Spelling suggestions: "subject:"interferometer"" "subject:"nterferometer""
91 |
Updating and Automating the Virginia Tech Single-Plate InterferometerGrabowski, Henry Casmir 21 October 1999 (has links)
The single-plate interferometer is a powerful flow visualization and aerodynamic measurement tool. It can provide full-field data for the density distribution in a non-intrusive manner, and it can be used for highly unsteady flows. While the device itself represents a large decrease in complexity over other forms of interferometry, the data reduction procedure has traditionally been laborious and difficult. To remove these difficulties and to improve the accuracy of the Virginia Tech interferometer setup, the software has been revamped into a black box design removing the need to handle the code directly. Furthermore, the software has been made to be platform independent by implementing the algorithms using the Java programming language. New hardware has also been added which further simplifies the setup procedure.
The improved setup and the new software is used to study the flow around a film cooled turbine blade in the Virginia Tech cascade wind tunnel. The study of this flowfield is used as a validation for the new algorithms and to illustrate the ease of use of the system. Through this analysis, the density distribution for the entire flowfield is acquired. Furthermore the use of Plexiglas as window material was tried. This proved to work, however the manufacturing processing of these windows proved relatively difficult. Studying the film layer close to the surface proved difficult because of inherent limitations with the single-plate interferometer. / Master of Science
|
92 |
Optical Path Length Multiplexing of Optical Fiber SensorsWavering, Thomas A. 23 February 1998 (has links)
Optical fiber sensor multiplexing reduces cost per sensor by designing a system that minimizes the expensive system components (sources, spectrometers, etc.) needed for a set number of sensors. The market for multiplexed optical sensors is growing as fiberoptic sensors are finding application in automated factories, mines, offshore platforms, air, sea, land, and space vehicles, energy distribution systems, medical patient surveillance systems, etc. Optical path length multiplexing (OPLM) is a modification to traditional white-light interferometry techniques to multiplex extrinsic Fabry-Perot interferometers and optical path length two-mode sensors. Additionally, OPLM techniques can be used to design an optical fiber sensor to detect pressure/force/acceleration and temperature simultaneously at a single point. While power losses and operating range restrictions limit the broadscale applicability of OPLM, it provides a way to easily double or quadruple the number of sensors by modifying the demodulation algorithm. The exciting aspect of OPLM is that no additional hardware is needed to multiplex a few sensors. In this way OPLM works with conventional technology and algorithms to drastically increase their efficiency. [1] / Master of Science
|
93 |
Microgap Structured Optical Sensor for Fast Label-free DNA DetectionWang, Yunmiao 27 June 2011 (has links)
DNA detection technology has developed rapidly due to its extensive application in clinical diagnostics, bioengineering, environmental monitoring, and food science areas. Currently developed methods such as surface Plasmon resonance (SPR) methods, fluorescent dye labeled methods and electrochemical methods, usually have the problems of bulky size, high equipment cost and time-consuming algorithms, so limiting their application for in vivo detection. In this work, an intrinsic Fabry-Perot interferometric (IFPI) based DNA sensor is presented with the intrinsic advantages of small size, low cost and corrosion-tolerance. This sensor has experimentally demonstrated its high sensitivity and selectivity.
In theory, DNA detection is realized by interrogating the sensor's optical cavity length variation resulting from hybridization event. First, a microgap structure based IFPI sensor is fabricated with simple etching and splicing technology. Subsequently, considering the sugar phosphate backbone of DNA, layer-by-layer electrostatic self-assembly technique is adopted to attach the single strand capture DNA to the sensor endface. When the target DNA strand binds to the single-stranded DNA successfully, the optical cavity length of sensor will be increased. Finally, by demodulating the sensor spectrum, DNA hybridization event can be judged qualitatively.
This sensor can realize DNA detection without attached label, which save the experiment expense and time. Also the hybridization detection is finished within a few minutes. This quick response feature makes it more attractive in diagnose application. Since the sensitivity and specificity are the most widely used statistics to describe a diagnostic test, so these characteristics are used to evaluate this biosensor. Experimental results demonstrate that this sensor has a sensitivity of 6nmol/ml and can identify a 2 bp mismatch. Since this sensor is optical fiber based, it has robust structure and small size ( 125μm ). If extra etching process is applied to the sensor, the size can be further reduced. This promises the sensor potential application of in-cell detection. Further investigation can be focused on the nanofabrication of this DNA sensor, and this is very meaningful topic not only for diagnostic test but also in many other applications such as food industry, environment monitoring. / Master of Science
|
94 |
Sapphire Fiber Optic Sensor for High Temperature MeasurementTian, Zhipeng 10 January 2018 (has links)
This dissertation focuses on developing new technologies for ultra-low-cost sapphire fiber-optic high-temperature sensors. The research is divided into three major parts, the souceless sensor, the simple Fabry-Perot (F-P) interrogator, and the sensor system.
Chapter 1 briefly reviews the background of thermal radiation, fiber optic F-P sensors, and F-P signal demodulation. The research goal is highlighted.
In Chapter 2, a temperature sensing system is introduced. The environmental thermal radiation was used as the broadband light source. A sapphire wafer F-P temperature sensor head was fabricated, with an alumina cap designed to generate a stable thermal radiation field. The radiation-induced optical interference pattern was observed. We demodulated the temperature sensor by white-light-interferometry (WLI). Temperature resolution better than 1°C was achieved.
Chapter 3 discusses a novel approach to demodulate an optical F-P cavity at low-cost. A simple interrogator is demonstrated, which is based on the scanning-white-light-interferometry (S-WLI). The interrogator includes a piece of fused silica wafer, and a linear CCD array, to transform the F-P demodulation from the optical frequency domain to the spatial domain. By using the light divergence of an optical fiber, we projected a tunable reference F-P cavity onto an intensity distribution along a CCD array. A model for S-WLI demodulation was established. Performance of the new S-WLI interrogator was investigated. We got a good resolution similar to the well-known traditional WLI.
At last, we were able to combine the above two technologies to a sapphire-wafer-based temperature sensor. The simple silica wafer F-P interrogator was optimized by focusing light to the image sensor. This approach improves the signal to noise ratio, hence allows the new integrator to work with the relatively weak thermal radiation field. We, therefore, proved in the experiment, the feasibility of the low-cost sourceless optical Fabry-Perot temperature sensor with a simple demodulation system. / PHD / Temperature measurements for high temperature harsh environments is a challenge industrial task. In this work, a low-cost sapphire fiber high temperature sensor is introduced which uses single crystal sapphire fiber as the light guiding and a sapphire-wafer-based Fabry-Perot (F-P) interferometer as the temperature sensing element. The research goal is to provide an optical sensing system whose price is competitive to the high temperature thermocouples.
Two technologies were developed to reduce the cost of the sensing system, the sourceless sensor head design and the low-cost wafer-based F-P interrogator.
The sourceless sensor head makes use of the environmental thermal radiation as a broadband light source, together with the white light interferometry signal demodulation method, for temperature measurements. In this case, the system avoids using not only an external light, but also the light driver and the light coupling element.
A low-cost F-P cavity interrogation method was introduced to demodulate the sapphire-wafer-based temperature sensing F-P cavity. The signal demodulation is based on the scanning white light interferometry, but a reliable and low-cost reference F-P cavity is introduced. It includes only a piece of transparent wafer and a CCD array to transfer the interference fringe from the spectra domain to the spatial domain and therefore a low cost CCD can be directly applied to identify the optical path distance of the sensing OPD.
Eventually, the above two technologies were able to put together and an extremely low-cost F-P temperature sensing system was built. It has a good potential for further applications and commercialization.
|
95 |
Fiber-Optic Michelson Interferometer with Faraday Mirrors for Acoustic Sensing using a 3 × 3 Coupler and Symmetric Demodulation SchemeGartland, Peter Lanier 02 November 2016 (has links)
For the past 40 years, acoustic sensing has been a major avenue for the growth of interfero- metric fiber-optic sensors. Fiber-optic acoustic sensors have found uses in military, commer- cial, and medical applications. An interferometric fiber-optic acoustic sensor is presented utilizing the Michelson interferometer configuration with Faraday mirrors to eliminate po- larization fading. A 3 × 3 coupler is used as the beamsplitting component, and a symmetric demodulation algorithm is applied to recover the phase signal. This sensor has a theoretical resolution of 5.5 pico-strains and room to improve. Such improvements are discussed in the conclusion. / Master of Science / For the past 40 years, acoustic sensing has been a major avenue for the growth of fiber-optic
sensors. The optical fiber itself acts essentially like a microphone that is sensitive to acoustic
emissions in the audible range up into the ultrasonic range. Because of the fiber’s innate
resistance to harsh environments, fiber-optic acoustic sensors have found uses in military,
commercial, and, more recently, medical applications. The extremely high sensitivity achievable with a fiber-optic acoustic sensor is demonstrated using a simple arrangement of now
readily available fiber-optic components and digital signal processing.
|
96 |
A dual wavelength fiber optic strain sensing systemMalik, Asif 03 March 2009 (has links)
The extrinsic Fabry-Perot interferometer (EFPI) has been extensively used as a strain sensor in various applications. However, like other interferometric sensors, the EFPI suffers from ambiguity in detecting directional changes of the applied perturbation, when the operating point is at a maxima or a minima on the transfer function curve. Different methods, or sensor configurations have been proposed to solve this problem. This thesis investigates the use of dual wavelength interferometry to overcome this limitation. Possible systems configurations based on dual wavelength interferometry were considered, and the comprehensive design and implementation of a dual laser time division multiplexed (TOM) system based is presented. The system operates by alternately pulse modulating two laser diodes, which are closely spaced in center wavelength. Although the strain rate measurement capability of the system is dependent primarily on the speed of its hardware and the accuracy of its software, it is shown that it can be considerably enhanced by employing digital signal processing techniques. / Master of Science
|
97 |
Effect of different platforms on coupling compensation matrices in AOA estimation algorithms using small size UCAGhazaany, Tahereh S., Zhu, Shaozhen (Sharon), Jones, Steven M.R., Abd-Alhameed, Raed, Noras, James M., Van Buren, T., Marker, S. January 2014 (has links)
No / In this paper the sensitivity of the decoupling matrix used for mutual coupling compensation in small size uniform circular arrays has been studied. The compensation matrix is calculated using the receiving mode technique for a 5-element uniform circular array and applied to two groups of direction finding algorithms, namely phase comparison-based (interferometry) and subspace-based algorithms. In the tracking application considered the receiver array is deployed on a car roof or aircraft, so the geometry of the platform influences the compensation results. In this work, the effect of different ground plane geometries in terms of the standard deviation of angular error for each estimation algorithm using simulation results is investigated. The results show that the calibration conditions used to determine the compensation matrix affect the AOA estimation accuracy.
|
98 |
An optical readout for the LISA gravitational reference sensorSchuldt, Thilo 06 December 2010 (has links)
Der weltraumgestützte Gravitationswellendetektor LISA (Laser Interferometer Space Antenna) besteht aus drei identischen Satelliten an Bord derer sich jeweils zwei frei schwebende Testmassen befinden. Die Lage der einzelnen Testmassen in Bezug auf die zugehörige optische Bank muss mit einer Genauigkeit besser 1 pm/sqrt(Hz) in der Abstands- und besser 10 nrad/sqrt(Hz) in der Winkelmessung erfolgen. In der vorliegenden Arbeit wird ein kompaktes optisches Auslesesystem präsentiert, welches als Prototyp für diese Abstands- und Winkelmetrologie dient. Das dafür entwickelte polarisierende Heterodyn-Interferometer mit räumlich getrennten Frequenzen basiert auf einem hoch-symmetrischen Design, bei dem zur optimalen Gleichtakt-Unterdrückung Mess- und Referenzarm die gleiche Polarisation und Frequenz sowie annähernd gleiche optische Pfade haben. Für die Winkelmessung wird die Methode der differentiellen Wellenfrontmessung eingesetzt. In einem ersten Prototyp-Aufbau wird ein Rauschniveau von weniger als 100 pm/sqrt(Hz) in der Translations- und von weniger als 100 nrad/sqrt(Hz) in der Winkelmessung (beides für Frequenzen oberhalb 0.1 Hz) demonstriert. In einem zweiten Prototyp-Aufbau werden zusätzlich eine Intensitätsstabilisierung und ein Phasenlock der beiden Frequenzen implementiert. Die analoge Phasenmessung ist durch eine digitale, FPGA basierte, ersetzt. Mit diesem Aufbau wird ein Rauschen kleiner 5 pm/sqrt(Hz) in der Translationsmessung und kleiner 10 nrad/sqrt(Hz) in der Winkelmessung, beides für Frequenzen größer 0.01 Hz, erreicht. Eine Rausch-Analyse wurde durchgeführt und die Nichtlinearitäten des Interferometers bestimmt. Das Interferometer wurde im Hinblick auf die LISA Mission entwickelt, findet seine Anwendung aber auch bei der Charakterisierung der dimensionalen Stabilität von ultra-stabilen Materialien sowie in der optischen Profilometrie. Die Adaptierung des Interferometers dazu sowie erste Resultate zu beiden Anwendungen werden in dieser Arbeit präsentiert. / The space-based gravitational wave detector LISA (Laser Interferometer Space Antenna) consists of three identical satellites. Each satellite accommodates two free-flying proof masses whose distance and tilt with respect to its corresponding optical bench must be measured with at least 1 pm/sqrt(Hz) sensitivity in translation and at least 10 nrad/sqrt(Hz) sensitivity in tilt measurement. In this thesis, a compact optical readout system is presented, which serves as a prototype for the LISA proof mass attitude metrology. We developed a polarizing heterodyne interferometer with spatially separated frequencies. For optimum common mode rejection, it is based on a highly symmetric design, where measurement and reference beam have the same frequency and polarization, and similar optical pathlengths. The method of differential wavefront sensing (DWS) is utilized for the tilt measurement. In a first prototype setup noise levels below 100 pm/sqrt(Hz) in translation and below 100 nrad/sqrt(Hz) in tilt measurement (both for frequencies above 0.1 Hz) are achieved. A second prototype was developed with additional intensity stabilization and phaselock of the two heterodyne frequencies. The analog phase measurement is replaced by a digital one, based on a Field Programmable Gate Array (FPGA). With this setup, noise levels below 5 pm/sqrt(Hz) in translation measurement and below 10 nrad/sqrt(Hz) in tilt measurement, both for frequencies above 0.01Hz, are demonstrated. A noise analysis was carried out and the nonlinearities of the interferometer were measured. The interferometer was developed for the LISA mission, but it also finds its application in characterizing the dimensional stability of ultra-stable materials such as carbon-fiber reinforced plastic (CFRP) and in optical profilometry. The adaptation of the interferometer and first results in both applications are presented in this work.
|
99 |
Active Phase Compensation in a Fiber-Optical Mach-Zehnder Interferometer / Aktiv faskompensation i en fiberoptisk Mach-Zehnder-interferometer.Argillander, Joakim January 2020 (has links)
This thesis investigates the phenomena of phase stability in a fiber-optical MZI (Mach-Zehnder Interferometer). The MZI is a key building block of optical systems for use in experiments with both continuous-wave light and with single photons. By splitting incoming light into two beams and allowing it to interfere with itself, an interference pattern is visible at the output, and this phenomena can be used to code information. This is the operating principle in, for example, QKD (Quantum Key Distribution) experiments. This interference requires coherence that is higher than the length difference between the beams that the incoming light is split into. Particularly the phase of the beams must be equal to achieve constructive interference. If one beam is phase-shifted (with respect to the other) due to the light having traversed a longer path, only partially constructive interference is achieved. If the phase shift also varies with time this leads to a system where experiments can no longer reliably be performed. Sources of these fluctuations are thermal, acoustic or mechanical. Fiber-optical interferometers are particularly sensitive to path length fluctuations of the waveguides as the fiber-optic medium contracts and elongates with temperature, and also has a larger surface area for circulating air to mechanically disturb the waveguides than bulk optics interferometers. In this thesis, a solution to environment-induced phase drift is presented by evaluating implementations of feedback algorithms for automatic control. The algorithms PID (Proportional-, Integral-, Derivative controller) and an ICA (IncrementalControl Algorithm) have been investigated and the performance of these controllers has been compared when used with, and without, optical enclosures. The algorithms are implemented in an FPGA (Field-Programmable Gate Array) and the controller actuates an electro-optical phase modulator that can add a phase shift to one of the light beams in the MZI. This thesis shows that significant improvement in the optical stability can be achieved with active control compared to an interferometer without active phase control. / Det här examensarbetet undersöker fenomenet fasstabilitet i en fiber-optisk MZI (Mach-Zehnder-Interferometer). MZI:n är en viktig byggsten i optiska system som används till experiment med både kontinuerligt emitterande lasrar och med enskilda fotoner. Genom att dela upp inkommande ljus i två strålar och låta det interferera med sig själv så bildas ett interferensmöster vid utgången vilket kan användas för att koda information. Det här är huvudprincipen bakom, till exempel, experiment inom QKD (kvantnyckeldistribution, eng: Quantum Key Distribution). Denna interferens förutsätter en koherens (högre än längdskillnaden mellan strålarna) mellan strålarna som det inkommande ljuset är uppdelat i. Särskilt måste fasen hos de bägge strålarna vara lika för att åstadkomma fullständig konstruktiv intereferens. Om en stråle är fasförskjuten (i förhållande till den andra) på grund av att ljuset har färdats en längre sträcka så uppnås endast delvis konstruktiv interferens. Om fasförskjutningen även varierar med tiden så leder det till ett system där experiment inte längre kan pålitligt utföras. Sådana fluktuationer är orsakade av termiskt, akustiskt samt mekaniskt varierande effekter. Fiberoptiska interferometrar är särskilt känsliga mot förändringar i vågledarnas längd. Detta på grund av att det fiberoptiska mediet dras ihop respektive sträcks ut med temperaturen, samt att fibern har en större ytarea som cirkulerande luft kan påverka mekaniskt jämfört med interferometrar konstruerade av bulkoptik. I det här examensarbetet presenteras en lösning på problemet med miljöinducerad fasskift genom att utvärdera reglertekniska återkopplande algoritmer. Algoritmerna PID (Proportionell-, Integrerande-, Deriverande regulator) samt ICA (Inkrementell Regleralgoritm, eng: Incremental Control Algorithm) har undersökts och deras prestanda har jämförts med samt utan avskärmning. Algoritmerna har implementerats i en FPGA (fältprogrammerbar grindmatris, eng: Field-Programmable Gate Array) och regulatorn styr en elektrooptisk fasmodulator som kan addera en fasförskjutning till en av ljusstrålarna i MZI:n. Resultat visar att passiv avskärmning inte är tillräckligt utan behöver användas tillsammans med aktiv reglering för att uppnå stabilitet över en längre tidsperiod. Detta examensarbete visar på att en signifikant förbättring i den optiska stabiliteten kan uppnås med aktiv reglering jämfört med en interferometer utan aktiv fasreglering.
|
100 |
Soustava Fabry-Perotova a Michelsonova interferometru pro měření délek s femtosekundovým laserem / The system of Fabry-Perot and Michelson interferometer for length measurement with a femtosecond laserVémola, Tomáš January 2011 (has links)
The thesis deals with a design of a comparing interferometer. It concerns a setup of two interferometers, one of them is a Michelson and another a Fabry-Pérot type. This set-up is made to compare results of length measurements simultaneously performed by each of them. In the Theory, basic principles of Michelson and Fabry-Pérot interferometers are described. A special attention is paid to an innovative method of length measurement with tunable lasers and optical frequency comb. In the Practical Part, so-called Pilot Experimental Setup is described. It is a prototype that has been used to perform basic experiments on comparing of the two above mentioned methods. Based on experimental results and practical experience with the Pilot Experimental Setup, a Final Setup is designed. It comes in a form of a stand-alone instrument.
|
Page generated in 0.0592 seconds