Spelling suggestions: "subject:"interrupt"" "subject:"interrupta""
11 |
RTIC - A Zero-Cost Abstraction for Memory Safe ConcurrencyTjäder, Henrik January 2021 (has links)
Embedded systems are commonplace, often with real-time requirements, limited resources and increasingly complex workloads with high demands on security and reliability. The complexity of these systems calls for extensive developer experience and many tools has been created to aid in the development of the software running on such devices. One of these tools, the Real-Time For the Masses (RTFM) concurrency framework developed at Luleå University of Technology (LTU), is built upon a pre-existing, well established and theoretically underpinned execution model providing deadlock free execution and strong guarantees about correctness. The framework is further enhanced by the memory safety provided by Rust, a modern systems programming language. This thesis documents the work done towards improving the framework by studying the possibility to make it extendable. For this, a model of the present layout is required, which in turn requires a solid understanding of Rust's way to structure code. To realise such a large structural change it was advisable to join the open-source RTFM community as a core developer. This role included new responsibilities and required work within different areas of the framework, not only directly related to the primary goal. It also provided the insight that in order to reach the desired extendable structure, many other improvements had to be done first, including the removal of large experimental features. To aid the development, usage of state of the art Continuous Integration testing (CI) were key. Changes to such systems are also part of the development process. The name of the project changed in the middle of this thesis work, going from RTFM to Real-Time Interrupt-driven Concurrency (RTIC). The implemented features and usability fixes detailed in this thesis improves the user experience for embedded system developers resulting in increased productivity while making the development process of such systems more accessible. These general improvements will be part of the next release of the framework. A version v0.6.0-alpha.0 of the framework has been released for testing. The experiences gained related to open-source project governance during this work are also presented.
|
12 |
Análise de sistemas operacionais de tempo real para aplicações de robótica e automação / Analysis of real time operating systems for robotics and automation applicationsAroca, Rafael Vidal 31 October 2008 (has links)
Este trabalho apresenta um estudo sobre sistemas operacionais de tempo real (RTOS) utilizados na implementação da infraestrutura de controle digital para sistemas mecatrônicos, mas serve também como referência para outros sistemas que possuam restrições de tempo. Além de ter um caráter experimental, onde foram medidos e analisados dados como o pior tempo de resposta dos sistemas e a latência para tratamento de interrupções, este trabalho de pesquisa ainda contempla a implementação e uso de RTOS em situações práticas, bem como contempla a construção de uma plataforma geral de pesquisa que servirá de base para futuros trabalhos no laboratório de mecatrônica. Os sistemas analisados neste trabalho foram o VxWorks, QNX, Linux, RTAI, Windows XP, Windows CE e \'mü\'C/OS-II. Outro produto gerado durante este trabalho foi um Live CD para auxiliar na implementação e ensino de conceitos e sistemas de tempo real. / This work presents a study about real time operating systems (RTOS) that are utilized as infrastructure to create digital control systems for mechatronics systems, and also for systems that have critical time constraints. Parameters like worst case response time and interrupt latency were measured for each operating system. This research project also covers the implementation and use of RTOS in practical situations. A general research platform for robotics and real time research was also developed and will be used for future works in the Mechatronics Laboratory. The tested systems were VxWorks, QNX, Linux, RTAI, Windows XP, Windows CE and \'mü\'C/OS-II. Another product released during this work was a Live CD to aid the implementation and teaching of real time systems and concepts.
|
13 |
Electrochemical characterisation of porous cathodes in the polymer electrolyte fuel cellJaouen, Frédéric January 2003 (has links)
Polymer electrolyte fuel cells (PEFC) convert chemicalenergy into electrical energy with higher efficiency thaninternal combustion engines. They are particularly suited fortransportation applications or portable devices owing to theirhigh power density and low operating temperature. The latter ishowever detrimental to the kinetics of electrochemicalreactions and in particular to the reduction of oxygen at thecathode. The latter reaction requires enhancing by the verybest catalyst, today platinum. Even so, the cathode isresponsible for the main loss of voltage in the cell. Moreover,the scarce and expensive nature of platinum craves theoptimisation of its use. The purpose of this thesis was to better understand thefunctioning of the porous cathode in the PEFC. This wasachieved by developing physical models to predict the responseof the cathode to steady-state polarisation, currentinterruption (CI) and electrochemical impedance spectroscopy(EIS), and by comparing these results to experimental ones. Themodels account for the kinetics of the oxygen reduction as wellas for the transport of the reactants throughout the cathode,i.e. diffusion of gases and proton migration. The agglomeratestructure was assumed for the description of the internalstructure of the cathode. The electrochemical experiments wereperformed on electrodes having a surface of 0.5 cm2 using alaboratory fuel cell. The response of the cathode to various electrodecompositions, thickness, oxygen pressure and relative humiditywas experimentally investigated with steady-state polarisation,EIS and CI techniques. It is shown that a content in thecathode of 35-43 wt % of Nafion, the polymer electrolyte, gavethe best performance. Such cathodes display a doubling of theapparent Tafel slope at high current density. In this region,the current is proportional to the cathode thickness and to theoxygen pressure, which, according to the agglomerate model,corresponds to limitation by oxygen diffusion in theagglomerates. The same analysis was made using EIS. Moreover,experimental results showed that the Tafel slope increases fordecreasing relative humidity. For Nafion contents lower than 35wt %, the cathode becomes limited by proton migration too. ForNafion contents larger than 40 wt %, the cathode performance athigh current density decreases again owing to an additionalmass transport. The latter is believed to be oxygen diffusionthroughout the cathode. The activity for oxygen reduction ofcatalysts based on iron acetate adsorbed on a carbon powder andpyrolysed at 900°C in ammonia atmosphere was alsoinvestigated. It was shown that the choice of carbon has atremendous effect. The best catalysts were, on a weight basis,as active as platinum. <b>Keywords:</b>polymer electrolyte fuel cell, cathode, masstransport, porous electrode, modelling, agglomerate model,electrochemical impedance spectroscopy, current interrupt,transient techniques, non-noble catalysts
|
14 |
Electrochemical characterisation of porous cathodes in the polymer electrolyte fuel cellJaouen, Frédéric January 2003 (has links)
<p>Polymer electrolyte fuel cells (PEFC) convert chemicalenergy into electrical energy with higher efficiency thaninternal combustion engines. They are particularly suited fortransportation applications or portable devices owing to theirhigh power density and low operating temperature. The latter ishowever detrimental to the kinetics of electrochemicalreactions and in particular to the reduction of oxygen at thecathode. The latter reaction requires enhancing by the verybest catalyst, today platinum. Even so, the cathode isresponsible for the main loss of voltage in the cell. Moreover,the scarce and expensive nature of platinum craves theoptimisation of its use.</p><p>The purpose of this thesis was to better understand thefunctioning of the porous cathode in the PEFC. This wasachieved by developing physical models to predict the responseof the cathode to steady-state polarisation, currentinterruption (CI) and electrochemical impedance spectroscopy(EIS), and by comparing these results to experimental ones. Themodels account for the kinetics of the oxygen reduction as wellas for the transport of the reactants throughout the cathode,i.e. diffusion of gases and proton migration. The agglomeratestructure was assumed for the description of the internalstructure of the cathode. The electrochemical experiments wereperformed on electrodes having a surface of 0.5 cm2 using alaboratory fuel cell.</p><p>The response of the cathode to various electrodecompositions, thickness, oxygen pressure and relative humiditywas experimentally investigated with steady-state polarisation,EIS and CI techniques. It is shown that a content in thecathode of 35-43 wt % of Nafion, the polymer electrolyte, gavethe best performance. Such cathodes display a doubling of theapparent Tafel slope at high current density. In this region,the current is proportional to the cathode thickness and to theoxygen pressure, which, according to the agglomerate model,corresponds to limitation by oxygen diffusion in theagglomerates. The same analysis was made using EIS. Moreover,experimental results showed that the Tafel slope increases fordecreasing relative humidity. For Nafion contents lower than 35wt %, the cathode becomes limited by proton migration too. ForNafion contents larger than 40 wt %, the cathode performance athigh current density decreases again owing to an additionalmass transport. The latter is believed to be oxygen diffusionthroughout the cathode. The activity for oxygen reduction ofcatalysts based on iron acetate adsorbed on a carbon powder andpyrolysed at 900°C in ammonia atmosphere was alsoinvestigated. It was shown that the choice of carbon has atremendous effect. The best catalysts were, on a weight basis,as active as platinum.</p><p><b>Keywords:</b>polymer electrolyte fuel cell, cathode, masstransport, porous electrode, modelling, agglomerate model,electrochemical impedance spectroscopy, current interrupt,transient techniques, non-noble catalysts</p>
|
15 |
An examination of Linux and Windows CE embedded operating systemsTrivedi, Anish Chandrakant 04 January 2011 (has links)
The software that operates mobile and embedded devices, the embedded
operating system, has evolved to adapt from the traditional desktop environment, where processing horsepower and energy supply are abundant, to the challenging resource-starved embedded environment. The embedded environment presents the software with some difficult constraints when compared to the typical desktop environment: slower hardware, smaller memory size, and a limited battery life. Different embedded OSs tackle these constraints in different ways. We survey two of the more popular embedded OSs: Linux and Windows CE. To reveal their strengths and weaknesses, we examine and compare each of the OS’s process management and scheduler, interrupt handling, memory management, synchronization mechanisms and interprocess communication, and power management. / text
|
16 |
Characterisation of a PEM electrolyser using the current interrupt method / Christiaan Adolph MartinsonMartinson, Christiaan Adolph January 2012 (has links)
The need to characterise a PEM electrolyser is motivated by a South African hydrogen
company. One of two electrochemical characterisation methods, namely the current
interrupt method or electrochemical impedance spectroscopy, is investigated to
characterise the PEM electrolyser. Various literature sources can be found on the
electrochemical characterisation methods.
In this study the current interrupt method is used for the electrochemical characterisation
of a PEM electrolyser. The current interrupt method is an electrical test method
that will be used to obtain an equivalent electric circuit model of the PEM electrolyser.
The equivalent electric circuit model relates to various electrochemical characteristics
such as the activation losses, the ohmic losses and the concentration losses.
Two variants of the current interrupt method, namely the natural voltage response
method and the current switching method, are presented. These methods are used to
obtain two different equivalent electric circuit models of the PEM electrolyser. The
parameters of the first equivalent electric circuit, namely the Randles cell, will be
estimated with the natural voltage response method. The parameters of the second
equivalent electric circuit, namely the Randles-Warburg cell, will be estimated with
the current switching method.
Simulation models of the equivalent electric circuits are developed and tested. The
simulation models are used to verify and validate the natural voltage response method
and the current switching method. The parameters of the Randles cell simulation
model is accurately calculated with the natural voltage response method. The
parameters of the Randles-Warburg cell simulation model is accurately calculated with
the current switching method.
The natural voltage response method and the current switching method are also
practically implemented. The results is used to indicate the various electrochemical
characteristics of the PEM electrolyser. A Nafion 117 type membrane was tested with the current interrupt method. The membrane resistance parameters of Randles cell
were estimated with the natural voltage response method. These values are validated
with conductivity measurements found in literature. The results of the Randles-
Warburg cell is validated with a system identification validation model. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013
|
17 |
Characterisation of a PEM electrolyser using the current interrupt method / Christiaan Adolph MartinsonMartinson, Christiaan Adolph January 2012 (has links)
The need to characterise a PEM electrolyser is motivated by a South African hydrogen
company. One of two electrochemical characterisation methods, namely the current
interrupt method or electrochemical impedance spectroscopy, is investigated to
characterise the PEM electrolyser. Various literature sources can be found on the
electrochemical characterisation methods.
In this study the current interrupt method is used for the electrochemical characterisation
of a PEM electrolyser. The current interrupt method is an electrical test method
that will be used to obtain an equivalent electric circuit model of the PEM electrolyser.
The equivalent electric circuit model relates to various electrochemical characteristics
such as the activation losses, the ohmic losses and the concentration losses.
Two variants of the current interrupt method, namely the natural voltage response
method and the current switching method, are presented. These methods are used to
obtain two different equivalent electric circuit models of the PEM electrolyser. The
parameters of the first equivalent electric circuit, namely the Randles cell, will be
estimated with the natural voltage response method. The parameters of the second
equivalent electric circuit, namely the Randles-Warburg cell, will be estimated with
the current switching method.
Simulation models of the equivalent electric circuits are developed and tested. The
simulation models are used to verify and validate the natural voltage response method
and the current switching method. The parameters of the Randles cell simulation
model is accurately calculated with the natural voltage response method. The
parameters of the Randles-Warburg cell simulation model is accurately calculated with
the current switching method.
The natural voltage response method and the current switching method are also
practically implemented. The results is used to indicate the various electrochemical
characteristics of the PEM electrolyser. A Nafion 117 type membrane was tested with the current interrupt method. The membrane resistance parameters of Randles cell
were estimated with the natural voltage response method. These values are validated
with conductivity measurements found in literature. The results of the Randles-
Warburg cell is validated with a system identification validation model. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013
|
18 |
Análise de sistemas operacionais de tempo real para aplicações de robótica e automação / Analysis of real time operating systems for robotics and automation applicationsRafael Vidal Aroca 31 October 2008 (has links)
Este trabalho apresenta um estudo sobre sistemas operacionais de tempo real (RTOS) utilizados na implementação da infraestrutura de controle digital para sistemas mecatrônicos, mas serve também como referência para outros sistemas que possuam restrições de tempo. Além de ter um caráter experimental, onde foram medidos e analisados dados como o pior tempo de resposta dos sistemas e a latência para tratamento de interrupções, este trabalho de pesquisa ainda contempla a implementação e uso de RTOS em situações práticas, bem como contempla a construção de uma plataforma geral de pesquisa que servirá de base para futuros trabalhos no laboratório de mecatrônica. Os sistemas analisados neste trabalho foram o VxWorks, QNX, Linux, RTAI, Windows XP, Windows CE e \'mü\'C/OS-II. Outro produto gerado durante este trabalho foi um Live CD para auxiliar na implementação e ensino de conceitos e sistemas de tempo real. / This work presents a study about real time operating systems (RTOS) that are utilized as infrastructure to create digital control systems for mechatronics systems, and also for systems that have critical time constraints. Parameters like worst case response time and interrupt latency were measured for each operating system. This research project also covers the implementation and use of RTOS in practical situations. A general research platform for robotics and real time research was also developed and will be used for future works in the Mechatronics Laboratory. The tested systems were VxWorks, QNX, Linux, RTAI, Windows XP, Windows CE and \'mü\'C/OS-II. Another product released during this work was a Live CD to aid the implementation and teaching of real time systems and concepts.
|
19 |
Problematika přechodu od jednojádrové k vícejádrové implementaci operačního systému / Issue of Migrating from Single-Core to Multi-Core Implementation of Operating SystemMatyáš, Jan January 2014 (has links)
This thesis discuss necessary changes needed in order to run MicroC/OS-II on multicore processor, mainly Zynq 7000 All Programmable SoC which uses two ARM Cortex-A9 cores. Problems that arise during this transition are also discussed.
|
20 |
Piezoelektrische Aluminiumnitrid-Dünnschichten für mikroelektromechanische SystemeStöckel, Chris 13 December 2016 (has links) (PDF)
In der vorliegenden Arbeit werden der Entwurf, die Technologie und die Parameteridentifikation von Silizium basierten mikroelektromechanischen Systemen (MEMS) mit piezoelektrischen Dünnschicht-Aluminiumnitrid (AlN) vorgestellt. Auf Basis des AlNs als elektromechanischer Wandler erfolgt die Fertigung eines MEMS Technologiedemonstrators für energiearme Inertialsensoren.
Das AlN wird über einen reaktiven Sputterprozess auf einer Wachstumsschicht abgeschieden. Durch Parametervariation des reaktiven Sputterprozesses und der Wachstumsschicht werden die piezoelektrischen Eigenschaften des AlNs optimiert. Die Entwicklung einer Gesamttechnologie führt zu einer Integration des Dünnschicht-AlNs in Silizium-Mikromechaniken.
Die Röntgenbeugung (XRD) ermöglicht die Kristallstruktur des AlNs zu qualifizieren. Darüber hinaus werden weitere Analysemethoden vorgestellt, die eine hoch genaue und reproduzierbare messtechnische Bestimmung der piezoelektrischen Koeffizienten aus mikromechanischen Messstrukturen ermöglichen. Die Determination der piezoelektrischen Koeffizienten des Dünnschicht-AlNs aus den Messstrukturen erfolgt mittels analytischen und FE Modellen sowie der Laser-Doppler-Vibrometrie (LDV). Der Fokus der Arbeit liegt hierbei auf der Identifikation der longitudinalen und transversalen piezoelektrischen Ladungskoeffizienten des AlNs.
Als Technologiedemonstrator wird ein einachsiger Inertialsensor mit integriertem piezoelektrischen Dünnschicht-AlN vorgestellt. Das MEMS generiert aufgrund des piezoelektrischen Wandlers intrinsisch elektrische Ladungen bei Einwirkung einer mechanischen Energie. Dadurch ist keine elektrische Energiezufuhr für die Messung eines inertialen Ereignisses notwendig. Der vorgestellte Demonstrator wird hinsichtlich seiner Ladungs- und Spannungssensitivität optimiert. Zur theoretischen Beschreibung der Funktionsweise werden analytische, sowie FE und SPICE Modelle genutzt. Eine Charakterisierung des MEMS Bauelements erfolgt hinsichtlich der mechanischen und elektrischen Eigenschaften. / The thesis includes the design, the technology and the parameter identification of silicon-based microelectromechanical systems (MEMS) with piezoelectric thin film of aluminum nitride (AlN). A low-energy inertial sensor as technology demonstrator based on AlN as an electromechanical transducer a MEMS manufacturing process is shown.
The AlN is deposited via a reactive sputtering on a growth layer. By varying parameters of the reactive sputtering and the growth layer of AlN, the piezoelectric properties can be optimized. The development of an overall technology results to an integration of the thin film AlNs in silicon micromechanics.
X-ray diffraction (XRD) allows to qualify the crystal structure of AlN. Further methods are developed that enable a highly accurate and repeatable metrological determination of piezoelectric coefficients measurement structures. The determination of piezoelectric coefficients of the thin film AlN from the measurement structures is resulting from analytical methods and FE models and the laser Doppler vibrometry (LDV). The identification of the longitudinal and transverse piezoelectric charge coefficient of AlN is one main focus of this work.
A uniaxial inertial sensor with an integrated piezoelectric thin film of AlN is presented as technology demonstrator. The piezoelectric transducer of the MEMS is generating electric charges intrinsically as reaction of mechanical stress. Thus, no electric power supply for the measurement of an inertial event is necessary. The presented demonstrator has been optimized with respect to its charge and voltage sensitivity. For a theoretical description analytical and FE and SPICE models are used. A characterization of the MEMS device is carried out with regard to the mechanical and electrical properties.
|
Page generated in 0.0583 seconds