finite elements while the material is modeled as an elastic-plastic solid with an “up-down-up” response over the extent of the Lüders strain, followed by hardening. The analysis reproduces the main features of the mechanical behavior provided the unstable part of the response is suitably calibrated. The uniform curvature elastic regime terminates with the nucleation of localized banded deformation. The bands appear in pockets on the most deformed sites of the tube and propagate into the hitherto intact part of the structure while the moment remains essentially unchanged. The Lüders-deformed section has a higher curvature, ovalizes more than the rest of the tube, and develops wrinkles with a characteristic wavelength. For every tube D/t there exists a threshold of Lüders strain separating the two types of behavior. This bounding value of Lüders strain was studied parametrically. / text
247

On Turbulent Rayleigh-Bénard Convection in a Two-Phase Binary Gas Mixture

Winkel, Florian 27 October 2014 (has links)
No description available.
248

Constitutive modeling and finite element analysis of the dynamic behavior of shape memory alloys

Azadi Borujeni, Bijan 11 1900 (has links)
Previous experimental observations have shown that the pseudoelastic response of NiTi shape memory alloys (SMA) is localized in nature and proceeds through nucleation and propagation of localized deformation bands. It has also been observed that the mechanical response of SMAs is strongly affected by loading rate and cyclic degradation. These behaviors significantly limit the accurate modeling of SMA elements used in various devices and applications. The aim of this work is to provide engineers with a constitutive model that can accurately describe the dynamic, unstable pseudoelastic response of SMAs, including their cyclic response, and facilitate the reliable design of SMA elements. A 1-D phenomenological model is developed to simulate the localized phase transformations in NiTi wires during both loading and unloading. In this model, it is assumed that the untransformed particles located close to the transformed regions are less stable than those further away from the transformed regions. By consideration of the thermomechanical coupling among the stress, temperature, and latent heat of transformation, the analysis can account for strain-rate effects. Inspired by the deformation theory of plasticity, the 1-D model is extended to a 3-D macromechanical model of localized unstable pseudoelasticity. An important feature of this model is the reorientation of the transformation strain tensor with changes in stress tensor. Unlike previous modeling efforts, the present model can also capture the propagation of localized deformation during unloading. The constitutive model is implemented within a 2-D finite element framework to allow numerical investigation of the effect of strain rate and boundary conditions on the overall mechanical response and evolution of localized transformation bands in NiTi strips. The model successfully captures the features of the transformation front morphology, and pseudoelastic response of NiTi strip samples observed in previous experiments. The 1-D and 3-D constitutive models are further extended to include the plastic deformation and degradation of material properties as a result of cyclic loading.
249

A + B → C reaction fronts in Hele-Shaw cells under modulated gravitational acceleration

Eckert, Kerstin, Rongy, Laurence, De Wit, Anne 07 April 2014 (has links) (PDF)
The dynamics of A + B → C reaction fronts is studied under modulated gravitational acceleration by means of a combination of parabolic flight experiments and numerical simulations. During modulated gravity the front position undergoes periodic modulation with an accelerated front propagation under hyper-gravity together with a slowing down under low gravity. The underlying reason for this is an amplification and a decay, respectively, of the buoyancy-driven double vortex associated with the front propagation under standard gravitational acceleration, as explained by reaction–diffusion–convection simulations of convection around an A + B → C front. Deeper insights into the correlation between grey-value changes in the experimental shadowgraph images and characteristic changes in the concentration profiles are obtained by a numerical simulation of the imaging process. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
250

Particle image velocimetry in gas turbine combustor flow fields

Hollis, David January 2004 (has links)
Current and future legislation demands ever decreasing levels of pollution from gas turbine engines, and with combustor performance playing a critical role in resultant emissions, a need exists to develop a greater appreciation of the fundamental causes of unsteadiness. Particle Image Velocimetry (PIV) provides a platform to enable such investigations. This thesis presents the development of PIV measurement methodologies for highly turbulent flows. An appraisal of these techniques applied to gas turbine combustors is then given, finally allowing a description of the increased understanding of the underlying fluid dynamic processes within combustors to be provided. Through the development of best practice optimisation procedures and correction techniques for the effects of sub-grid filtering, high quality PN data has been obtained. Time average statistical data at high spatial resolution has been collected and presented for generic and actual combustor geometry providing detailed validation of the turbulence correction methods developed, validation data for computational studies, and increased understanding of flow mechanisms. These data include information not previously available such as turbulent length scales. Methodologies developed for the analysis of instantaneous PIV data have also allowed the identification of transient flow structures not seen previously because they are invisible in the time average. Application of a new `PDF conditioning' technique has aided the explanation of calculated correlation functions: for example, bimodal primary zone recirculation behaviour and jet misalignments were explained using these techniques. Decomposition of the velocity fields has also identified structures present such as jet shear layer vortices, and through-port swirling motion. All of these phenomena are potentially degrading to combustor performance and may result in flame instability, incomplete combustion, increased noise and increased emissions.

Page generated in 0.1081 seconds