Spelling suggestions: "subject:"oon exchange"" "subject:"soon exchange""
371 |
Hydroxydes doubles lamellaires, synthèse, caractérisation et propriétés / Layered double hydroxides, synthesis in polyol medium, characterization and propertiesDrici, Nawal 19 January 2015 (has links)
L’étude cinétique a permis de déterminer le temps d’équilibre atteint lors de la fixation du benzopurpurine 4B sur chaque composé, ainsi que l’ordre de la réaction et la nature du mécanisme de diffusion. Cette adsorption est favorisée par un milieu légèrement basique, et l’augmentation de la température a un effet positif sur l’amélioration des performances maximales de la fixation. L’étude des isothermes d’adsorption de ce colorant, a été établie pour déterminer l’efficacité de cette nouvelle classe d’adsorbants. Ces dernières sont de type L, et les donnés de sorption ont été traitées selon plusieurs modèles, afin de mieux comprendre le mécanisme d'adsorption du colorant sur les différents matériaux. L’analyse des résultats de l’étude thermodynamiques a montré que l’adsorption du colorant sur les différents composés est un phénomène spontané, endothermique et favorable, régie par une adsorption physique pour les matériaux CoFe-CO3/Ec, CoFe-CO3/A et MgAl-CO32- et par une adsorption physico-chimique pour les matériaux CoFe-Ac/p, CoNiFe-Ac/p , et MgAl-500. Ces résultats ont été confirmés par les analyses DRX et IR des différents matériaux avant et après adsorption. En comparant les résultats obtenus pour l’adsorption du colorant sur les différents matériaux, le composé CoNiFe-Ac/p constitue le meilleur adsorbant avec une capacité d’adsorption d’environ 593mg/g. Par conséquent, et compte tenu de l’ensemble des résultats fournis par cette étude, l’hydrolyse forcée en milieu polyol, s’avère une méthode très efficace pour l’élaboration des hydroxydes doubles lamellaire à base de métaux de transition avec une morphologie contrôlée, de taille nanométrique présentant un faible taux d’agglomération, et par conséquent une bonne dispersion de particules et un meilleur pouvoir adsorbant. Ces caractéristiques peuvent être à l’origine de l’application de ces matériaux avec succès dans l’élimination des colorants contenant dans les effluents industriels. / New layered double hydroxides (LDHs) CoFe-Ac, CoNiFe-Ac, ZnNiFe-Ac and ZnCoFe-Acwith MII/MIII molar ratio of 3, and acetate ions in the interlayer region have been preparedusing forced hydrolysis of acetate metallic salts in a polyol medium. The structure,morphology and properties of as-prepared product were investigated by X-ray Diffraction(XRD), FT-IR Spectroscopy, elemental analysis, transmission Electron Microscopy (TEM),Scanning Electron Microscopy (SEM), thermal analysis (DTA, TGA) and V-visibleSpectroscopy: showed that these nanocomposites present the typical features of hydrotalcitelikestructure, exhibit a turbostratic character and the intercalation of acetate anions into theinterlayer domain has been successfully done, giving an interlayer spacing value of 12.70,12.47, 13.64 and 14.69 Å for CoFe-Ac, CoNiFe-Ac, ZnNiFe-Ac and ZnCoFe-Acrespectively.We can note that there is some difference between the interlayer spacing for all synthesizedphases. That can be explained by the arrangement of inserted species (anions + water) indifferent orientation in the interlayer domain.57Fe Mössbauer spectrometry allows concluding the presence of Fe3+ cations which occupyoctahedral sites and confirming the absence of Fe2+ in the as-prepared compounds.In order to check the capacity of our materials synthesized in polyol medium to exchange theacetate anions inserted in their interlamellar space, anionic exchange in aqueous medium waseffected for CoFe-Ac compound as à model of synthesized LDH. All the physicochemicalmethods of analysis (DRX, IR, ATD/ATG and elemental analysis) carried out on the materialCoFe- Ac /EC (exchanged). The comparison with a lamellar phase containing oFeCO3/Asynthesized in aqueous medium, show a layered double hydroxide compound with aturbostratic disorder, and a new interlamellar distance d003 = 7.67Å which correspondsperfectly with the presence of the carbonate anions and the water molecules in the interfeuilletfield.In the second part of this study, we are interested to examine the capacities of these kinds ofmaterials for the adsorption of an anion dye benzopurpurine-4B-. The adsorption of direct red2 by CoFe-Ac, CoNiFe-Ac LDHs has been examined in order to measure the capability ofthis new organic/inorganic nanomaterial to eliminate this highly toxic azoic class of anionicdyes from wastewater. The sorption capacities of LDHs for Benzopurpurine4B are also compared with those of other adsorbents : CoFe- Ac /Ec, CoFeCO3/A (synthesized in aqueous medium), Mg-Al-CO3/A and its calcined product at 500°C “Mg-Al-500”. The quantity of dye eliminated was found to depend on contact time, pH, initial concentration of dye and heating temperature. The thermodynamic parameters ΔG°, ΔH° and ΔS° werecalculated to predict the nature of adsorption. Results suggested that the Benzopurpurine 4B adsorption on different compounds was a spontaneous and endothermic process. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order, Elovitch’sequation and intra-particle diffusion models. Kinetic studies for all cases showed that the adsorption followed a pseudo-second order reaction. Studies revealed that intra-particle diffusion played an important role in the mechanism of dye adsorption by MgAl-500. Theequilibrium data were analyzed using Langmuir, Freundlich, Tempkin, Elovitch, Dubinin-Radushkevich, Redlich-Peterson and Toth isotherm models. [...] Taking these results into account, we can conclude that prepared LDHs by forced hydrolysis in a polyol medium can be used successfully in the removal of anionic dyes from aqueous solutions.
|
372 |
Treatment of wastewater containing cobalt (Co-59) and strontium (Sr-89) as a model to remove radioactive Co-60 and Sr-90 using hierarchical structures incorporating zeolitesAl-Nasri, Salam Khudhair Abdullah January 2015 (has links)
Zeolites were used in this study to remove two types of non-radioactive ions (Cobalt-59 and Strontium-89) from wastewater. This was designed to model the use of ion-exchange technique to remove radioactive Co-60 and Sr-90 from low level wastewater from Al-Tuwaitha site. Al-Tuwaitha site is a nuclear research in Iraq was used for radio-medical and radio-chemical purposes before 1990. In this study, hierarchical microporous/macroporous structures were developed to overcome the diffusivity problem using zeolite. Diatomite and carbon were used to prepare the composite adsorbents by incorporating them with three types of zeolites (A, Y and clinoptilolite). From the XRD, SEM and EDAX measurement it was confirmed that successfully prepared of Iraqi palm tree leafs-Clinoptlolite (IPClinp) and Tamarind stones-Clinoptilolite (TSClinp) composites were obtained in this study as there is no evidence in literature of this being carried out before. The carbons were prepared successfully through the Pyrolysis method for 2h at 900°C in an inert atmosphere from two types of raw waste plant materials of Iraqi Palm Tree leafs (IP) and Tamarind stones (TS). For both types of carbons, the SEM images show organised porosities in different shapes. A third material used as a zeolite scaffold was diatomite (Celatom FW-14) a readily available natural material (dead algae).A hydrothermal treatment was used to build the hierarchical structure of zeolite onto carbon and diatomite materials, the scaffolds were seeded with nano-zeolite crystals prior to the treatment and thereafter mixed with the zeolite gel composition mixture in a stainless steel autoclave. Zeolite seeds were prepared using ball mill method to reduce the particle size of the commercial zeolite to sub-micron range for each type of zeolite. The surface area, morphology, element compositions and structure for each type of zeolite and composite material were characterised using BET method, SEM, EDAX and XRD. The amounts of each type of zeolite on the carbon composites were determined using TGA while that of the diatomite composite was determined by gravimetric analysis. The results show that each type of zeolite was successfully deposited and uniformly organised onto the surface of all support materials. All pure zeolites and composite materials were successfully tested to remove Co2+ and Sr2+ ions from aqueous solutions. It was found that the composite materials had higher ability to remove both ions relative to the pure zeolites. This increase is attributed to the deposition of zeolite (microporous) onto the macroporous structure (carbon and diatomite) which increased the flow accessibility within zeolite in the hierarchical structured composites. Comparison of the removal between the two metal ions indicates that all of the materials had higher uptake for Sr2+ than Co2+ ions. The highest adsorption capacities were realised with Tamarind Stone–ZeoliteA (TSA) in the order 120mg.gz-1and 290mg.gz-1 for Co2+ and Sr2+ ions, respectively. The effect of the experimental variables shows increasing uptake with increasing pH and initial ion concentrations while it decreased with increasing the solution temperature. The Co2+ loaded composites was subjected to vitrification process at 12000C for 2h. The encapsulated composites were leached for 90 and 120 days and no significant Co2+ was recorded in the leached solution. The results show that the composite materials can be used effectively to remove the radioactive ion of Co-60 and Sr-90 ion as they display the same chemical behaviour as Co-59 and Sr-89 studied in this work.
|
373 |
Statistical Analysis and Optimization of Ammonia Removal from Aqueous Solution by Zeolite and Ion-exchange ResinDing, Yuanhao January 2015 (has links)
The ability of natural zeolite and synthetic ion-exchange resin for ammonia removal from aqueous solution was studied through batch experiments. The results showed that both zeolite and ion-exchange resin were effective (up to 87% of removal) in eliminating ammonia from aqueous solution. Factorial design and response surface methodology were applied to evaluate and optimize the effects of pH, dose, contact time, temperature and initial ammonia concentration. Low pH condition was preferred with the optimum pH found to be 6 for both zeolite and ion-exchange resin. High dose generated high removal rate and low exchange capacity. Results of factorial design and response surface methodology showed that temperature was not a significant parameter. The model prediction was in good agreement with observed data (R2 = 0.969 for zeolite and R2 = 0.957 for resin, respectively). For zeolite, the optimum Qe was 22.90 mg/g achieved at pH=7 and initial ammonia concentration of 3000 mg/L. For ion-exchange resin, Qe of 28.78 mg/g was achieved at pH=6 and initial TAN concentration of 3000 mg/L. The reaction kinetics for both of them followed the Pseudo-second order kinetic model (R2=0.998 and R2=0.999, respectively). Equilibrium data were fitted to Langmuir and Freundlich isotherm models with Freundlich model providing a slightly better predication for zeolite (R2=0.992) and Langmuir providing more accurate prediction for ion-exchange resin (R2=0.996). The ion-exchange resin can be completely regenerated by 2N H2SO4.
|
374 |
Troca iônica em micelas: teoria e aplicações / Ion exchange in micelles: theory and applicationsHernan Chaimovich Guralnik 11 October 1979 (has links)
A consideração explicita de troca iônica em soluções micelas conduz a expressões gerais que contém somente termos experimentalmente acessíveis. Estas expressões servem como marco de referência geral para a análise do efeito de micelas em reações que envolvem íons. As expressões incluem: a ligação de um íon reativo a micela na presença ou ausência de sal, a reação monomolecular de um substrato iônico na fase micelar, a reação bimolecular de um nucleófilo iônico na fase micelar e o efeito de micelas na dissociação de ácidos fracos e as suas consequências cinéticas. Estas expressões foram utilizadas para analisar quantitativamente a hidrólise alcalina de acetato de p-nitrofenila em tampão. Uma das predições do modelo, um mínimo no pK aparente de um ácido fraco na presença de micelas foi confirmado estudando o efeito de brometo de hexadeciltrimetilamônio na dissociação de n-heptilmercaptana e fenol. O efeito de sais no pK do fenol na presença de micelas, também predito pelo modelo, foi analisado quantitativamente. / The explicit consideration of specific ion exchange leads to general expressions which contain experirmentally accessible terms. These expressions serve as an unified conceptual framework for the quantitative dissection and analysis of the influence of charged interfaces on reactions which involve such specifically-bound ionic species. These include the binding of a reactive ion to the micelle in the presence ar absence of salt, the first order reaction of an ionic substrate in the micelle. a second order reaction of an ionic nucleophile solubilized in the micellar phase and the effect of micelles on the dissociation of weak acids and the reactions of the corresponding conjugate base. These expressions were used to analyze quantitatively the micellar modified hydrolysis of p-nitrophenyl acetate in the presence of buffer. One of the predictions of the model, a minimum in the pK apparent of a weak acid, was confirmed in a study of the effect of hexadecyltrimethylamonium bromide on the apparent pK's of phenol and n-heptylmercaptan. The effect of salts on the pK of weak acids in the presence af micelles, also predicted by the model, was analysed quantitatively.
|
375 |
Acid retardation : recovery and recycling of acid and metalBood, Cecilia January 2020 (has links)
During the production of steel, an oxide scale is formed on the surface and to achieve anadequate quality of the surface the scale needs to be removed. Acid pickling is a surfacetreatment where the oxide scale is removed by acid. Over time the amount of dissolved metals in the acid solution increases leading to a decrease in the pickling efficiency, hence the acid solution needs to be renewed. The renewing can be performed by an operation process called acid retardation. In this process, the spent pickling solution passes through a column packed with an ion exchange material, resin. The absorption of strong acids is preferred by the resin, hence the movement of the acids in the resin bed will be retarded relative to the movement of the metal ions. Regeneration of the resin occurs when water is passing through the resin bed counter current to the flow of the spent pickling solution. This generates a by-product with low acid and high metal content, and a product containing high acid and low metal. The aim of this thesis was to investigate the acid retardation with regards to separation efficiency and the behaviour of acid and metal in the column. The results can further be used as the groundwork for a deeper understanding of the acid retardation and how to optimize the process. Experiments were performed in lab-scale columns with synthetic spent pickling solutions containing sulfuric, nitric and hydrofluoric acid and iron in different mixtures. During the experimental work, variation of the acid and metal concentration, the type of resin and the height of the column were performed. The results from the experimental work show that a concentration dependence between the concentration of acid and metal exists and the performance of different resin types varies depending on the acid and metal solution tested. The height might also affect the separation, but it is recommended that this is further investigated. Other recommendations for further work with a focus on understanding the acid retardation for optimization include variations of the volume of solution added to the column, variation in flow rate and slurry packing of the resin.
|
376 |
Investigating The Performance Of 3-D Printed Sorbents For Direct Air Capture Of CO2January 2020 (has links)
abstract: In this study, the stereolithography (SLA) 3D printing method is used to manufacture honeycomb-shaped flat sorbents that can capture CO2 from the air. The 3D-printed sorbents were synthesized using polyvinyl alcohol (PVA), propylene glycol, photopolymer resin, and an ion exchange resin (IER). The one-factor-at-a-time (OFAT) design-of-experiment approach was employed to determine the best combination ratio of materials to achieve high moisture swing and a good turnout of printed sorbents. The maximum load limit of the liquid photopolymer resin to enable printability of sorbents was found to be 44%. A series of moisture swing experiments was conducted to investigate the adsorption and desorption performance of the 3D-printed sorbents and compare them with the performance of IER samples prepared by a conventional approach. Results from these experiments conducted indicate that the printed sorbents showed less CO2 adsorptive characteristics compared to the conventional IER sample. It is proposed for future research that a liquid photopolymer resin made up of an IER be synthesized in order to improve the CO2-capturing ability of manufactured sorbents. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2020
|
377 |
Metal ion adsorption of highly mesoporous magnesium carbonateLöfgren, Rebecka January 2019 (has links)
In this project the adsorption ability of mesoporous magnesium carbonate (MMC) for copper (Cu), cobalt (Co), chromium (Cr) and arsenic (As) was evaluated. This was done by mixing MMC and dissolved metal (of different concentrations) and measuring the concentration of the solution before and after addition of MMC with Inductively coupled plasma optical emission spectroscopy. Besides MMC, “ordinary” magnesium carbonate (MgCO_3) was evaluated for comparison. Furthermore, the MMC was characterised with various instruments before and after adsorption of the metals. The adsorption experiments established that MMC was able to adsorb large amounts of Cu, Co and As while MgCO_3 was not. Moreover, it was discovered that both materials adsorbed equally large amounts of Cr. At higher concentrations of Cu and Co the uptake capacity of MMC suddenly dropped. However, for As, it was determined that MMC reached saturation at a concentration of ~22 mg/L. An adsorption experiment of a mixture of metals of 20 mg/L of each metal could not conclude anything about the selectivity of MMC, but the experiment revealed that MMC was able to adsorb all of Cu, Co and As rapidly at this concentration. The characterisation of MMC before adsorption revealed an amorphous structure and a high porosity. The structure of MMC after adsorption of Cu went from amorphous to crystalline and after adsorption of Co and As the structure also became crystalline, but of a lower degree than after adsorption of Cu. Furthermore, it was discovered that ion exchange also occurred along with adsorption.
|
378 |
Ion exchange trap and release of [C-11]CO2Vandehey, N. T., O'Neil, J. P. January 2015 (has links)
Introduction
Recently in our laboratory we needed a reliable and relatively simple source of aqueous solutions of [11C]CO2. We examined various methods of trapping [11C]CO2 gas both in solution and on ion exchange resins, followed by elution into aqueous phase. We favor simple methods that have high trapping and elution efficiencies and produce a highly concentrated solution. Furthermore, we desired methods that would minimize the use of hazardous reagents and materials with respect to both handling and disposal. We also considered the formulation of the final solution in terms of chemical compatibility with contacted materials, working with the assumption that dilute bicarbonate or carbonate solutions will have little reactivity with many materials. In a phantom, compatibility with materials (i.e. plastics, glues, metals, etc.) is important (1-4), while in (bio)geochemical studies – where transport of carbon is important – the chemical form of the radiolabelled molecule is important, but compatibility must be determined on a case-by-case basis (5-7).
Small medical cyclotrons can easily produce carbon-11 as gaseous [11C]CO2, and various methods are utilized to incorporate carbon-11 into solution, often with unfavorable resource requirements, costs, or chemical properties. Commonly [11C]CO2 gas is bubbled through a strong base, forming the carbonate anion; but neutralizing a strong base (as to avoid special handling or disposal requirements) requires a large volume of diluent or buffer; or a very precise addition of acid – which if done improperly – may lead to an acidic pH and subsequent loss of [11C]CO2 from solution (8,9). Alternatively, [11C]CO2 (or [11C]CH4) can be converted to [11C]CH3I at high-yield, but requires specialized, expensive radio-synthesis equipment (10-12). [11C]CH3I can then be trapped in DMSO (albeit providing a volatile and hazardous solution) or used as a synthon en route to water soluble compounds such as [11C]choline (13). Finally, leftover radiolabelled radiopharmaceuticals from a carbon-11 imaging experiment could be used, but chemical compatibility (i.e. lipophilicity) of the radiolabelled compound may be of concern.
Carbon dioxide gas will dissolve with a solubility of 1.5 g/L at STP (9) and slowly react with water to generate carbonic acid (H2CO3), a weak acid.
Passing [11C]CO2 through a base-activated ion exchange cartridge, the [11C]CO2 reacts with hydroxide ions to form [11C]carbonate which is bound to the resin due to its higher selectivity for carbonate than hydroxide (14). Elution with excess bicarbonate displaces [11C]carbonate and neutralizes any remaining hydroxide, providing a 11C aqueous solution that is mildly basic, chemically non-hazardous, and very concentrated.
Material and Methods
[11C]CO2 gas trapping efficiency was evaluated for solutions and base-activated ion exchange resins. The gas was delivered either rapidly in a high-flow bolus directly from the cyclotron target or slowly in a low-flow helium stream during heating of a carbosieves column. Elution efficiency of ion exchange cartridges were evaluated for both fraction of trapped activity eluted and volume of solution needed for elution.
[11C]CO2 was produced via the 14N(p,α)11C reaction on a CTI RDS111 – 11 MeV cyclotron at the Lawrence Berkeley National Laboratory’s Bio-medical Isotope Facility. The 7 mL target is pressurized to 315 psi with 1% O2/N2 gas, equating to 150 mL gas at STP. For direct-from-target trapping experiments, the target was decompressed and routed to the cartridge via 50 feet of 0.020” I.D. tubing until the target falls to atmospheric pressure (~55 seconds) providing an inhomogeneous flow – a short rapid burst of flow followed by a longer low-flow bleed. For helium-eluted experiments, the [11C]CO2 was unloaded from the cyclotron target and trapped on a room-temperature carbosieves column (15). Target gases were subsequently flushed from the column for 30 seconds with helium at 50 mL/min. After heating the column to 125 °C without gas flow, [11C]CO2 was eluted off the column in helium at 15 mL/min.
[11C]CO2/He was bubbled through 9 aqueous and 2 organic solutions to test for trapping efficiency in a slow, steady helium stream at 15 mL/min (sodium hydroxide (0.96M, 0.096M, 0.0096M), sodium bicarbonate (1.14M, 0.57M, 0.057M), sodium carbonate (2.0M, 1.0M, 0.10M), ethanol, and DMSO (2mL ea.). An Ascarite-filled cartridge was attached to trap any untrapped [11C]CO2. Measures of radioactivity were made using a Capintec CRC-15R dose calibrator. Trapping efficiency for solutions is calculated as the fraction of radioactivity captured in solution relative to the sum of the solution and the Ascarite trap.
Three different commercially available, ion ex-change cartridges were evaluated for trapping and elution efficiencies. FIGURE 1 shows a photo-graphic comparison of the physical size and shapes of the cartridges as well as a X-ray computed tomography (CT) cross sectional view of the internal ion exchange resin volume and dead volume of the cartridges.
All cartridges were activated with 1 mL of 1 N aqueous NaOH followed by passing 10 mL deionized water then 10 mL of air through the cartridge.
In both direct-from-target (n = 4) and helium-stream experiments (n = 3 or 4), cartridges were connected to [11C]CO2 delivery lines via Luer connections. The gas exiting the cartridge passed through an empty 3 mL crimp-top vial as a liquid trap en route to an Ascarite trap on the vent needle as described above. Trapping efficiency for cartridges is calculated as the fraction of radioactivity captured on the cartridge relative to the sum of the cartridge, the empty vial, and the Ascarite trap.
Cartridges were eluted with 0.5 mL of saturated sodium bicarbonate solution (1.14 M @ 20°C) followed by 9.5 mL water and 10 mL air. Elution efficiency is calculated as the fraction of radioactivity eluted in 10 mL relative to the sum of the spent cartridge following elution and the 10 mL eluate (Equation 5). The pH of the eluate was measured using 0-14 pH test strips.
Results and Conclusion
The trapping of [11C]CO2 in all solutions was less than 70% of the total radioactivity with the exception of the 0.96 M and 0.096 M NaOH. With a higher concentration of base driving equilibrium towards carbonate stability, it could be expected that the most basic solution had the best trapping efficiency, but this attribute also means it is least desirable solution to work with from a hazardous material or chemical compatibility perspective.
When [11C]CO2 was delivered in a helium stream, all three cartridges performed at near 100% efficiency, as shown in FIGURE 4. With higher flow, direct-from-target delivery, the cartridges trapped [11C]CO2 with a wider range of efficiencies: ICOH (99 ± 1 %), ORTG (90 ± 2 %), and QMA (79 ± 4 %). Elution resulted in > 99 % release of carbon-11 activity for both QMA and ORTG cartridges, but only 39 ± 3 % release from the ICOH cartridge. Elution efficiency of the trapped radioactivity (Equation 5) was independent of the method of [11C]CO2 delivery. Across all cartridges and delivery methods, the eluate was at about pH = 10.
We recommend that the ORTG cartridge be used for trapping of [11C]CO2 gas with elution by > 300 µL of saturated bicarbonate solution. This recommendation is based on the better trapping for ORTG cartridges compared to the QMA cartridges in the direct-from-target [11C]CO2 delivery method and the smaller volume needed for elution of all trapped carbon. This method excels based on its simplicity, adaptability to automation, low-cost ($5/cartridge), and observations that a single ORTG cartridge suffers no loss of performance after multiple uses. A potential disadvantage to this method is that it involves using a carbon-containing eluent, which means that this method cannot be used for imaging experiments that require high specific activity. However, considering the eluate is a mildly basic aqueous solution, we expect that it will be compatible with a wide variety of materials and experimental applications.
|
379 |
IMPACTS OF ROAD DE-ICING SALTS ON MANGANESE TRANSPORT TO GROUNDWATER IN ROADSIDE SOILSWen, Yingrong January 2012 (has links)
Manganese (Mn) is an important element in soil, it occur natural in minerals and precipitated as Mn-oxides. Several factors could decide the solubility and mobility of Mn in soil water. In this study, the impact of road de-icing salts (NaCl) on manganese mobilization and transport to groundwater in roadside soils has been investigated by leaching tests. Generally, in the salt solution leachates, the water-soluble concentrations of Mn tended to increase with elevated salt concentrations, suggesting that ion exchange mainly affected the mobilization. The process was also attributed to the complexion with Cl. Associated with exchangeable concentration of Mn and soil properties such as pH and acidity, the mobilizations of Mn varied. Mn-oxides can dissolve when reduced condition exists, therefore the oxalate extractable Mn was extracted to estimate the change of redox potential condition in roadside soils. The redox potential of soil samples is higher in general. Redox condition has little effect on the Mn solubility and mobility in this research. Although groundwater samples indicated that only a few periods and sites were under threaten of elevated concentrations of manganese, there is still great risk of transport of high water-soluble concentrations of Mn in roadside soils to groundwater, especially the areas exposed to de-icing salts. In addition, lower value of Mn concentrations in groundwater for considering good drinking water quality for the well-being of children should be paid more attention to.
|
380 |
Systems for ammonium concentration for further removal in the partial nitritation/anammox technology.Owusu-Agyeman, Isaac January 2012 (has links)
Anammox is one of the main processes discovered quite recently for removal of ammonium from wastewater. Anammox process is cost effective, in that low energy and carbon source is needed. Partial nitritation is a perquisite for anammox in wastewater treatment for removal nitrogen and therefore partial nitritation/Anammox technology is studied substantially and applied in full-scale. However, the technology at present can only be used to treat high rich ammonium streams. Application of Anammox for treatment of low ammonium wastewater is not possible because of low yield of Anammox bacteria. The study aimed at devising strategies for using the Anammox technology to treat wastewater streams with low concentration of ammonium nitrogen. The objective was to get systems that could concentrate ammonium from low ammonium waste streams, so as to be able to treat it with partial nitritation/Anammox process. Two methods were used to concentrate ammonium: ion exchange and reverse osmosis. Ion exchange method was used to concentrate UASB effluents of about 24 - 40 mg NH4-N/l to 188 - 367 mg NH4-N/l respectively which is about 9 times the initial concentrations. At VRF 5, 163 mg NH4-N/l concentrate was attained from 41.8 mg NH4-N/l RO feed. Results also showed that concentrates from both methods are able to be treated with partial nitritation/Anammox technology. However it took more than 32 hours to complete treatment of ion exchange concentrates while it took less than 24 hours to finish the partial nitritation/Anammox process of RO concentrates. The longer time taken can be attributed to high salinity of the concentrates which is as a result of NaCl which was used for regeneration in ion exchange process. Both ion exchange and reverse osmosis are viable methods for concentrating ammonium from UASB effluents. Dissolved oxygen was very important factor that influenced the biological process.
|
Page generated in 0.0507 seconds