• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 11
  • 11
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phylogenetic diversity of the human gut microbiota based on small-submit rRNA

Bonnet, Régis January 2001 (has links)
No description available.
2

Adhesion of lactobacilli to porcine epithelial cells

McCoubrey, Amanda January 1994 (has links)
No description available.
3

Bacteria in the nutrition of non-ruminant animals

Ewing, Wesley January 1991 (has links)
No description available.
4

DIET, BACTERIA AND INFLAMMATION: THE INTESTINAL MUCOSA AND METABOLIC SYNDROME

Mohammed, Nadeem K 01 January 2012 (has links)
Long term consumption of a high fat diet (HFD) increases the risk of developing Metabolic Syndrome and type 2 diabetes. This led us to hypothesize that long term HFD consumption impairs immune tolerance to the intestinal bacteria. Our studies had two goals. First, we characterized the effect of long term HFD consumption on the systemic immune response by comparing C57BL6 mice fed a HFD and low fat diet (LFD). Plasma immunoglobulin G (IgG) against Escherichia coli (LF-82), E. coli (Nissle 1917), Bacteroides thetaiotaomicron and Lactobacillus acidophilus were measured by a lab-developed ELISA. Fasting blood glucose and inflammation were measured in LFD mice and HFD mice. To test whether our findings were clinically relevant, anti-bacterial IgG and TNF-α were measured in plasma samples from lean healthy individuals, obese non-diabetics and obese diabetics. Our second aim was to investigate the relationship between HFD consumption and intestinal immunity. The effect of HFD consumption on immune responses in the GI tract was assessed by measuring fecal IgA levels in HFD mice and LFD mice. HFD mice had higher plasma IgG against the LF82 strain of Escherichia coli as well as higher plasma TNF-α, neutrophil percentage and fasting blood glucose levels. Obese diabetics had higher plasma IgG against the LF82 strain of E. coli than lean healthy controls. Studies on the effect of HFD on intestinal immunity revealed that HFD mice had lower fecal IgA than LFD mice. Our findings are novel in that they show an association between long term HFD consumption, systemic inflammatory immune responses to pathogenic intestinal bacteria and insulin resistance. These studies also showed that HFD consumption may impair intestinal immunity.
5

ENZYMOLOGY AND MOLECULAR BIOLOGY OF BILE ACID 7alpha- AND 7beta- DEHYDROXYLATION BY THE INTESTINAL BACTERIA CLOSTRIDIUM SCINDENS AND CLOSTRIDIUM HYLEMONAE

Ridlon, Jason Michael 01 January 2008 (has links)
The collective microbial genomes within our gut(microbiome) represent a powerful metabolic force, leading many authors to call our GI flora an "organ within an organ", and the metagenomic sequencing of our microbiome, "the second human genome project". Bile acids, endogenously produced by the host liver, represent both a strong selective pressure for potential colonizers, aswell as substrates for microbial metabolism. Indeed, microbes have evolved enzymes to deconjugate bile salts, epimerize bile acid hydroxyl groups, and 7alpha-dehydroxylateprimary bile acids. The products of microbial 7alpha-dehydroxylation, secondary bile acids, are suggested by numerous lines of evidence to be involved in promoting colon carcinogenesis. 7alpha-dehydroxylating activity is a multi-step pathway, genes of which have only been identified in a small number of organisms within the genusClostridium. The biochemistry of this pathway has been largely worked out. The third step in the pathway is introduction of a delta-4-double bond; however, the gene product(s) responsible have not been identified. The baiCD and baiH genes were cloned, expressed and shown to have NAD-dependent 3-oxo-delta-4-steroid oxidoreductase activity showing stereospecificity for 7alpha-hydroxy and 7beta-hydroxy bile acid, respectively.In addition, bai genes were isolated from C.hylemonae TN271 by bidirectional genome-walking by PCR. This represents the first report of bai genes from a "low activity" 7alpha-dehydroxylating bacterium. The gene organization and sequence of the baiBCDEFGHI operon was highly conserved between C. hylemonae TN271 and the "high activity" 7alpha-dehydroxylating bacterium C. scindens VPI12708. The baiA gene was located by PCR using degenerate oligonucleotides. Bi-directional genome-walking revealed what appears to be several novel genes involved in bile acid metabolism which were also located in C. scindens VPI 12708. Expression of a 62 kDa flavoprotein and reactionwith [24-14C] 3-oxo-DCA and NADP resulted in a product of greater hydrophilicity than deoxycholic acid. The identity of this product was not determined. A second gene appears to share a common evolutionary origin with the baiF gene. A hypothesis is offered regarding the function of these homologues as Type III CoA transferasesrecognizing 5alpha-bile acids, or 5beta-bile acids (allo-bile acids). A third gene encodes a putative short chain reductase, similar in size and predicted function to the baiA gene, which may be involved in the final reductive step in the pathway. These novel genes also contained a conserved upstream regulatory region with the baioxidative genes. Finally, two genes were identified which may serve as potential drug targets to inhibit bile acid 7alpha-dehydroxylation. The first is an ABC transporter which may be co-transcribed with the other novel bile acid metabolizing genes, and what appears to be a bile acid sensor/regulator similar to the Tryptophan-rich sensory protein (TspO)/mitochondrial peripheral benzodiazepinereceptor (MBR) family of proteins.
6

Efeitos da parede celular de levedura sobre a microbiota fecal de gatos saudáveis e naturalmente infectados pelo vírus da imunodeficiência felina / Effects of yeast cell wall on the fecal microbiota of healthy cats and cats naturally infected by feline immunodeficiency virus

Oba, Patrícia Massae 28 February 2018 (has links)
A parede celular de levedura (PCL) parece exercer importante papel na modulação da microbiota intestinal. Sua inclusão pode inibir a colonização por bactérias patogênicas e resultar em possíveis benefícios à saúde intestinal. O vírus da imunodeficiência felina (FIV) apresenta relativa disseminação ambiental e, frente ao crescente número de gatos domiciliados no Brasil, reconhecer alterações microbiológicas dos animais acometidos por este vírus é de grande importância. Neste sentido, o presente trabalho objetivou avaliar os efeitos da ingestão de PCL na composição da microbiota fecal de gatos saudáveis e de gatos com FIV pelo emprego da técnica de sequenciamento Illumina. Foram utilizados 19 gatos adultos, distribuídos em dois grupos experimentais: GS (10 animais saudáveis) e GI (9 animais infectados naturalmente pelo FIV); e duas dietas experimentais: D0 (dieta controle, sem adição de PCL) e D4 (dieta teste com adição de 0,4% de PCL), totalizando quatro tratamentos (GSD0, GSD4, GID0 e GID4), em delineamento inteiramente casualizado (DIC). Os resultados apresentaram como mais abundantes os filos Firmicutes e Actinobacteria; as ordens Clostridiales e Coriobacteriales; a família Veillonellaceae; e o gênero Megasphaera spp.. O GS apresentou menor concentração de Fusobacteria (p=0,0037), Clostridiales (p=0,0001) e Fusobacteriales (p=0,0330), maior de Coriobacteriales (p<0,0001), Collinsella spp. (p=0,0135) e Peptococcus spp. (p=0,0265) em comparação ao GI. O consumo da PCL reduziu a porcentagem de Bacteroidetes (p =0,0421) e Catenibacterium spp. (p=0,0252). No GS, o consumo da PCL aumentou a concentração de Actinobacteria (p<0,0001) e Bifidobacterium spp. (p=0,0420) e, diminuiu a de Firmicutes (p=0,0205), Aeromonadales (p=0,0027), Dialister spp. (p=0,0137), Megasphaera spp. (p=0,0005) e Anaerobiospirillum spp. (p=0,0084). No GI, o consumo de PCL aumentou Proteobacteria (p=0,0005), Lactobacillales (p=0,0095), Aeromonadales (p=0,0027), Streptococcus spp (p=0,008) e Anaerobiospirillum spp. (p=0,0084) e reduziu Bifidobacterium spp. (p=0,0420). Com relação aos coeficientes de digestibilidade aparente (CDA), o GI apresentou menor CDA da proteína bruta (p=0,0305) e extrativos não-nitrogenados (p=0,0078) e, maiores do extrato etéreo em hidrólise ácida (p<0,0001), em comparação ao GS. Não houve diferença na concentração de ácidos graxos de cadeia curta (AGCC) ou mesmo de ácido lático entre os tratamentos, grupos e doses. A modulação bacteriana exercida pelo consumo da PCL aparentemente é positiva, porém mais estudos se fazem necessários para fortalecer esta hipótese na espécie alvo e, principalmente, esclarecer as diferenças existentes em sua resposta entre gatos doentes e saudáveis. / The yeast cell wall (YCW) seems to play an important role on the modulation of the intestinal microbiota. Their inclusion can inhibit pathogenic bacteria colonization and possible result in benefits on intestinal health. The feline immunodeficiency virus (FIV) shows relative environmental dissemination and due to the growth of the population of resident cats in Brazil, acknowledge of microbiological changes in the affected FIV + animals are of great importance. Therefore, this study aims to evaluate the effects of YCW intake in the composition of fecal microbiota of healthy cats and cats affected by FIV (FIV+), and to evaluate the fecal bacterial composition of cats FIV+ and compare it with the fecal microbiota of healthy cats by the use of Illumina sequencing technique. For this we used 19 adult cats, distributed in two experimental groups: GH (10 healthy animals) and GI (9 animals naturally infected by FIV); and two experimental diets: D0 (control diet, without addition of YCW) and D4 (test diet with addition of 0.4% of YCW), total of four treatments (GSD0, GSD4, GID0 and GID4), in a randomized design. The results presented as the most abundant phyla Firmicutes and Actinobacteria; the orders Clostridial and Coriobacterial; the family Veillonellaceae; and the genus Megasphaera spp. GH showed lower concentrations of Fusobacteria (p=0.0037), Clostridiales (p=0.0001), and Fusobacteriales (p=0.0330), higher of Coriobacteriales (p<0.0001), Collinsella spp. (p=0.0135) and Peptococcus spp. (p=0.0265) compared to GI. The consumption of PCL reduced the percentage of Bacteroidetes (p=0.0421) and Catenibacterium spp. (p=0.0252). In GH, PCL consumption positively modulated the concentration of Actinobacteria (p<0.0001) and Bifidobacterium spp. (p=0.0420), negatively to Firmicutes (p=0.0205), Aeromonadales (p=0.0027), Dialister spp. (p=0.0137), Megasphaera spp. (p=0.0005) and Anaerobiospirillum spp. (p=0.0084). In the GI, PCL consumption positively modulated Proteobacteria (p=0.0005), Lactobacillales (p=0.0095), Aeromonadales (p=0.0027), Streptococcus spp. (p=0.008) and Anaerobiospirillum spp. (p=0.0084) and negatively Bifidobacterium spp. (p=0.0420). In relation to the apparent digestibility coefficients (ADC), the GI present lower ADC of the crude protein (p=0.0305) and extractive non-nitrogenous (p=0.0078) and higher ADC of the ethereal extract in acid hydrolysis (p<0.0001), compared to GS. There was no statistical difference between the concentration of short chain fatty acids (SCFA) or even lactic acid between the treatments, groups or doses. The bacterial modulation exerted by PCL consumption appears to be positive, but more studies are needed to strengthen this hypothesis in the species and to clarify the differences in its response between sick and healthy cats.
7

Interrogation of the Distal Gut Microbiota of Healthy Adolescents and those with Irritable Bowel Syndrome

Rigsbee, Laura J. 24 August 2011 (has links)
No description available.
8

Biotransformação da B-lapachona utilizando culturas microbianas: uma alternativa para estudos de metabolismo in vitro / Biotransformation of B-lapachone using microbial cultures: an alternative to in vitro metabolism studies

Paludo, Camila Raquel 05 March 2013 (has links)
A B-lapachona é uma orto-naftoquinona consagrada por suas atividades farmacológicas, principalmente pela antitumoral, porém não há descrição de estudos de biotransformação microbiana da ?-lapachona. Tais estudos podem propiciar a obtenção de novos derivados dessa naftoquinona, além de fornecerem informações importantes sobre seu metabolismo. Muitos trabalhos descrevem que micro-organismos podem catalisar reações mimetizando enzimas humanas. Para o desenvolvimento dessa pesquisa, a ?-lapachona foi obtida por semissíntese a partir do lapachol. Nos processos de biotransformação foram utilizados os fungos filamentosos Mucor rouxii, Cunninghamella elegans, Cunninghamella echinulata, Penicillium crustosum e Papulaspora immersa e as bactérias gastrointestinais Escherichia coli, cultivada em aerobiose e anaerobiose, Lactobacillus acidophilus, Bifidobacterium sp. e cultura mista composta por Lactobacillus acidophilus, Bifidobacterium sp. e Streptococcus salivarius subesp. thermophilus. Com o intuito de estabelecer uma comparação entre o metabolismo microbiano da ?-lapachona com o do seu isômero ?-lapachona, estudos de biotransformação utilizando o fungo M. rouxii foram também conduzidos com a ?-lapachona. Sete derivados de biotransformação da ?-lapachona com o fungo M. rouxii foram identificados, sendo um inédito, cinco já descritos na literatura em um trabalho de metabolismo dessa naftoquinona utilizando sangue de mamíferos e humanos e uma espirobenzolactona relatada em um trabalho de síntese. Outros dois derivados inéditos da ?-lapachona, os quais são regioisômeros conjugados com glicose, foram produzidos após formação de hidroquinona no processo coduzido com o fungo C. elegans. O fungo P. immersa forneceu duas lactonas isoméricas também obtidas com a biotransformação com o fungo M. rouxii. Houve resultados positivos, com detecção de possíveis produtos de biotransformação da ?-lapachona por CLAE-DAD, com as bactérias E. coli em aerobiose e Bifidobacterium sp. No entanto, esses processos apresentaram um baixo rendimento, sendo possível a identificação de apenas um derivado com a E. coli, que também foi obtido com a biotransformação com o fungo M. rouxii. Um derivado glicosilado da ?-lapachona foi produzido após 24 horas de incubação no processo desenvolvido com o fungo M. rouxii, sendo posteriormente convertido em hidroxilapachol, que por sua vez originou a ?-lapachona novamente e também a ?-lapachona, a qual foi metabolizada também. O derivado glicosilado majoritário, obtido da biotransformação com a ?-lapachona com o fungo C. elegans, foi submetido à avaliação da atividade citotóxica frente à linhagem de câncer de mama humano SKBR-3 apresentando IC50 igual a 312,5 ?M, sendo o IC50 da ?-lapachona frente à mesma linhagem igual a 5,6 ?M. O derivado majoritário não apresentou citotoxidade frente à linhagem de fibroblastos normais humanos GM07492-A, enquanto a ?-lapachona foi altamente citotóxica (IC50 igual a 7,25 ?M). Esse mesmo derivado inédito foi também produzido em pequena quantidade no processo desenvolvido com o fungo C. echinulata. Na metabolização microbiana da ?-lapachona ocorreram tanto reações de fase I como de fase II, havendo mimetização do metabolismo de mamíferos, inclusive de humanos, como relatado em trabalhos da literatura. / B-lapachone is considered an important ortho-naphthoquinone by their pharmacological activities, mainly antitumor, but there is no description of microbial biotransformation studies of ?-lapachone. These researches may furnish new derivatives and significant information on its metabolism. Many studies describe that microorganisms can catalyze reactions mimicking human enzymes. ?-lapachone was obtained by semisynthetic procedure from lapachol. Biotransformation processes were carried out using the filamentous fungi Mucor rouxii, Cunninghamella elegans, Cunninghamella echinulata, Penicillium crustosum and Papulaspora immersa and the gastrointestinal bacteria Escherichia coli grown aerobically and anaerobically, Lactobacillus acidophilus, Bifidobacterium sp. and mixed culture with Lactobacillus acidophilus, Bifidobacterium sp. and Streptococcus salivarius subsp. thermophilus. In order to establish a comparison between ?-lapachone microbial transformation and those of its isomer ?-lapachone, biotransformation studies of ?-lapachone were also carried out using M. rouxii. Seven derivatives of ?-lapachone were produced in the process performed by M. rouxii, including one unpublished, five already described in a study of metabolism by mammalian and human blood and one spirobenzolactone reported in a syntetic study. Other two unpublished derivatives of ?-lapachone, which are regioisomers conjugated with glucose, were produced after formation of hydroquinone in the process carried out by C. elegans. P. immersa provided two isomeric lactones also obtained by biotransformation with M. rouxii. Possible biotransformation products were detected by using HPLC-DAD in the processes carried out by the bacteria E. coli under aerobic condition and Bifidobacterium sp. However, these processes exhibited a low yield, and it was possible to identify only one derivative produced by E. coli, which was also obtained in the process performed by M. rouxii. A glycosylated derivative of ?-lapachone was produced by biotransformation with M. rouxii after 24 hours of incubation and subsequently was converted in hydroxylapachol, which in turn gave rise to ?-lapachone again and also to ?-lapachone, which was also metabolized. The major derivative produced in the process carried out by C. elegans was submitted to cytotoxic activity evaluation using human breast cancer cell line SKBR3 showing IC50 312.5 ?M, being the ?-lapachone IC50 5.6 ?M against the same cell line. The major derivative did not show cytotoxicity to normal human fibroblast GM07492-A cell line, while ?-lapachone was highly cytotoxic (IC50 7.25 ?M). The same major derivative was also produced in smaller yield in the process performed by C. echinulata. In the ?-lapachone microbial transformation studies occurred phase I and phase II reactions, mimicking the metabolism of mammals, including humans, as reported in literature.
9

Biotransformação da B-lapachona utilizando culturas microbianas: uma alternativa para estudos de metabolismo in vitro / Biotransformation of B-lapachone using microbial cultures: an alternative to in vitro metabolism studies

Camila Raquel Paludo 05 March 2013 (has links)
A B-lapachona é uma orto-naftoquinona consagrada por suas atividades farmacológicas, principalmente pela antitumoral, porém não há descrição de estudos de biotransformação microbiana da ?-lapachona. Tais estudos podem propiciar a obtenção de novos derivados dessa naftoquinona, além de fornecerem informações importantes sobre seu metabolismo. Muitos trabalhos descrevem que micro-organismos podem catalisar reações mimetizando enzimas humanas. Para o desenvolvimento dessa pesquisa, a ?-lapachona foi obtida por semissíntese a partir do lapachol. Nos processos de biotransformação foram utilizados os fungos filamentosos Mucor rouxii, Cunninghamella elegans, Cunninghamella echinulata, Penicillium crustosum e Papulaspora immersa e as bactérias gastrointestinais Escherichia coli, cultivada em aerobiose e anaerobiose, Lactobacillus acidophilus, Bifidobacterium sp. e cultura mista composta por Lactobacillus acidophilus, Bifidobacterium sp. e Streptococcus salivarius subesp. thermophilus. Com o intuito de estabelecer uma comparação entre o metabolismo microbiano da ?-lapachona com o do seu isômero ?-lapachona, estudos de biotransformação utilizando o fungo M. rouxii foram também conduzidos com a ?-lapachona. Sete derivados de biotransformação da ?-lapachona com o fungo M. rouxii foram identificados, sendo um inédito, cinco já descritos na literatura em um trabalho de metabolismo dessa naftoquinona utilizando sangue de mamíferos e humanos e uma espirobenzolactona relatada em um trabalho de síntese. Outros dois derivados inéditos da ?-lapachona, os quais são regioisômeros conjugados com glicose, foram produzidos após formação de hidroquinona no processo coduzido com o fungo C. elegans. O fungo P. immersa forneceu duas lactonas isoméricas também obtidas com a biotransformação com o fungo M. rouxii. Houve resultados positivos, com detecção de possíveis produtos de biotransformação da ?-lapachona por CLAE-DAD, com as bactérias E. coli em aerobiose e Bifidobacterium sp. No entanto, esses processos apresentaram um baixo rendimento, sendo possível a identificação de apenas um derivado com a E. coli, que também foi obtido com a biotransformação com o fungo M. rouxii. Um derivado glicosilado da ?-lapachona foi produzido após 24 horas de incubação no processo desenvolvido com o fungo M. rouxii, sendo posteriormente convertido em hidroxilapachol, que por sua vez originou a ?-lapachona novamente e também a ?-lapachona, a qual foi metabolizada também. O derivado glicosilado majoritário, obtido da biotransformação com a ?-lapachona com o fungo C. elegans, foi submetido à avaliação da atividade citotóxica frente à linhagem de câncer de mama humano SKBR-3 apresentando IC50 igual a 312,5 ?M, sendo o IC50 da ?-lapachona frente à mesma linhagem igual a 5,6 ?M. O derivado majoritário não apresentou citotoxidade frente à linhagem de fibroblastos normais humanos GM07492-A, enquanto a ?-lapachona foi altamente citotóxica (IC50 igual a 7,25 ?M). Esse mesmo derivado inédito foi também produzido em pequena quantidade no processo desenvolvido com o fungo C. echinulata. Na metabolização microbiana da ?-lapachona ocorreram tanto reações de fase I como de fase II, havendo mimetização do metabolismo de mamíferos, inclusive de humanos, como relatado em trabalhos da literatura. / B-lapachone is considered an important ortho-naphthoquinone by their pharmacological activities, mainly antitumor, but there is no description of microbial biotransformation studies of ?-lapachone. These researches may furnish new derivatives and significant information on its metabolism. Many studies describe that microorganisms can catalyze reactions mimicking human enzymes. ?-lapachone was obtained by semisynthetic procedure from lapachol. Biotransformation processes were carried out using the filamentous fungi Mucor rouxii, Cunninghamella elegans, Cunninghamella echinulata, Penicillium crustosum and Papulaspora immersa and the gastrointestinal bacteria Escherichia coli grown aerobically and anaerobically, Lactobacillus acidophilus, Bifidobacterium sp. and mixed culture with Lactobacillus acidophilus, Bifidobacterium sp. and Streptococcus salivarius subsp. thermophilus. In order to establish a comparison between ?-lapachone microbial transformation and those of its isomer ?-lapachone, biotransformation studies of ?-lapachone were also carried out using M. rouxii. Seven derivatives of ?-lapachone were produced in the process performed by M. rouxii, including one unpublished, five already described in a study of metabolism by mammalian and human blood and one spirobenzolactone reported in a syntetic study. Other two unpublished derivatives of ?-lapachone, which are regioisomers conjugated with glucose, were produced after formation of hydroquinone in the process carried out by C. elegans. P. immersa provided two isomeric lactones also obtained by biotransformation with M. rouxii. Possible biotransformation products were detected by using HPLC-DAD in the processes carried out by the bacteria E. coli under aerobic condition and Bifidobacterium sp. However, these processes exhibited a low yield, and it was possible to identify only one derivative produced by E. coli, which was also obtained in the process performed by M. rouxii. A glycosylated derivative of ?-lapachone was produced by biotransformation with M. rouxii after 24 hours of incubation and subsequently was converted in hydroxylapachol, which in turn gave rise to ?-lapachone again and also to ?-lapachone, which was also metabolized. The major derivative produced in the process carried out by C. elegans was submitted to cytotoxic activity evaluation using human breast cancer cell line SKBR3 showing IC50 312.5 ?M, being the ?-lapachone IC50 5.6 ?M against the same cell line. The major derivative did not show cytotoxicity to normal human fibroblast GM07492-A cell line, while ?-lapachone was highly cytotoxic (IC50 7.25 ?M). The same major derivative was also produced in smaller yield in the process performed by C. echinulata. In the ?-lapachone microbial transformation studies occurred phase I and phase II reactions, mimicking the metabolism of mammals, including humans, as reported in literature.
10

Immunomodulatory effects of dietary fibre supplementation: effects on cytokine and antibody production and lymphocyte population profiles

Gannon, Mark 01 August 2009 (has links)
Gastrointestinal microflora has been shown to have a bi-directional relationship with the host immune system. A variety of fermentable carbohydrate polymers largely pass through the small intestine, providing fermentable substrates for gut microflora. Dietary fibre supplementation may provide a strategy for manipulating the intestinal bacterial profile, changing the interaction with the mucosal immune system, thereby modulating the host immune system. We used a BBc rat animal model to evaluate the effects of oat bran and wheat bran dietary fibre on the immune system. Previous collaborative efforts have shown that these dietary fibres can change the intestinal microflora, with wheat bran fibre showing a greater ability to influence colonic microbial community diversity. We have shown that dietary wheat bran fibre led to reduced IL-4 levels in the liver and T lymphocyte numbers in the Mesenteric Lymph Node and may be involved in reduced IgA levels in the cecal contents. In addition, IgA in the cecal contents was decreased while MLN B cell numbers increased in response to dietary wheat bran fibre. It was observed that neither wheat bran or oat bran treatments exerted any pro-inflammatory effects, with oat bran actually improving antioxidant status. These results suggest that both oat and wheat bran fibre treatments induce changes in the intestinal microflora, and that the microflora changes due to wheat fibre are associated with immunomodulatory effects on the host. This type of dietary fibre supplementation could ultimately provide a potential strategy for promoting health through microflora-associated effects on the immune system.

Page generated in 0.105 seconds