• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 17
  • 17
  • 16
  • 16
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Advanced receivers for wideband CDMA systems

Latva-aho, M. (Matti) 07 September 1998 (has links)
Abstract Advanced receiver structures capable of suppressing multiple-access interference in code-division multiple-access (CDMA) systems operating in frequency-selective fading channels are considered in this thesis. The aim of the thesis is to develop and validate novel receiver concepts suitable for future wideband cellular CDMA systems. Data detection and synchronization both for downlink and uplink receivers are studied. The linear minimum mean squared error (LMMSE) receivers are derived and analyzed in frequency-selective fading channels. Different versions of the LMMSE receivers are shown to be suitable for different data rates. The precombining LMMSE receiver, whichis also suitable for relatively fast fading channels, is shown to improve the performance of the conventional RAKE receivers signicantly in the FRAMES wideband CDMA concept. It is observed that the performance of the conventional RAKE receivers is degraded signicantly with highest data rates due to multiple-access interference (MAI) as well as due to inter-path interference. Based on a general convergence analysis, it is observed that the postcombining LMMSE receivers are mainly suited to the high data rate indoor systems. The blind adaptive LMMSE-RAKE receiverdeveloped for relatively fast fading frequency-selective channels gives superior rate of convergence and bit error rate (BER) performance in comparison to other blind adaptive receivers based on least mean squares algorithms. The minimum variance method based delay estimation in blind adaptive receivers is shown to result in improved delay acquisition performance in comparison to the conventional matched filter and subspace based acquisition schemes. A novel delay tracking algorithm suitable to blind least squares receivers is also proposed. The analysis shows improved tracking performance in comparison to the standard delay-locked loops. Parallel interference cancellation (PIC) receivers are developed for the uplink. Data detection, channel estimation, delay acquisition, delay tracking, inter-cell interference suppression, and array processing in PIC receivers are considered. A multistage data detector with the tentative data decision and the channel estimate feedback from the last stage is developed. Adaptive channel estimation filters are used to improve the channel estimation accuracy. The PIC method is also applied to the timing synchronization of the receiver. It is shown that the PIC based delay acquisition and tracking methods can be used to improve the performance of the conventional synchronization schemes. Although the overall performance of the PIC receiver is relatively good in the single-cell case, its performance is signicantly degraded in a multi-cell environment due to unknown signal components which degrade the MAI estimates and subsequently the cancellation efficiency. The blind receiver concepts developed for the downlink are integrated into the PIC receivers for inter-cell interference suppression. The resulting LMMSE-PIC receiver is capable of suppressing residual interference and results in good BER performance in the presence of unknown signal components.
22

Performance analysis of suboptimal soft decision DS/BPSK receivers in pulsed noise and CW jamming utilizing jammer state information

Juntti, J. (Juhani) 17 June 2004 (has links)
Abstract The problem of receiving direct sequence (DS) spread spectrum, binary phase shift keyed (BPSK) information in pulsed noise and continuous wave (CW) jamming is studied in additive white noise. An automatic gain control is not modelled. The general system theory of receiver analysis is first presented and previous literature is reviewed. The study treats the problem of decision making after matched filter or integrate and dump demodulation. The decision methods have a great effect on system performance with pulsed jamming. The following receivers are compared: hard, soft, quantized soft, signal level based erasure, and chip combiner receivers. The analysis is done using a channel parameter D, and bit error upper bound. Simulations were done in original papers using a convolutionally coded DS/BPSK system. The simulations confirm that analytical results are valid. Final conclusions are based on analytical results. The analysis is done using a Chernoff upper bound and a union bound. The analysis is presented with pulsed noise and CW jamming. The same kinds of methods can also be used to analyse other jamming signals. The receivers are compared under pulsed noise and CW jamming along with white gaussian noise. The results show that noise jamming is more harmful than CW jamming and that a jammer should use a high pulse duty factor. If the jammer cannot optimise a pulse duty factor, a good robust choice is to use continuous time jamming. The best performance was achieved by the use of the chip combiner receiver. Just slightly worse was the quantized soft and signal level based erasure receivers. The hard decision receiver was clearly worse. The soft decision receiver without jammer state information was shown to be the most vulnerable to pulsed jamming. The chip combiner receiver is 3 dB worse than an optimum receiver (the soft decision receiver with perfect channel state information). If a simple implementation is required, the hard decision receiver should be used. If moderate complex implementation is allowed, the quantized soft decision receiver should be used. The signal level based erasure receiver does not give any remarkable improvement, so that it is not worth using, because it is more complex to implement. If receiver complexity is not limiting factor, the chip combiner receiver should be used. Uncoded DS/BPSK systems are vulnerable to jamming and a channel coding is an essential part of antijam communication system. Detecting the jamming and erasing jammed symbols in a channel decoder can remove the effect of pulsed jamming. The realization of erasure receivers is rather easy using current integrated circuit technology.
23

Hybrid beamforming for millimeter wave communications

Zhan, Jinlong 29 April 2022 (has links)
Communications over millimeter wave (mmWave) frequencies is a key component of the fifth generation (5G) cellular networks due to the large bandwidth available at mmWave bands. Thanks to the short wavelength of mmWave bands, large antenna arrays (32 to 256 elements are common) can be mounted at the transceivers. The array sizes are typical of a massive MIMO communication system, which makes fully digital beamforming difficult to implement due to high power consumption and hardware cost. This motivates the development of hybrid beamforming due to its versatile tradeoff between implementation cost (including hardware cost and power consumption) and system performance. However, due to the non-convex constraints on hardware (phase shifters), finding the global optima for hybrid beamforming design is often intractable. In this thesis, we focus on hybrid beamforming design for mmWave cellular communications both narrowband and wideband scenarios are considered. Starting from narrowband SU-MIMO mmWave communications, we propose a Gram-Schmidt orthogonalization (GSO) aided hybrid precoding algorithm to reduce computation complexity. GSO is a recursive process that depends on the order in which the matrix columns are selected. A heuristic solution to the order of column selection is suggested according to the array response vector along which the full digital precoder has the maximum projection. The proposed algorithm, not only constrained to uniform linear arrays (ULAs), can avoid the matrix inversion in designing the digital precoder compared to the orthogonal matching pursuit (OMP) algorithm. For the narrowband MU-MIMO mmWave communications, we propose an interference cancellation (IC) framework on hybrid beamforming design for downlink mmWave multi-user massive MIMO system. Based on the proposed framework, three successive interference cancellation (SIC) aided hybrid beamforming algorithms are proposed to deal with inter-user and intra-user interference. Furthermore, the optimal detection order of data streams is derived according to the post-detection signal-to-interference- plus-noise ratio (SINR). When considering wideband MU-MIMO mmWave communications, how to design a common RF beamformer across all subcarriers becomes the main challenge. Furthermore, the common RF beamformer in wideband channels leads to the need of more effective baseband schemes. By adopting a relaxation of the original mutual information and spectral efficiency maximization problems at the transceiver, we design the radio frequency (RF) precoder and combiner by leveraging the average of the covariance matrices of frequency domain channels, then a SIC aided baseband precoder and combiner are proposed to eliminate inter-user and intra-user interference / Graduate
24

The Steered Auxiliary Beam Canceller for Interference Cancellation in a Phased Array

Zai, Andrew 29 August 2011 (has links)
A common problem encountered in phased array signal processing is how to remove sources of interference from a desired signal. Two existing methods to accomplish this are the Linearly Constrained Minimum Variance (LCMV) beamformer and the Side-Lobe Canceller (SLC). LCMV provides better performance than SLC, but comes with much higher computational costs. The Steered Auxiliary Beam Canceller (SABC) presented in this thesis is a new algorithm developed to improve the performance of SLC without the computational costs of LCMV. SABC performs better than SLC because it uses high-gain auxiliary channels for cancellation. This new technique is now possible because digital arrays allow for direction finding algorithms such as Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) to estimate the directions of the interference sources. With this added knowledge, high gain beams similar to the main beam may be used as auxiliaries instead of low-gain antenna elements. Another contribution is a method introduced to calculate the computational complexity of LCMV, SLC, and SABC much more accurately than existing methods which only provide order-of-magnitude estimates. The final contribution is a derivation of the signal loss experienced by SLC and SABC and simulations that verify the performance of LCMV, SLC, and SABC. / Master of Science
25

Investigation on the Frequency Domain Channel Equalization and Interference Cancellation for Single Carrier Systems

Chan, Kuei-Cheng 11 August 2008 (has links)
In the single carrier systems with cyclic-prefix (CP), the use of CP does not only eliminate the inter-block interference (IBI), but also convert linear convolution of the transmitted signal with the channel into circular convolution, which leads to the computation complexity of the frequency domain equalization (FDE) at the receiver is reduced. Unfortunately, the use of CP considerably decreases the bandwidth utilization. In order to increase the bandwidth utilization, the single carrier systems with frequency domain equalization (SC-FDE) is investigated. When FDE is used in a single carrier system without CP, the IBI is induced by the modulated symbols and then the bit-error rate (BER) is increased. To reduce the interference and then improve the system performance, a novel interference cancellation scheme is proposed in this thesis. After FDE, it is shown that interference is induced from the right end of a time domain signal block and most of the interference is located at both ends of an equalized time domain signal block. Based on this observation, the modulated symbols which induce the interference are detected according to the maximum-likelihood (ML) principle and then the interference is regenerated and eliminated. For simplifying the computation complexity, we further propose a successive interference cancellation scheme, which is implemented by using the Viterbi algorithm. The simulation results demonstrate that the proposed scheme improves BER performance significantly in SC-FDE systems. In addition, the proposed architecture has comparable BER performance with the SC-CP systems when the multi-path channel is exponentially decayed.
26

High-Quality Detection in Heavy-Traffic Avionic Communication System Using Interference Cancellation Techniques

Nguyen, Anh-Minh Ngoc 21 October 2005 (has links)
This dissertation focuses on quantifying the effects of multi-user co-channel interference for an avionic communication system operating in a heavy-traffic aeronautical mobile environment and proposes advanced interference cancellation techniques to mitigate the interference. The dissertation consists of two parts. The first part of the work investigates the use of a visualization method to quantify and characterize the multi-user co-channel interference (multiple access interference) effects impinging on an avionic communication system. The interference is caused by complex interactions of thousands of RF signals transmitted from thousands of aircraft; each attempts to access a common communication channel, which is governed by a specific channel contention access protocol. The visualization method transforms the co-channel interference, which is specified in terms of signal-overlaps (signal collisions), from a visual representation to a matrix representation for further statistical analysis. It is found that the statistical Poisson and its cumulative distribution provide the best estimates of multi-user co-channel interference. It is shown, using Monte Carlo simulation, that the co-channel interference of a victim aircraft operating in the heavy-traffic environment could result in as high as eight signal-overlaps. This constitutes to approximately 83.4% of success rate in signal detection for the entire three thousand aircraft environment using conventional FSK receiver. One key finding shows that high-quality communications, up to 98.5% success rate, is achievable if only three overlapping signals can be decoded successfully. The interference results found in the first part set the stage for interference cancellation research in the second part. The second part of the work proposes the use of advanced interference cancellation techniques, namely sequential interference cancellation (SIC) and parallel interference cancellation (PIC), as potential solutions to mitigating the interference effects. These techniques can be implemented in radio receivers to perform multi-signal decoding functionality to remove the required interferers (three overlapping signals) so that high-quality communication, as described in the first part, can be achieved. Various performance graphs are shown for B-FSK and B-PSK for both SIC and PIC techniques. One key finding is that the system performance can be improved substantially to an additional 15% in signal reception success rate by using SIC or PIC. This means that critical information transmitted from 450 aircraft (out of approximately three thousand aircraft in the environment) is preserved and successfully decoded. Multi-signal decoding using these interference cancellation receivers comes at a small penalty of 2 - 4.5 dBs in Eb/No when sufficient signal-to-interference (SIR) ratio (7-12 dB) is provided. / Ph. D.
27

Filter Design for Interference Cancellation for Wide and Narrow Band RF Systems

Zargarzadeh, MohammadReza 19 June 2016 (has links)
In radio frequency (RF), filtering is an essential part of RF transceivers. They are employed for different purposes of band selection, channel selection, interference cancellation, image rejection, etc. These are all translated in selecting the wanted signal while mitigating the rest. This can be performed by either selecting the desired frequency range by a band pass filter or rejecting the unwanted part by a band stop filter. Although there has been tremendous effort to design RF tunable filters, there is still lack of designs with frequency and bandwidth software-tuning capability at frequencies above 4 GHz. This prevents the implementation of Software Defined Radios (SDR) where software tuning is a critical part in supporting multiple standards and frequency bands. Designing a tunable integrated filter will not only assist in realization of SDR, but it also causes an enormous shrinkage in the size of the circuit by replacing the current bulky off-chip filters. The main purpose of this research is to design integrated band pass and band stop filters aimed to perform interference cancellation. In order to do so, two systems are proposed for this thesis. The first system is a band pass filter capable of frequency and band with tuning for C band frequency range (4-8 GHz) and is implemented in 0.13 µm BiCMOS technology. Frequency tunability is accomplished by using a variable capacitor (varactor) and bandwidth tuning is carried out by employing a negative transconductance cell to compensate for the loss of the elements. Additional circuitry is added to the band pass filter to enhance the selectivity of the filter. The second system is a band stop filter (notch) with the same capability as the band pass filter in terms of tuning. This system is implemented in C band, similar to its band stop counterpart and is capable of tuning its depth by using a negative transconductance in an LC tank. A negative feedback is added to the circuit to improve the bandwidth. While implemented in the same process as the band pass filter, it only employs CMOS transistors since it is generally more attractive due to its lower cost and scalability. Both of the systems mentioned use a varactor for changing the center frequency which is a nonlinear element. Therefore, the nonlinearity of it is modelled using two different methods of nonlinear feedback and Volterra series in order to gain further understanding of the nonlinear process taking place in the LC tank. After the validation of the models proposed using Cadence Virtuoso simulator, two methods of design and tuning are suggested to improve the linearity of the system. After post layout-extraction, the band pass filter is capable of Q tuning in the range of 3 to 270 and higher. With the noise figure of 10 to 14 dB and input 1-dB compression point as high as 2 dBm, the system shows a reasonably good performance along its operating frequency of 4 to 8 GHz. The band stop filter which is designed in the same frequency band can achieve better than 55 dB of rejection with the noise figure of 6.7 to 8.8 dB and 1-dB compression point of -4 dBm. With the power consumption of 39 to 70 mW, the band stop filter can be used in a low power receiver to suppress unwanted signals. The technique used in the band stop filter can be applied to higher frequency ranges if the circuit is implemented in a more advanced silicon technology. Implementing the mentioned filters in a receiver along with other elements of low noise amplifiers, mixers, etc. would be a major step toward full implementation of SDR systems. Studying the linearity theory of varactors would help future designers identify the sources of nonlinearity and suggest more efficient tuning techniques to improve the linearity of RF electronic systems. / Master of Science
28

On Optimal Link Activation with Interference Cancelation in Wireless Networking

Yuan, Di, Angelakis, Vangelis, Chen, Lei, Karipidis, Eleftherios, Larsson, Erik G. January 2013 (has links)
A fundamental aspect in performance engineering of wireless networks is optimizing the set of links that can be concurrently activated to meet given signal-to-interference-and-noise ratio (SINR) thresholds. The solution of this combinatorial problem is the key element in scheduling and cross-layer resource management. In this paper, we assume multiuser decoding receivers, which can cancel strongly interfering signals. As a result, in contrast to classical spatial reuse, links being close to each other are more likely to be active concurrently. Our focus is to gauge the gain of successive interference cancellation (SIC), as well as the simpler, yet instructive, case of parallel interference cancellation (PIC), in the context of optimal link activation. We show that both problems are NP-hard and develop compact integer linear programming formulations that enable to approach global optimality. We provide an extensive numerical performance evaluation, indicating that for low to medium SINR thresholds the improvement is quite substantial, especially with SIC, whereas for high SINR thresholds the improvement diminishes and both schemes perform equally well.
29

On the Modified PN Code Tracking Loop with Multiuser Detection and Multipath Interference Cancellation

Lin, Yu-hui 28 August 2004 (has links)
A non-coherent PN code tracking loop with multi-user detection and simplified multi-path interference cancellation (MPIC) is proposed for direct sequence spread spectrum communications system. A decorrelator decision-feedback detector (DDFD) is first applied on the incoming signal to mitigate the multi-user interference. Then, a simplified multi-path interference cancellation (MPIC) is further used to increase signal quality. Finally, a modified code tracking loop (MCTL) is adopted for non-coherent PN code tracking. Mathematical expressions of the S-curve and tracking jitter are derived. Mean time to lose lock is also compared with traditional tracking loops. From the numerical results, we know the proposed PN code tracking loop can efficiently mitigate the interference from multi-user and multi-path and improve the performance of code tracking loop.
30

Iterative receiver in multiuser relaying systems with fast frequency-hopping modulation

2013 August 1900 (has links)
In this thesis, a novel iterative receiver and its improved version are proposed for relay-assisted multiuser communications, in which multiple users transmit to a destination with the help of a relay and using fast frequency-hopping modulation. Each user employs a channel encoder to protect its information and facilitate interference cancellation at the receiver. The signal received at the relay is either amplified, or partially decoded with a simple energy detector, before being forwarded to the destination. Under flat Rayleigh fading channels, the receiver at the destination can be implemented non-coherently, i.e., it does not require the instantaneous channel information to demodulate the users’ transmitted signals. The proposed iterative algorithm at the destination exploits the soft outputs of the channel decoders to successively extract the maximum likelihood symbols of the users and perform interference cancellation. The iterative method is successfully applied for both cases of amplify-and-forward and partial decode-and-forward relaying. The error performance of the proposed iterative receiver is investigated by computer simulation. Under the same spectral efficiency, simulation results demonstrate the excellent performance of the proposed receiver when compared to the performance of decoding without interference cancellation as well as the performance of the maximum likelihood multiuser detection previously developed for uncoded transmission. Simulation results also suggest that a proper selection of channel coding schemes can help to support significant more users without consuming extra system resources. In addition, to further enhance the receiver’s performance in terms of the bit error rate, an improved version of the iterative receiver is presented. Such an improved receiver invokes inner-loop iterations between the channel decoders and the demappers in such a way that the soft outputs of the channel decoders are also used to refine the outputs of the demappers for every outer-loop iteration. Simulation results indicate a performance gain of about 2.5dB by using the two-loop receiver when compared to the performance of the first proposed receiver.

Page generated in 0.1192 seconds