• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 10
  • 8
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Physicochemical properties and microencapsulation process development for fish oil using supercritical carbon dioxide

Seifried, Bernhard 06 1900 (has links)
Fish oil is an excellent source of long chain polyunsaturated fatty acids (LC-PUFA), which can reduce the risk of cardiovascular disease in addition to other health benefits. However, the average intake of LC-PUFA in the Western diet is much lower than the recommended levels. Fish oil is prone to oxidative deterioration when exposed to oxygen and thus must be protected in order to be used in food products. Microencapsulation is one possibility that is already applied by the industry to protect fish oil. However, most of the conventional microencapsulation techniques suffer from shortcomings such as harsh processing conditions or the use of numerous chemicals. The main objective of this thesis was to develop a novel spray process to microencapsulate fish oil based on supercritical fluid (SCF) technology using supercritical carbon dioxide (SC-CO2) and CO2-expanded ethanol (CX EtOH). Fundamental physicochemical properties essential for optimal process design were lacking in the literature; therefore, density, interfacial tension (IFT) and viscosity of fish oil in the form of triglycerides and fatty acid ethyl esters were determined at different temperatures and pressures. Fish oil when equilibrated with SC-CO2 at elevated pressure expanded by up to about 40% in volume and increased in density by up to about 5%. Furthermore, IFT of fish oil in contact with SC-CO2 decreased substantially by an order of magnitude with an increase in CO2 pressure. When fish oil was in contact with CX EtOH, IFT decreased to ultra low levels at pressures of less than 10 MPa. Viscosity of fish oil equilibrated with SC-CO2 decreased substantially with pressure but increased with shear rate. Based on the physicochemical properties determined in this research, a novel process to produce micro- and nano-sized particles containing fish oil was developed based on a SCF spray-drying method. Key processing parameters have been evaluated and can be further optimized to improve encapsulation efficiency. Determination of physicochemical properties contributed to the fundamental understanding of the behavior of the fish oil+CO2 system with and without ethanol under high pressure conditions. The new microencapsulation process shows great potential for the delivery of bioactives in various product applications. / Bioresource and Food Engineering
32

Characterization of nanoparticle transport in flow through permeable media

Metin, Cigdem 19 November 2013 (has links)
An aqueous nanoparticle dispersion is a complex fluid whose mobility in porous media is controlled by four key factors: the conditions necessary for the stability of nanoparticle dispersions, the kinetics of nanoparticle aggregation in an unstable suspension, the rheology of stable or unstable suspensions, and the interactions between the nanoparticles and oil/water interface and mineral surfaces. The challenges in controlling nanoparticle transport come from the variations of pH and ionic strength of brine, the presence of stationary and mobile phases (minerals, oil, water and gas), the geochemical complexity of reservoir rocks, and pore-network. The overall objective of this work is to achieve a better understanding of nanoparticle transport in porous media based on a systematic experimental and theoretical study of above factors. For this purpose, the critical conditions for the aqueous stability of nanoparticles are identified and fit by a theoretical model, which describes the interaction energy between silica nanoparticles. Above critical conditions nanoparticle aggregation becomes significant. A model for the aggregation kinetics is developed and validated by experiments. A mechanistic model for predicting the viscosity of stable and unstable silica nanoparticle dispersions over a wide range of solid volume fraction is developed. This model is based on the concept of effective maximum packing fraction. Adsorption experiments with silica nanoparticles onto quartz, calcite and clay surfaces and interfacial tension measurements provide insightful information on the interaction of the nanoparticles with minerals and decane/water interface. The extent of nanoparticle adsorption on mineral/water and decane/water interfaces is evaluated based on DLVO theory and Gibbs’ equation. Visual observations and analytical methods are used to understand the interaction of nanoparticles with clay. The characterization of nanoparticle behavior in bulk phases is built into an understanding of nanoparticle transport in porous media. In particular, the rheology of nanoparticle dispersions flowing through permeable media is compared with those determined using a rheometer. In the presence of residual oil, the retention of silica nanoparticles at water/oil interface during steady flow is investigated. The results from batch experiments of nanoparticle adsorption are used to explain the flow behavior of these nanoparticles in a glass bead pack at residual oil saturation. / text
33

Simulation study of surfactant transport mechanisms in naturally fractured reservoirs

Abbasi Asl, Yousef 03 January 2011 (has links)
Surfactants both change the wettability and lower the interfacial tension by various degrees depending on the type of surfactant and how it interacts with the specific oil. Ultra low IFT means almost zero capillary pressure, which in turn indicates little oil should be produced from capillary imbibition when the surfactant reduces the IFT in naturally fractured oil reservoirs that are mixed-wet or oil-wet. What is the transport mechanism for the surfactant to get far into the matrix and how does it scale? Molecular diffusion and capillary pressure are much too slow to explain the experimental data. Recent dynamic laboratory data suggest that the process is faster when a pressure gradient is applied compared to static tests. A mechanistic chemical compositional simulator was used to study the effect of pressure gradient on chemical oil recovery from naturally fractured oil reservoirs for several different chemical processes (polymer, surfactant, surfactant-polymer, alkali-surfactant-polymer flooding). The fractures were simulated explicitly by using small gridblocks with fracture properties. Both homogeneous and heterogeneous matrix blocks were simulated. Microemulsion phase behavior and related chemistry and physics were modeled in a manner similar to single porosity reservoirs. The simulations indicate that even very small pressure gradients (transverse to the flow in the fractures) are highly significant in terms of the chemical transport into the matrix and that increasing the injected fluid viscosity greatly improves the oil recovery. Field scale simulations show that the transverse pressure gradients promote transport of the surfactant into the matrix at a feasible rate even when there is a high contrast between the permeability of the fractures and the matrix. These simulations indicate that injecting a chemical solution that is viscous (because of polymer or foam or microemulsion) and lowers the IFT as well as alters the wettability from mixed-wet to water-wet, produces more oil and produces it faster than static chemical processes. These findings have significant implications for enhanced oil recovery from naturally fractured oil reservoirs and how these processes should be optimized and scaled up from the laboratory to the field. / text
34

Physicochemical properties and microencapsulation process development for fish oil using supercritical carbon dioxide

Seifried, Bernhard Unknown Date
No description available.
35

Comprehensive Modelling Of Gas Condensate Relative Permeability And Its Influence On Field Performance

Calisgan, Huseyin 01 September 2005 (has links) (PDF)
The productivity of most gas condensate wells is reduced significantly due to condensate banking when the bottom hole pressure falls below the dew point. The liquid drop-out in these very high rate gas wells may lead to low recovery problems. The most important parameter for determining condensate well productivity is the effective gas permeability in the near wellbore region, where very high velocities can occur. An understanding of the characteristics of the high-velocity gas-condensate flow and relative permeability data is necessary for accurate forecast of well productivity. In order to tackle this goal, a series of two-phase drainage relative permeability measurements on a moderate permeability North Marmara &ndash / 1 gas well carbonate core plug sample, using a simple synthetic binary retrograde condensate fluid sample were conducted under reservoir conditions which corresponded to near miscible conditions. As a fluid system, the model of methanol/n-hexane system was used as a binary model that exhibits a critical point at ambient conditions. The interfacial tension by means of temperature and the flow rate were varied in the laboratory measurements. The laboratory experiments were repeated for the same conditions of interfacial tension and flow rate at immobile water saturation to observe the influence of brine saturation in gas condensate systems. The laboratory experiment results show a clear trend from the immiscible relative permeability to miscible relative permeability lines with decreasing interfacial tension and increasing velocity. So that, if the interfacial tension is high and the flow velocity is low, the relative permeability functions clearly curved, whereas the relative permeability curves straighten as a linear at lower values of the interfacial tension and higher values of the flow velocity. The presence of the immobile brine saturation in the porous medium shows the same shape of behavior for relative permeability curves with a small difference that is the initial wetting phase saturations in the relative permeability curve shifts to the left in the presence of immobile water saturation. A simple new mathematical model is developed to compute the gas and condensate relative permeabilities as a function of the three-parameter. It is called as condensate number / NK so that the new model is more sensitivity to temperature that represents implicitly the effect of interfacial tension. The new model generated the results were in good agreement with the literature data and the laboratory test results. Additionally, the end point relative permeability data and residual saturations satisfactorily correlate with literature data. The proposed model has fairly good fitness results for the condensate relative permeability curves compared to that of gas case. This model, with typical parameters for gas condensates, can be used to describe the relative permeability behavior and to run a compositional simulation study of a single well to better understand the productivity of the field.
36

Avaliação da tensão interfacial dinâmica em revestimentos epóxi do tipo DGEBA modificada com agentes de cura à base de amina.

Friedrich, Leila Augusta January 2006 (has links)
Submitted by Edileide Reis (leyde-landy@hotmail.com) on 2013-04-23T12:35:07Z No. of bitstreams: 1 Leila Friedrich.pdf: 945666 bytes, checksum: 6bd01ba22dfd6b6e880b4f9a131adaee (MD5) / Made available in DSpace on 2013-04-23T12:35:07Z (GMT). No. of bitstreams: 1 Leila Friedrich.pdf: 945666 bytes, checksum: 6bd01ba22dfd6b6e880b4f9a131adaee (MD5) Previous issue date: 2006 / As tubulações de aço carbono, para a produção e transporte de produtos químicos, apresentam limitações como resistência à ação da corrosão, sob ação do calor, causando desgaste. Por esse motivo se faz o uso de revestimentos que reduzem o contato da superfície com o meio corrosivo. No entanto, os revestimentos usados para o escoamento de fluídos têm ainda que apresentar uma menor interação com a superfície, uma menor tensão interfacial. Uma grande aplicação destes revestimentos é em dutos de petróleo, devido às obstruções ocasionadas à medida que o óleo escoa através do duto, pois este perde calor para o meio e conseqüentemente se dá à deposição de compostos parafínicos. Análises destes revestimentos com a técnica PLF-FI são de suma importância para avaliar a tensão interfacial dinâmica, pois esta técnica difere das tradicionais para a caracterização da superfície, por ser um método não destrutível e dinâmico. Para a confecção das amostras alguns tempos e temperaturas de cura foram aplicados. Neste presente trabalho, avaliamos quais as superfícies apresentam menor molhabilidade sob condições de fluxo com a superfície, visando um menor número de ocorrências de obstruções das tubulações e paradas para manutenções. Os valores de polarização máxima são verificados para as amostras curadas numa faixa de temperatura entre 120°C a 140°C e tempos de 6 a 10 horas, e sendo estes as variáveis de processo mais indicadas para a produção em alta escala. O presente trabalho foi organizado em 5 capítulos, apresentando-se no Capítulo 1 uma introdução do estudo realizado para a otimização do processo de cura em resinas epóxi modificada com agentes de cura a base de amina. No capítulo 2, apresenta-se uma revisão das tubulações, resina epóxi, a composição, e a cura dos revestimentos. No 12 capítulo 3, revisam-se as técnicas de análises e descrevem-se todas as técnicas experimentais realizadas. No capítulo 4, discutem-se os resultados adquiridos pelas técnicas utilizadas. No capítulo 5, relatam-se as conclusões deste trabalho. / Salvador
37

Remo??o de ?leo da ?gua de produ??o por flota??o em coluna utilizando tensoativos de origem vegetal

Silva, Paula Katherine Leonez da 29 February 2008 (has links)
Made available in DSpace on 2014-12-17T15:01:13Z (GMT). No. of bitstreams: 1 PaulaKLS.pdf: 655947 bytes, checksum: 42dfa97fce97ed099a5660c9d396a0eb (MD5) Previous issue date: 2008-02-29 / In the petroleum industry, water is always present in the reservoir formation together with petroleum and natural gas and this fact provokes the production of water with petroleum, resulting in a great environmental impact. Several methods can be applied for treatment of oily waters, such as: gravitational vases, granulated media filtration systems, flotation process, centrifugation process and the use of hydrocyclones, which can also be used in a combined way. However, the flotation process has showed a great efficiency as compared with other methods, because these methods do not remove great part of the emulsified oil. In this work was investigated the use of surfactants derived from vegetable oils, OSS and OGS, as collectors, using the flotation process in a glass column with a porous plate filter in its base for the input of the gaseous steam. For this purpose, oil/water emulsions were prepared using mechanical stirring, with concentrations around 300 ppm. The air flow rate was set at 700 cm3/min and the porous plate filter used for the generation of the air bubbles has pore size varying from 16 to 40 Pm. The column operated at constant volume (1500mL). A new methodology has been developed to collect the samples, where, instead of collecting the water phase, it was collected the oil phase removed by the process in the top of the flotation column. It has been observed that it is necessary to find an optimum surfactant concentration to achieve enhanced removal efficiency. Being for OSS 1.275 mmol/L and for OGS 0.840 mmol/L, with removal efficiencies of 93% and 99%, respectively, using synthetic solutions. For the produced water, the removal in these concentrations was 75% for OSS and 65% for OGS. It is possible to remove oil from water in a flotation process using surfactants of high HLB, fact that is against the own definition of HLB (Hydrophile-Lipophile Balance). The interfacial tension is an important factor in the oil removal process using a flotation process, because it has direct interference in the coalescence of the oil drops. The spreading of the oil of the air bubble should be considered in the process, and for the optimum surfactant concentrations it reached a maximum value. The removal kinetics for the flotation process using surfactants in the optimum concentration has been adjusted according to a first order model, for synthetic water as for the produced water. / Na ind?stria petrol?fera, a ?gua est? associada ao petr?leo e ao g?s natural, formando a ?gua de produ??o e gerando um grande impacto ambiental. Existem diversos m?todos de tratamento para as ?guas oleosas, tais como: vasos gravitacionais, sistemas de filtra??o em meio granular, flota??o, centrifuga??o e utiliza??o de hidrociclones, podendo ser utilizados de forma combinada. Entretanto, a flota??o tem mostrado maior efici?ncia com rela??o aos outros m?todos, pois eles n?o conseguem remover grande parte do ?leo emulsionado. O presente trabalho estuda a utiliza??o de tensoativos de origem vegetal, OSS (?leo de Soja Saponificado) e OGS (?leo de Girassol Saponificado), como coletores, atrav?s da flota??o em uma coluna com aera??o da suspens?o atrav?s de uma placa porosa. Para este fim, foram preparadas emuls?es ?leo/?gua por agita??o mec?nica, com concentra??es m?dias de 300 ppm. A vaz?o de ar utilizada foi de 700 cm3/min e o filtro de placa porosa utilizado para a gera??o das bolhas de ar foi de porosidade de (16-40) Pm. A coluna trabalhou a um volume constante de 1500mL. Desenvolveu-se uma nova metodologia para coletar as amostras, onde, ao inv?s de coletar a ?gua, coletou-se o ?leo removido na parte superior da c?lula de flota??o. Observou-se que ? necess?rio encontrar uma concentra??o ?tima de tensoativo para que haja uma maior efici?ncia de remo??o. S?o elas 1,275 mmol/L para o OSS e 0,840 mmol/L para o OGS, com efici?ncias de remo??o de 93 % e 99 %, respectivamente, em ?guas sint?ticas. Para a ?gua de produ??o, a remo??o nestas concentra??es foi de 75% para o OSS e 65% para o OGS. ? poss?vel remover ?leo de ?gua em um processo de flota??o utilizando tensoativos de BHL alto, fato que contraria a pr?pria defini??o de BHL (Balan?o Hidrof?lico-Lipof?lico). A tens?o interfacial ? um fator importante no processo de remo??o do ?leo na flota??o, pois interfere diretamente na coalesc?ncia das gotas de ?leo. O espalhamento do ?leo da bolha de ar deve ser considerado no processo, e para as concentra??es ?timas de tensoativo atingiu um valor m?ximo. A cin?tica da remo??o se ajustou para o modelo de primeira ordem na flota??o utilizando tensoativos na concentra??o ?tima, tanto para ?gua sint?tica como para a ?gua de produ??o.
38

Experimental investigation of the stability of the colmation zone around leaky sewers

Nikpay, Mitra 01 October 2015 (has links)
Sewage exfiltration from a sanitary and combined sewer systems and its percolation into porous medium results in a clogged or colmation layer in the nearby soil. In order to develop a comprehensive understanding of raw sewage transport mechanisms in porous media, investigations were carried out on the micro-scale properties of the multiphase system. In our laboratory experiments, the role of surfactants as a major organic chemical compound in wastewater was evaluated by using a surfactant solution as an artificial wastewater percolating into a porous media, represented by using columns and Plexiglas model. We studied flows of water and surfactants solution in saturated porous medium to detect the dynamic effects by means of measuring pressure and permeability as well as by visualization of flow regions and consequence for porosity along interfaces between water and surfactants solution. The tests revealed that mechanisms at interfaces between fluids and solids as well as between water and surfactants solution (i.e. wastewater) are significantly influencing the flow behavior. At the interfaces surfactant molecules are adsorbed or accumulate, respectively, and subsequently inducing electrical charges to those layers, altering the properties of fluids and these interfaces. Depending on the conditions, channels might be narrowed and thus decreasing the flow rate with a later erosion and increase of flow rates, or the flow and thus the erosive capacity might become intensified along the interface between surfactants solution and neighbouring water. In conclusion, the results of tests proved the surfactants to be an important controlling factor in the hydraulic properties of wastewater percolating into soil.
39

A Numerical Analysis of the Influence of Korteweg Stresses on the Flow and Mixing of Miscible Fluids

Wilson, Raymond Gary 07 April 2004 (has links)
No description available.
40

Aqueous Biphasic 3D Cell Culture Micro-Technology

Atefi, Ehsan January 2015 (has links)
No description available.

Page generated in 0.1075 seconds