• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Invariants of curves and Jacobians in positive characteristic

Re, Riccardo Salvatore Gabriele, January 2004 (has links)
Proefschrift Universiteit van Amsterdam. / Met lit. opg. - Met samenvatting in het Nederlands.
2

Intertwining functions on compact Lie groups

Hoogenboom, B. January 1983 (has links)
Thesis--Leyden. / In Periodical Room.
3

Modeling and verifying dynamic evolving service-oriented architectures

Giese, Holger, Becker, Basil January 2013 (has links)
The service-oriented architecture supports the dynamic assembly and runtime reconfiguration of complex open IT landscapes by means of runtime binding of service contracts, launching of new components and termination of outdated ones. Furthermore, the evolution of these IT landscapes is not restricted to exchanging components with other ones using the same service contracts, as new services contracts can be added as well. However, current approaches for modeling and verification of service-oriented architectures do not support these important capabilities to their full extend.In this report we present an extension of the current OMG proposal for service modeling with UML - SoaML - which overcomes these limitations. It permits modeling services and their service contracts at different levels of abstraction, provides a formal semantics for all modeling concepts, and enables verifying critical properties. Our compositional and incremental verification approach allows for complex properties including communication parameters and time and covers besides the dynamic binding of service contracts and the replacement of components also the evolution of the systems by means of new service contracts. The modeling as well as verification capabilities of the presented approach are demonstrated by means of a supply chain example and the verification results of a first prototype are shown. / Service-Orientierte Architekturen erlauben die dynamische Zusammensetzung und Rekonfiguration komplexer, offener IT Landschaften durch Bindung von Service Contracts zur Laufzeit, starten neuer Komponenten und beenden von veralteten. Die Evolution dieser Systeme ist nicht auf den Austausch von Komponenten-Implementierungen bei Beibehaltung der Service-Contracts beschränkt, sondern das Hinzufügen neuer Service-Contracts wird ebenfalls unterstützt. Aktuelle Ansätze zur Modellierung und Verifikation Service-Orientierter Architekturen unterstützen diese wichtigen Eigenschaften, wenn überhaupt, nur unvollständig. In diesem Bericht stellen wir eine Erweiterung des aktuellen OMG Vorschlags zur Service Modellierung mit UML - SoaML - vor, die diese Einschränkungen aufhebt. Unser Ansatz erlaubt die Modellierung von Service Contracts auf verschiedenen Abstraktionsniveaus, besitzt eine fundierte formale Semantik für alle eingeführten Modellierungskonzepte und erlaubt die Verifikation kritischer Eigenschaften. Unser kompositionaler und inkrementeller Verifikationsansatz erlaubt die Verifikation komplexer Eigenschaften einschließlich Kommunikationsparameter und Zeit und deckt neben der dynamischen Bindung von Service Contracts sowie dem Austausch von Komponenten auch die Evolution des gesamten Systems durch das Hinzufügen neuer Service Contracts ab. Die Modellierungs- als auch die Verifikationsfähigkeiten unseres vorgestellten Ansatzes werden durch ein Anwendungsbeispiel aus dem Bereich des Lieferkettenmanagements veranschaulicht.
4

Superconformal Invariants and Correlation Functions / Superkonforme Invarianten und Korrelationsfunktionen

Knuth, Holger 16 April 2012 (has links)
No description available.
5

On torus homeomorphisms semiconjugate to irrational rotations

Jäger, T., Passeggi, A. 17 April 2020 (has links)
In the context of the Franks–Misiurewicz conjecture, we study homeomorphisms of the two-torus semiconjugate to an irrational rotation of the circle. As a special case, this conjecture asserts uniqueness of the rotation vector in this class of systems. We first characterize these maps by the existence of an invariant ‘foliation’ by essential annular continua (essential subcontinua of the torus whose complement is an open annulus) which are permuted with irrational combinatorics. This result places the considered class close to skew products over irrational rotations. Generalizing a well-known result of Herman on forced circle homeomorphisms, we provide a criterion, in terms of topological properties of the annular continua, for the uniqueness of the rotation vector. As a byproduct, we obtain a simple proof for the uniqueness of the rotation vector on decomposable invariant annular continua with empty interior. In addition, we collect a number of observations on the topology and rotation intervals of invariant annular continua with empty interior.
6

A Framework for Modeling Irreversible Processes Based on the Casimir Companion

Boldt, Frank 23 June 2014 (has links) (PDF)
Thermodynamic processes in finite time are in general irreversible. But there are chances to avoid irreversibility. For instance, there are canonical ensembles of special quantum systems with a given probability distribution describing the likelihood to find the system at time t=0 in a particular state with energy E_i(0), which can be controlled in a specific way, such that the initial probability distribution is recovered at the end of the process (t=T), but the state energies did change, hence E_i(0) is not equal to E_i(T). This allows to change thermodynamic quantities (expectation values) adiabatically, reversibly and in finite time. Such special processes are called Shortcuts to Adiabaticity. The presented thesis analyzes the origin of these shortcuts utilizing special Hamiltonian systems with dynamical algebra. Their main feature is to provide canonical invariance, which means a canonical ensemble stays canonical under Hamiltonian dynamics. This invariance carried by the dynamical algebra will be discussed using Lie group theory. In addition, the persistence of the dynamical algebra with respect to calculating expectation values will be deduced. This allows to benefit from all intrinsic symmetries within the discussion of ensemble trajectories. In consequence, these trajectories will evolve under Hamiltonian dynamics on a specific manifold given by the so-called Casimir companion. In addition, the deformation of this manifold due to non-Hamiltonian (dissipative) dynamics will be discussed, which allows to present a framework for modeling irreversible processes based on Hamiltonian systems with dynamical algebra. An application of this framework based on the parametric harmonic oscillator will be presented by determining time-optimal controls for transitions between two equilibrium as well as between non-equilibrium and equilibrium states. The latter one will lead to time-optimal equilibration strategies for a statistical ensemble of parametric harmonic oscillators. / Thermodynamische Prozesse in endlicher Zeit sind im Allgemeinen irreversibel. Es gibt jedoch Möglichkeiten, diese Irreversibilität zu umgehen. Ein kanonisches Ensemble eines speziellen quantenmechanischen Systems kann zum Beispiel auf eine ganz spezielle Art und Weise gesteuert werden, sodass nach endlicher Zeit T wieder eine kanonische Besetzungverteilung hergestellt ist, sich aber dennoch die Energie des Systems geändert hat (E(0) ungleich E(T)). Solche Prozesse erlauben das Ändern thermodynamischer Größen (Ensemblemittelwerte) der erwähnten speziellen Systeme in endlicher Zeit und auf eine adiabatische und reversible Art. Man nennt diese Art von speziellen Prozessen Shortcuts to Adiabaticity und die speziellen Systeme hamiltonsche Systeme mit dynamischer Algebra. Die vorliegende Dissertation hat zum Ziel den Ursprung dieser Shortcuts to Adiabaticity zu analysieren und eine Methodik zu entwickeln, die es erlaubt irreversible thermodynamische Prozesse adequat mittels dieser speziellen Systeme zu modellieren. Dazu wird deren besondere Eigenschaft ausgenutzt, die kanonische Invarianz, d.h. ein kanonisches Ensemble bleibt kanonisch bezüglich hamiltonscher Dynamik. Der Ursprung dieser Invarianz liegt in der dynamischen Algebra, die mit Hilfe der Theorie der Lie-Gruppen näher betrachtet wird. Dies erlaubt, eine weitere besondere Eigenschaft abzuleiten: Die Ensemblemittelwerte unterliegen ebenfalls den Symmetrien, die die dynamische Algebra widerspiegelt. Bei näherer Betrachtung befinden sich alle Trajektorien der Ensemblemittelwerte auf einer Mannigfaltigkeit, die durch den sogenannten Casimir Companion beschrieben wird. Darüber hinaus wird nicht-hamiltonsche/dissipative Dynamik betrachtet, welche zu einer Deformation der Mannigfaltigkeit führt. Abschließend wird eine Zusammenfassung der grundlegenden Methodik zur Modellierung irreversibler Prozesse mittels hamiltonscher Systeme mit dynamischer Algebra gegeben. Zum besseren Verständnis wird ein ausführliches Anwendungsbeispiel dieser Methodik präsentiert, in dem die zeitoptimale Steuerung eines Ensembles des harmonischen Oszillators zwischen zwei Gleichgewichtszuständen sowie zwischen Gleichgewichts- und Nichtgleichgewichtszuständen abgeleitet wird.
7

On Ruled Surfaces in three-dimensional Minkowski Space

Shonoda, Emad N. Naseem 22 December 2010 (has links) (PDF)
In a Minkowski three dimensional space, whose metric is based on a strictly convex and centrally symmetric unit ball , we deal with ruled surfaces Φ in the sense of E. Kruppa. This means that we have to look for Minkowski analogues of the classical differential invariants of ruled surfaces in a Euclidean space. Here, at first – after an introduction to concepts of a Minkowski space, like semi-orthogonalities and a semi-inner-product based on the so-called cosine-Minkowski function - we construct an orthogonal 3D moving frame using Birkhoff’s left-orthogonality. This moving frame is canonically connected to ruled surfaces: beginning with the generator direction and the asymptotic plane of this generator g we complete this flag to a frame using the left-orthogonality defined by ; ( is described either by its supporting function or a parameter representation). The plane left-orthogonal to the asymptotic plane through generator g(t) is called Minkowski central plane and touches Φ in the striction point s(t) of g(t). Thus the moving frame defines the Minkowski striction curve S of the considered ruled surface Φ similar to the Euclidean case. The coefficients occurring in the Minkowski analogues to Frenet-Serret formulae of the moving frame of Φ in a Minkowski space are called “M-curvatures” and “M-torsions”. Here we essentially make use of the semi-inner product and the sine-Minkowski and cosine-Minkowski functions. Furthermore we define a covariant differentiation in a Minkowski 3-space using a new vector called “deformation vector” and locally measuring the deviation of the Minkowski space from a Euclidean space. With this covariant differentiation it is possible to declare an “M-geodesicc parallelity” and to show that the vector field of the generators of a skew ruled surface Φ is an M-geodesic parallel field along its Minkowski striction curve s. Finally we also define the Pirondini set of ruled surfaces to a given surface Φ. The surfaces of such a set have the M-striction curve and the strip of M-central planes in common
8

Higher Lefschetz invariants for foliated manifolds / Höhere Lefschetz-Invarianten für geblätterte Mannigfaltigkeiten

Fermi, Alessandro 12 March 2012 (has links)
No description available.
9

On Ruled Surfaces in three-dimensional Minkowski Space

Shonoda, Emad N. Naseem 13 December 2010 (has links)
In a Minkowski three dimensional space, whose metric is based on a strictly convex and centrally symmetric unit ball , we deal with ruled surfaces Φ in the sense of E. Kruppa. This means that we have to look for Minkowski analogues of the classical differential invariants of ruled surfaces in a Euclidean space. Here, at first – after an introduction to concepts of a Minkowski space, like semi-orthogonalities and a semi-inner-product based on the so-called cosine-Minkowski function - we construct an orthogonal 3D moving frame using Birkhoff’s left-orthogonality. This moving frame is canonically connected to ruled surfaces: beginning with the generator direction and the asymptotic plane of this generator g we complete this flag to a frame using the left-orthogonality defined by ; ( is described either by its supporting function or a parameter representation). The plane left-orthogonal to the asymptotic plane through generator g(t) is called Minkowski central plane and touches Φ in the striction point s(t) of g(t). Thus the moving frame defines the Minkowski striction curve S of the considered ruled surface Φ similar to the Euclidean case. The coefficients occurring in the Minkowski analogues to Frenet-Serret formulae of the moving frame of Φ in a Minkowski space are called “M-curvatures” and “M-torsions”. Here we essentially make use of the semi-inner product and the sine-Minkowski and cosine-Minkowski functions. Furthermore we define a covariant differentiation in a Minkowski 3-space using a new vector called “deformation vector” and locally measuring the deviation of the Minkowski space from a Euclidean space. With this covariant differentiation it is possible to declare an “M-geodesicc parallelity” and to show that the vector field of the generators of a skew ruled surface Φ is an M-geodesic parallel field along its Minkowski striction curve s. Finally we also define the Pirondini set of ruled surfaces to a given surface Φ. The surfaces of such a set have the M-striction curve and the strip of M-central planes in common
10

A Framework for Modeling Irreversible Processes Based on the Casimir Companion: Time-Optimal Equilibration of a Collection of Harmonic Oscillators: A Geometrical Approach Illustrating the Framework

Boldt, Frank 11 June 2014 (has links)
Thermodynamic processes in finite time are in general irreversible. But there are chances to avoid irreversibility. For instance, there are canonical ensembles of special quantum systems with a given probability distribution describing the likelihood to find the system at time t=0 in a particular state with energy E_i(0), which can be controlled in a specific way, such that the initial probability distribution is recovered at the end of the process (t=T), but the state energies did change, hence E_i(0) is not equal to E_i(T). This allows to change thermodynamic quantities (expectation values) adiabatically, reversibly and in finite time. Such special processes are called Shortcuts to Adiabaticity. The presented thesis analyzes the origin of these shortcuts utilizing special Hamiltonian systems with dynamical algebra. Their main feature is to provide canonical invariance, which means a canonical ensemble stays canonical under Hamiltonian dynamics. This invariance carried by the dynamical algebra will be discussed using Lie group theory. In addition, the persistence of the dynamical algebra with respect to calculating expectation values will be deduced. This allows to benefit from all intrinsic symmetries within the discussion of ensemble trajectories. In consequence, these trajectories will evolve under Hamiltonian dynamics on a specific manifold given by the so-called Casimir companion. In addition, the deformation of this manifold due to non-Hamiltonian (dissipative) dynamics will be discussed, which allows to present a framework for modeling irreversible processes based on Hamiltonian systems with dynamical algebra. An application of this framework based on the parametric harmonic oscillator will be presented by determining time-optimal controls for transitions between two equilibrium as well as between non-equilibrium and equilibrium states. The latter one will lead to time-optimal equilibration strategies for a statistical ensemble of parametric harmonic oscillators. / Thermodynamische Prozesse in endlicher Zeit sind im Allgemeinen irreversibel. Es gibt jedoch Möglichkeiten, diese Irreversibilität zu umgehen. Ein kanonisches Ensemble eines speziellen quantenmechanischen Systems kann zum Beispiel auf eine ganz spezielle Art und Weise gesteuert werden, sodass nach endlicher Zeit T wieder eine kanonische Besetzungverteilung hergestellt ist, sich aber dennoch die Energie des Systems geändert hat (E(0) ungleich E(T)). Solche Prozesse erlauben das Ändern thermodynamischer Größen (Ensemblemittelwerte) der erwähnten speziellen Systeme in endlicher Zeit und auf eine adiabatische und reversible Art. Man nennt diese Art von speziellen Prozessen Shortcuts to Adiabaticity und die speziellen Systeme hamiltonsche Systeme mit dynamischer Algebra. Die vorliegende Dissertation hat zum Ziel den Ursprung dieser Shortcuts to Adiabaticity zu analysieren und eine Methodik zu entwickeln, die es erlaubt irreversible thermodynamische Prozesse adequat mittels dieser speziellen Systeme zu modellieren. Dazu wird deren besondere Eigenschaft ausgenutzt, die kanonische Invarianz, d.h. ein kanonisches Ensemble bleibt kanonisch bezüglich hamiltonscher Dynamik. Der Ursprung dieser Invarianz liegt in der dynamischen Algebra, die mit Hilfe der Theorie der Lie-Gruppen näher betrachtet wird. Dies erlaubt, eine weitere besondere Eigenschaft abzuleiten: Die Ensemblemittelwerte unterliegen ebenfalls den Symmetrien, die die dynamische Algebra widerspiegelt. Bei näherer Betrachtung befinden sich alle Trajektorien der Ensemblemittelwerte auf einer Mannigfaltigkeit, die durch den sogenannten Casimir Companion beschrieben wird. Darüber hinaus wird nicht-hamiltonsche/dissipative Dynamik betrachtet, welche zu einer Deformation der Mannigfaltigkeit führt. Abschließend wird eine Zusammenfassung der grundlegenden Methodik zur Modellierung irreversibler Prozesse mittels hamiltonscher Systeme mit dynamischer Algebra gegeben. Zum besseren Verständnis wird ein ausführliches Anwendungsbeispiel dieser Methodik präsentiert, in dem die zeitoptimale Steuerung eines Ensembles des harmonischen Oszillators zwischen zwei Gleichgewichtszuständen sowie zwischen Gleichgewichts- und Nichtgleichgewichtszuständen abgeleitet wird.

Page generated in 0.0723 seconds