• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 23
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 153
  • 153
  • 153
  • 148
  • 53
  • 27
  • 23
  • 22
  • 21
  • 21
  • 20
  • 20
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Intrachip global communication evaluation of challenges and optical solutions /

Iqbal, Muzammil. January 2007 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: Michael W. Haney, Dept. of Electrical and Computer Engineering. Includes bibliographical references.
42

Sea of Leads electrical-optical polymer pillar chip I/O interconnections for gigascale integration

Bakir, Muhannad S. 01 December 2003 (has links)
No description available.
43

Multi gigahertz InGaAs/InP inverted MSM photodetectors for photoreceiver and waveguide applications

Huang, Zhaoran 01 December 2003 (has links)
No description available.
44

Volume grating coupler-based optical interconnect technologies for polylithic gigascale integration

Mule, Anthony Victor, January 2004 (has links) (PDF)
Thesis (Ph. D.)--School of Electrical and Computer Engineering, Georgia Institute of Technology, 2004. Directed by James D. Miendl. / Vita. Includes bibliographical references.
45

Statistical analysis of electromigration lifetimes and void evolution in Cu interconnects

Hauschildt, Meike 28 August 2008 (has links)
Not available / text
46

Study of stress relaxation and electromigration in Cu/low-k interconnects

Yoon, Sean Jhin 28 August 2008 (has links)
Not available / text
47

Thermal stress induced voids in nanoscale Cu interconnects by in-situ TEM heating

An, Jin Ho, 1973- 28 August 2008 (has links)
Stress induced void formation in Cu interconnects, due to thermal stresses generated during the processing of semiconductors, is an increasing reliability issue in the semiconductor industry as Cu interconnects are being downscaled to follow the demand for faster chip speed. In this work, 1.8 micron and 180 nm wide Cu interconnects, fabricated by Freescale Semiconductors, were subjected to thermal cycles, in-situ in the TEM, to investigate the stress relaxation mechanisms as a function of interconnect linewidth. The experiments show that the 1.8 micron Cu interconnect lines relax the thermal stresses through dislocation nucleation and motion while the Cu interconnect 180 nm lines exhibit void formation. Void formation in 180 nm lines occurs predominantly at triple junctions where the Ta diffusion barrier meets a Cu grain boundary. In order to understand void formation in 180 nm lines, the grain orientation and local stresses are determined. In particular, Nanobeam Diffraction (NBD) in the TEM is used to obtain the diffraction pattern of each grain, from which the crystal orientation is evaluated by the ACT (Automated Crystallography for TEM) software. In addition, 2D Finite Element Method (FEM) simulations are performed using the Object Oriented Finite Modeling (OOF2) software to correlate grain orientation with local stresses, and consequently void formation. According to the experimental and simulation results obtained, void formation in 180nm Cu interconnects does not seem to be solely dependent on local stresses, but a combination of diffusion paths available, stress gradients and possibly the presence of defects. In addition, based on the in-situ TEM observations, void growth seems to occur through grain boundary and/or interfacial diffusion. However, in-situ STEM observations of fully opened voids post-failure show pileup of material at the Cu grain surfaces. This means that surface or interface diffusion is also very active during void growth in the presence of thermal stresses.
48

Interconnect-centric design issues in nanometer IC technology

Shao, Muzhou, 1970- 01 August 2011 (has links)
Not available / text
49

Plasma processing of advanced interconnects for microelectronic applications

Li, Yiming 08 1900 (has links)
No description available.
50

Design and development of stress-engineered compliant interconnect in microelectronic packaging

Ma, Lunyu 08 1900 (has links)
No description available.

Page generated in 0.0972 seconds