• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 119
  • 52
  • 10
  • 10
  • 8
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 413
  • 413
  • 108
  • 107
  • 70
  • 70
  • 66
  • 41
  • 38
  • 33
  • 32
  • 30
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Eletrocatálise utilizando líquidos iônicos e consumo químico de óxidos / Electrocatalysis using ionic liquids and chemical comsumption of platinum oxides

Bruno Carreira Batista 13 March 2009 (has links)
A dissertação está dividida em duas partes. A primeira trata da eletroquímica fundamental utilizando líquidos iônicos como eletrólito suporte e molécula de estudo. São abordados os fenômenos de estabilidade anódica e catódica, com ênfase no mecanismo de degradação do líquido. Além disso, é apresentado um estudo sobre a oxidação eletrocatalítica de hidrogênio nesse ambiente. Quanto a esse aspecto são abordados aspectos mecanísticos e físico-químicos da reação. Técnicas eletroquímicas, modelagem e simulações numéricas foram utilizadas para investigação e hipotetização dos processos. A segunda parte da dissertação consiste do estudo da interação entre óxidos de platina e alguns compostos orgânicos (ácido fórmico, metanol e etanol). O estudo foi realizado em termos da evolução do potencial de circuito aberto com acompanhamento das espécies reativas através da espectroscopia de infravermelho in situ. Os dados obtidos são analisados sob a luz dos conhecimentos levantados pela área de eletrocatálise e sistemas dinâmicos. Modelagem e simulação do sistema permitiram o entendimento do papel individual das diversas etapas envolvidas sobre o comportamento geral do sistema. / This dissertation is divided on two parts. The first one deals with fundamental electrochemistry employing an ionic liquid as supporting electrolyte and as a subject of study by itself. Phenomena like the anodic and cathodic stability of the liquid, emphasizing its degradation mechanism is presented. It is also shown a study of the electrocatalytic oxidation of hydrogen in this environment. For this case, efforts were made to unravel mechanistic aspects of the reaction, as well as physical chemical features. Electrochemical techniques and numerical simulations were used for investigation and understanding of that system. The second part presents a study of the interaction between platinum oxides and some organic compounds, namely: formic acid, methanol and ethanol. The study was performed under open circuit conditions by following the temporal evolution of the potential and also the concentration of some chemical species by using in situ infrared spectroscopy. Data were analyzed under the guide of knowledge constructed by the fields of electrocatalysis and dynamical systems. Modelling and simulation allowed understanding the individual role of the various participants species on the global behavior of the system.
232

Modélisation QSPR de solvants d’intérêt technologique : les liquides ioniques et les électrolytes pour batteries Li-ion / QSPR modelling of technologically interesting solvents : the ionic liquids and the electrolytes for Li-ion batteries

Delouis, Grace 26 September 2017 (has links)
Cette thèse a pour but de modéliser les liquides ioniques et les électrolytes pour batteries Li-ion. Nous avons développé des modèles SVR afin de prédire 9 propriétés d’intérêt pour ces solvants. Les modèles construits pour les liquides ioniques ont permis la détection de divers problèmes, et sont accessibles sur le site web du laboratoire : infochim.u-strasbg.fr/webserv/VSEngine.html. Les modèles construits pour les électrolytes ont permis la modélisation de candidats testés expérimentalement par nos collaborateurs. Le nombre de données étant limité pour ces solvants, nous avons également testé l’approche transductive par le biais de la TRR (Transductive Ridge Regression). Nous avons mis en place un protocole d’optimisation des paramètres de la méthode et appliqué la TRR aux solvants étudiés. Les résultats obtenus par la TRR sont légèrement meilleurs que ceux de la Régression Ridge, mais restent modestes si on veut éviter une détérioration accidentelle du modèle. / This thesis is dedicated to the modelling of ionic liquids and electrolytes of Li-ion batteries. We developed several SVR models in order to predict 9 interesting properties of these solvents. The models built for the ionic liquids allowed us to detect several problems, and are freely available on the laboratory’s website: infochim.u-strasbg.fr/webserv/VSEngine.html. The models built for the electrolytes were used to model some candidates tested experimentally by our colleagues. As the amount of data is quite small for these solvents, we also tested the transductive approach with the help of the TRR (Transductive Ridge Regression). We have developed an optimization procedure for the method’s parameters, and applied the TRR to the studied solvents. The results obtained with the TRR are slightly better than of the Ridge Regression but stay modest if we want to avoid any accidental damage of the model.
233

Modification of Paper into Conductive Substrate for Electronic Functions : Deposition, Characterization and Demonstration

Montibon, Elson January 2011 (has links)
The thesis investigates the modification of paper into an ion- and electron-conductive material, and as a renewable material for electronic device. The study stretches from investigating the interaction between the cellulosic materials and the conducting polymer to demonstrating the performance of the conductive paper by printing the electronic structure on the surface of the conductive paper. Conducting materials such as conducting polymer, ionic liquids, and multi-wall carbon nanotubes were deposited into the fiber networks. In order to investigate the interaction between the conducting polymer and cellulosic material, the adsorption of the conducting polymer poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) (PEDOT:PSS) onto microcrystalline cellulose (MCC) was performed. Electroconductive papers were produced via dip coating and rod coating, and characterized. The Scanning Electron Microscopy (SEM) / Energy Dispersive Spectroscopy (EDS) images showed that the conducting polymer was deposited in the fiber and in fiber-fiber contact areas. The X-ray Photoelectron Spectroscopy (XPS) analysis of dip-coated paper samples showed PEDOT enrichment on the surface. The effects of fiber beating and paper formation, addition of organic solvents and pigments (TiO2, MWCNT), and calendering were investigated. Ionic paper was produced by depositing an ionic liquid into the commercial base paper. The dependence to temperature and relative humidity of the ionic conductivity was also investigated. In order to reduce the roughness and improve its printability, the ionic paper was surface-sized using different coating rods.  The bulk resistance increased with increasing surface sizing. The electrochemical performance of the ionic paper was confirmed by printing PEDOT:PSS on the surface. There was change in color of the polymer when a voltage was applied. It was demonstrated that the ionic paper is a good ionic conductor that can be used as component for a more compact electronic device construction. Conductive paper has a great potential to be a flexible substrate on which an electronic structure can be constructed. The conduction process in the modified paper is due to the density of charge carriers (ions and electrons), and their short range mobility in the material. The charge carrying is believed to be heterogeneous, involving many charged species as the paper material is chemically heterogeneous. / <p>Fel ordningsnummer (2010:28) är angivet på omslaget av fulltextfilen.</p> / Printed Polymer Electronics on Paper
234

Elaboration de supercondensateurs contenant un gel électrolytique et fonctionnant sur une gamme de température étendue / Elaboration of liquid and gel electrolytes for supercapacitor applications over a wide temperature range

Dagousset, Laure 13 July 2016 (has links)
Ce travail porte sur l’élaboration et la caractérisation d’électrolytes destinés à l’application supercondensateurs sur des gammes de températures étendues. Dans un premier temps, trois électrolytes à base de liquides ioniques (LI) et d’un solvant organique, la-butyrolactone (GBL) ont été sélectionnés. Leurs stabilités électrochimiques et thermiques, ainsi que leurs propriétés physico-chimiques telles que la conductivité ionique et la viscosité, ont été mesurées entre -50°C et 100°C. Ces expériences ont également été effectuées sur les LI purs (EMITFSI, Pyr13FSI et Pyr14TFSI), ce qui a permi de mettre en avant l’intérêt de l’ajout de solvant sur les LI, en particulier pour des applications à basses températures. Des études de vieillissements à 100°C et -50°C de supercondensateurs classiques (séparateur en cellulose) ont permi de démarquer l’électrolyte EMITFSI/GBL de par sa grande stabilité à ces températures extrêmes.Dans un second temps, des gels électrolytiques ont été synthétisés afin d’être utilisés comme séparateurs, évitant ainsi d’éventuelles fuites d’électrolyte. Il s’agit de Réseaux semi-Interpénétrés de Polymères (semi-RIP), dont le réseau principal est formé à partir de poly(oxide d’ethylène) (POE), dans lequel se trouvent des chaines de caoutchouc naturel: le nitrile butadienerubber (NBR). Le réseau POE assure une bonne conductivité ionique, tandis que l’élastomère (NBR) améliore la tenue mécanique du gel. Différentes proportions d’électrolytes ont été testées lors de la synthèse de gels, ainsi que différents ratios NBR/POE. De la même façon que pour les électrolytes liquides, les gels électrolytiques ont été caractérisés. A 100°C, les performances des supercondensateurs constitués du séparateur gel le plus intéressant (NBR/PEO : 40/60 en masse) sont similaires, voire meilleures que celles des supercondensateurs classiques. Lors de travaux futurs, ces gels électrolytiques seront également testés à basse température. / This work has been focusing on the synthesis and characterization of electrolytes for supercapacitor applications over a wide temperature range. First, three electrolytes based on Ionic Liquids (ILs) and an organic solvent, -butyrolactone (GBL) were selected. Many characterizations of these IL/GBL mixtures were performed from -50°C to 100°C: electrochemical and thermal stabilities, but also ionic conductivity and viscosity. These experiments were also performed on the three neat ILs (EMITFSI, Pyr13FSI and Pyr14TFSI). Results were compared to IL/GBL mixtures and brought to light the benefit from solvent addition upon ILs for applications at low temperature. Fast ageing has been realized at 100°C and -50°C on classical coin cells (cellulose separator), and systems based on the EMITFSI/GBL electrolyte have the longest lifetime.In a second time, gel electrolytes have been synthesized in order to be used as separators, thus preventing electrolyte leakage in the supercapacitor. It was decided to study semi-InterPenetrating Networks (semi-IPNs) synthesized with EMITFSI/GBL as the electrolyte. Semi-IPNs are based on Poly(ethylene oxide) (PEO) and Nitrile Butadiene Rubber (NBR). The PEO network facilitates the ion mobility of the electrolyte while NBR chains improve the mechanic behavior of the gel. Different proportions of electrolytes were tested, as well as different ratios NBR/PEO. Gel electrolytes have been characterized similarly to liquid electrolytes (ionic conductivity, electrochemical and thermal stability). At 100°C, performances of supercapacitors composed of the most interesting gel electrolyte ((NBR/PEO : 40/60 by weight) are at least as good as those of classical separators. Future work will be devoted to ageing at low temperature.
235

Propriétés physico-chimiques et impact environnemental de liquides ioniques / Physico-chemical properties and environmental impact of ionic liquids

Deng, Yun 08 June 2011 (has links)
Les liquides ioniques sont des composés uniquement constitués d‘ions souvent volumineux, asymétriques et flexibles. Ils possèdent des températures de fusion basses, typiquement au-dessous de 100°C. Ils sont considérés comme des solvants prometteurs pour une chimie durable du fait, notamment, de leur tension de vapeur négligeable. Ils présentent d‘autres propriétés intéressantes : grande stabilité thermique, pression de vapeur quasiment nulle, non-inflammabilité, propriétés modulables par changement de l‘anion ou du cation, etc. Ils sont classiquement organisés par familles, en fonction de la structure chimique de leur cation : imidazolium, pyridinium, pyrrolidinium, etc. Leurs domaines d‘application sont très variés : synthèse, catalyse, séparation et extraction. Cependant, l‘utilisation des liquides ioniques à l‘échelle industrielle est encore limitée par manque de connaissances fondamentales et par l‘absence de données fiables sur leurs propriétés, leur devenir et leur impact environnementaux. La toxicité des liquides ioniques a récemment été démontrée ainsi qu'une résistance à la biodégradation. Dans ce contexte et en vue du développement à grande échelle de l‘utilisation de ces composés, la recherche de liquides ioniques à faible impact environnemental (moins toxiques, facilement biodégradables) devient essentielle. L‘introduction dans les chaînes latérales alkyles des imidazolium et pyridinium de groupements fonctionnels oxygenés, qui peuvent être reconnus par des enzymes (ex. esters, éthers, alcools terminaux), a grandement amélioré leur biodégradabilité. En même temps, il est important de garantir que la présence de ces groupements n‘affecte pas les propriétés physico-chimiques des liquides ioniques requises pour un usage spécifique dans des procédés chimiques. Dans ce projet de doctorat, nous avons sélectionné divers liquides ioniques basés sur les cations imidazolium, pyridinium, pyrrolidinium et ammonium, avec ou sans groupements fonctionnels (alcool/ester/éther) et avec trois types d‘anions, comme cibles d‘étude. L‘objectif était d‘examiner si les modifications de structures peuvent effectivement baisser leur impact environnemental tout en gardant leurs propriétés intéressantes pour des applications industrielles. Dans un premier temps, nous avons étudié plusieurs propriétés physico-chimiques importantes pour des applications ultérieures et/ou indicatrices de leur impact environnemental : les propriétés volumiques, la viscosité, la solubilité de gaz, la solubilité dans l‘eau, le coefficient de partage octanol-eau et le coefficient de diffusion dans l‘eau. Dans un deuxième temps, nous avons étudié leur impact environnemental par la mesure de la toxicité sur quatre microorganismes différents et l‘étude de leur biodégradation en présence de souches pures de bactéries. En complément, nous avons essayé de trouver des modèles basés sur les informations structurales pour estimer certaines propriétés. L‘insertion de groupements oxygénés sur la chaîne alkyle des cations ne change pas significativement les propriétés volumiques ; ni le coefficient de diffusion dans l‘eau. Les propriétés de solvatation des liquides ioniques basés sur des cations imidazolium et ammonium ne sont pas modifiées significativement, mais celles des pyridinium sont réduites, à cause d'une contribution entropique défavorable à l'énergie de Gibbs de solvatation. La présence de groupements oxygénés dans la chaîne alkyle du cation augmente la viscosité d‘un ordre de grandeur comparativement aux liquides ioniques sans groupements oxygénés. Dans le cas de l‘anion octylsulfate la viscosité augmente de deux ordres de grandeur. La présence de groupements oxygénés augmente la biodégradabilité des liquides ioniques. La présence de groupements esters rend les liquides ioniques plus sensibles à l‘ hydrolyse dans les conditions abiotiques et biotiques, toutefois le noyau imidazolium n‘en devient pas biodégradable pour autant. L‘introduction de groupements oxygénés augmente la solubilité dans l‘eau, diminue la valeur du coefficient de partage octanol-eau et entraine une baisse de la toxicité ce qui signifie que ces liquides ioniques présentent un plus faible impact environnemental. / Ionic liquids are the salts composed only by bulky, unsymmetrical and flexible organic cations and inorganic or organic anions. Their melting points are particularly low, usually below 100°C. The ionic liquids present several interesting properties : high thermal stability, low vapor pressure, non-flammability and tunable properties by changing the anion or cation. They are considered as promising high performance fluids with low environmental impact that can be applied in the fields of chemistry, chemical engineering or materials science both in processes (separation, catalysis) or as devices (optical components or lubricants).The application of ionic liquids at an industrial scale is still limited and fundamental information and reliable data on their properties, environmental fate and impact are rare. In this context and for the development of applications in wide scale, the research on ionic liquids with an expected low environmental impact (less toxic, readily biodegradable) is essential. The introduction of oxygenated functional groups – ester, ether or hydroxyl – in the alkyl side chains of imidazolium and pyridinium-based ionic liquids is expected to greatly improve their biodegradability. The effect of the functionalization on the physico-chemical properties of the ionic liquids is important in order to propose efficient, low environmental impact, ionic liquids for different applications and chemical processes. In this work, we have selected different ionic liquids based on the imidazolium, pyridinium, pyrrolidinium and ammonium cations, with or without functional groups (hydroxyl/ester/ether), and with three types of anions. Our objective was to examine if the modification of chemical structures of the ions effectively have lower environmental impact, and if they their interesting properties are remained. We have studied, for all the ionic liquids, several physico-chemical properties considered important to quantify the environmental impact of chemicals : the density, the viscosity, the gas solubility, the aqueous solubility, the octanol-water partition coefficient and the aqueous diffusivity. We have also tested their toxicity towards four different microorganisms and their biodegradation in presence of pure strain of bacteria. Finally, we have tried to develop some empirical and semi-empirical models based on molecular structure information for predicting some of these properties.The introduction of oxygenated groups in the alkyl chains on cations does not change significantly the volumetric properties of ionic liquids, or their diffusion coefficient in water, but increases the viscosity of the pure salts up to one order of magnitude. Carbon dioxide solubilities in ionic liquids are not significantly influenced by the introduction of oxygen functional groups in the cations of the ionic liquids except in the case of the pyridinium based ionic liquids for which the carbon dioxide solubility decreases significantly due to a defavourable entropic contribution to the Gibbs energy of solvation. The modification of the ionic liquids by introducing oxygenated chemical functions makes them more biodegradable. In the case of imidazolium-based ionic liquids, the presence of the ester group makes the cation more susceptible to hydrolysis, the imidazolium ring being still resistant to the degradation. The functionalization of the cation also increases the solubility in water of the resulting ionic liquids and reduces the octanol-water partition coefficient and their toxicity, leading us to conclude that they are more environmental friendly than the non-functionalized ionic liquids.
236

Lipid thermodynamics = new perspectives on phase studies for applications in engineering = Termodinâmica de lipídios: novas perspectivas em estudos de fases para aplicações em engenharia / Termodinâmica de lipídios : novas perspectivas em estudos de fases para aplicações em engenharia

Maximo, Guilherme José, 1982- 24 August 2018 (has links)
Orientadores: Antonio José de Almeida Meirelles, Mariana Conceição Costa / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-24T10:06:55Z (GMT). No. of bitstreams: 1 Maximo_GuilhermeJose_D.pdf: 6364914 bytes, checksum: 716122d30b63141c35ee3d3c3305de17 (MD5) Previous issue date: 2014 / Resumo: Para o desenvolvimento de chocolates, manteigas, molhos para salada, cremes cosméticos, medicamentos ou biocombustíveis, assim como na otimização de processos de extração, refino, fracionamento, cristalização e produção de energia, os fenômenos de transição de fases dos sistemas lipídicos são temas, há muito tempo, de diversos trabalhos na literatura. O objetivo desses trabalhos tem sido avaliar como a composição dos produtos altera as suas propriedades físico-químicas e em especial aquelas relacionadas aos processos de fusão. De fato, alterações na temperatura exercem um grande impacto na estrutura cristalina da fase sólida dos sistemas graxos e, consequentemente, nas propriedades sensoriais e reológicas dos produtos. Essas alterações produzem comportamentos termodinâmicos tão variados que a determinação do equilíbrio de fases sólido-líquido desses sistemas representa um grande desafio. Não obstante, quanto maior a complexidade do sistema, menor é a compreensão do seu comportamento. Ou seja, apesar do grande número de trabalhos presentes na literatura envolvidos na investigação dos fenômenos de fusão de sistemas lipídicos, novos dados experimentais e abordagens teóricas para a modelagem dos diagramas são necessários para sua compreensão. Neste contexto, este trabalho teve dois objetivos principais. O primeiro relacionado à determinação e análise de diagramas de fases sólido-líquido de sistemas lipídicos binários de interesse para a indústria. O segundo foi desenvolver alternativas teóricas para aprimorar a representação dos diagramas de fases baseado em abordagens termodinâmicas clássicas. Portanto, onze sistemas binários compostos por triacilgliceróis, ácidos graxos e álcoois graxos foram avaliados. Esses sistemas são potenciais agentes de estruturação, formação de organogéis, produção e armazenamento de energia na indústria de alimentos, farmacêutica e de materiais. Os diagramas de equilíbrio sólido-líquido dessas misturas apresentaram comportamentos distintos, dependentes da formação de fases sólidas miscíveis ou imiscíveis e da não-idealidade do sistema. Além disso, foram estudados quatro sistemas formados a partir da reação ácido-base de Brønsted entre ácidos graxos e etanolaminas. Neste caso, a formação de líquidos iônicos próticos cristalinos com grande habilidade para auto-organização e comportamento não-Newtoniano singular podem atuar como auxiliares em diversas aplicações químicas e farmacêuticas. O problema imposto pela miscibilidade da fase sólida na construção dos diagramas de fases foi superado pela implementação de um algoritmo para a resolução de um sistema de equações não-lineares baseado nas equações fundamentais do equilíbrio sólido-líquido. O objetivo do algoritmo "Crystal-T" foi determinar a temperatura em que o primeiro e o último cristal se fundem durante o aquecimento do sistema. Para isso, a não-idealidade de ambas as fases líquida e sólida foi avaliada utilizando equações baseadas na energia de Gibbs em excesso, incluindo o método de contribuição de grupos UNIFAC, para o cálculo dos coeficientes de atividade. Considerando o aumento da produção mundial e do consumo de óleos e gorduras, este trabalho, a partir de demandas emergentes da indústria e da pesquisa científica, contribuiu na superação de alguns obstáculos relacionados à compreensão do equilíbrio de fases sólido-líquido de sistemas lipídicos para a engenharia de produtos e processos / Abstract: The phase transition phenomena of lipidic systems have long since been evaluated by several works in literature for developing chocolate, butters, dressings, spreads, cosmetic creams, medicines or biofuels as well as for optimizing processes such as extraction, refining, fractionation, crystallization or energy production. The aim of such works has been to answer how the products¿ composition can affect their physicochemical characteristics especially that related to the melting processes. In fact, changes in temperature highly impact the crystalline structure of fatty systems¿ solid phase and, consequently, in the sensorial and rheological properties of the products. These changes led to so many thermodynamic behaviors that the determination of the solid-liquid equilibrium of these systems can configure a particular challenge. However, the greater the complexity of the system the lower the understanding of its behavior. In other words, despite the number of works in literature involved in the investigation of the melting phenomena of lipidic systems, there is still a lack of experimental data and modeling approaches for their understanding. In this context, this work was conducted with two main goals. The first was focused on the measurement and comprehension of the solid-liquid equilibrium phase diagrams of lipidic binary systems of industrial interest. The second was aimed at the development of theoretical alternatives to improve the phase diagram description based on classical thermodynamic approaches. Thus, eleven binary systems composed by triacylglycerols, fatty alcohols and fatty acids were evaluated. Such mixtures are potential structuring, organogelating and energy storing agents for food, pharmaceutical and materials industry. The solid-liquid phase diagrams of these mixtures presented distinct behaviors depending on the formation of immiscible or miscible solid phases and the non-ideality of the system. Also, four systems built through a Brønsted acid-base reaction between fatty acids and ethanolamines were also evaluated. In this case, the formation of protic ionic liquid crystals with high self-assembling ability and marked non-Newtonian behavior are promising for pharmaceutical and chemical applications. The problem imposed by the partial miscibility of the solid phase in the construction of the phase diagrams was overtaken by the implementation of an algorithm based on the resolution of a non-linear equations system built by the solid-liquid equilibrium fundamental equations. The "Crystal-T" algorithm was aimed at the determination of the temperature at which the first and last crystal melts during the heating process. For this, the non-ideality of both liquid and solid phases was evaluated using excess Gibbs energy equations, including the group-contribution UNIFAC model, for the calculation of the activity coefficients. Taking into account the growing increase of the world production and consumption of fat and oils, this work, from industrial and academic emerging demands, contributed to overtake some barriers on the understanding of the solid-liquid phase equilibrium of lipidic mixtures for products and process engineering / Doutorado / Engenharia de Alimentos / Doutor em Engenharia de Alimentos
237

Dizajniranje, fizičko-hemijska karakterizacija, toksičnost i primena nove klase funkcionalizovanih jonskih tečnosti / Design, physico-chemical characterisation, toxicity and application of newly class of functionalized ionic liquids

Aleksandar Tot 03 July 2019 (has links)
<p>U&nbsp; ovoj&nbsp; doktorskoj&nbsp; disertaciji&nbsp; sintetisane&nbsp; su&nbsp; dve&nbsp; različite&nbsp; klase jonskih&nbsp; tečnosti,&nbsp; na&nbsp; bazi&nbsp; imidazolijuma&nbsp; i&nbsp; holinijuma,&nbsp; sa&nbsp; ciljem snižavanja&nbsp; toksičnosti.&nbsp; Imidazolijumove&nbsp; jonske&nbsp; tečnosti&nbsp; su funkcionalizovane&nbsp; hidroksilnom&nbsp; i&nbsp; etarskom&nbsp; grupom&nbsp; u&nbsp; bočnom lancu. Uspe&scaron;nost sinteza jonskih tečnosti potvrđena je&nbsp; snimanjem IC&nbsp; i&nbsp; NMR&nbsp; spektara.&nbsp; Izmerene&nbsp; su&nbsp; gustine,&nbsp; viskoznosti&nbsp; i provodljivosti&nbsp; čistih&nbsp; imidazolijumovih&nbsp; i&nbsp; holinijumskih&nbsp; jonskih tečnosti.&nbsp; Na&nbsp; osnovu&nbsp; dobijenih&nbsp; eksperimentalnih&nbsp; rezultata,potpomognutim&nbsp; računarskim&nbsp; simulacijama&nbsp; diskutovana&nbsp; je strukturna organizacija između katjona i anjona. Utvrđeno je da prisustvo&nbsp; hidroksilne&nbsp; grupe&nbsp; u&nbsp; bočnom&nbsp; lancu&nbsp; imidazolovog katjona,&nbsp; značajno&nbsp; utiče&nbsp; na&nbsp; lokaciju&nbsp; anjona&nbsp; i&nbsp; samim&nbsp; tim&nbsp; na makroskopska&nbsp; svojstva.&nbsp; U&nbsp; nastavku&nbsp; su&nbsp; izmerene&nbsp; gustine&nbsp; i viskoznosti&nbsp; vodenih&nbsp; rastvora&nbsp; sa&nbsp; ciljem&nbsp; dobijanja&nbsp; informacija&nbsp; o uticaju&nbsp; dodatka&nbsp; holinijumskih&nbsp; i&nbsp; imidazolijumovih&nbsp; jonskih tečnosti&nbsp; na&nbsp; strukturu&nbsp; vode.&nbsp; Na&nbsp; osnovu&nbsp; B&nbsp; koeficijenta&nbsp; iz<br />viskoznosti,&nbsp; ekspanzibilnosti&nbsp; i&nbsp; rezultata&nbsp; simulacija&nbsp; molekulske dinamike,&nbsp; utvrđeno&nbsp; je&nbsp; da&nbsp; sve&nbsp; jonske&nbsp; tečnosti&nbsp; imaju&nbsp; structure making&nbsp; osobine.&nbsp; Takođe,&nbsp; na&nbsp; osnovu&nbsp; izračunatih&nbsp; specifičnih molarnih zapremina i doking analize na receptoru za gorak ukus,<br />ustanovljeno je da vodeni rastvori holinijumskih jonskih tečnosti imaju gorak ukus.<br />Toksičnost funkcionalizovanih imidazolijumovih jonskih tečnosti ispitana je na&nbsp; nekoliko biljnih vrsta&nbsp; (p&scaron;enica, ječam i krastavac), kao i na larvama&nbsp; <em>A.&nbsp; salina</em>&nbsp; i ćelijskoj liniji MRC-5. Potvrđeno jeda&nbsp; uvođenje&nbsp; hidroksilne&nbsp; grupe&nbsp; u&nbsp; alkil&nbsp; niz&nbsp; najvi&scaron;e&nbsp; se&nbsp; redukuju<br />toksičnosti&nbsp; imidazolijumovih&nbsp; jonskih&nbsp; tečnosti,&nbsp; dok&nbsp; je&nbsp; uticaj etarske&nbsp; grupe&nbsp; na&nbsp; smanjenje&nbsp; toksičnosti&nbsp; značajno&nbsp; manji. Ispitivanje&nbsp; citotoksičnosti&nbsp; i&nbsp; antibakterijske&nbsp; aktivnosti&nbsp; ukazalo&nbsp; je da holinijumske jonske tečnosti se mogu smatrati netoksičnima, i<br />pokazuju&nbsp; beningnije&nbsp; dejstvo&nbsp; u&nbsp; poređenju&nbsp; sa&nbsp; njihovim&nbsp; polaznim komponentama&nbsp; (askorbinska&nbsp; kiselina,&nbsp; biotin&nbsp; i&nbsp; nikotinska kiselina).</p> / <p><!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:TrackMoves/> <w:TrackFormatting/> <w:PunctuationKerning/> <w:ValidateAgainstSchemas/> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:DoNotPromoteQF/> <w:LidThemeOther>EN-US</w:LidThemeOther> <w:LidThemeAsian>X-NONE</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables/> <w:SnapToGridInCell/> <w:WrapTextWithPunct/> <w:UseAsianBreakRules/> <w:DontGrowAutofit/> <w:SplitPgBreakAndParaMark/> <w:DontVertAlignCellWithSp/> <w:DontBreakConstrainedForcedTables/> <w:DontVertAlignInTxbx/> <w:Word11KerningPairs/> <w:CachedColBalance/> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> <m:mathPr> <m:mathFont m:val="Cambria Math"/> <m:brkBin m:val="before"/> <m:brkBinSub m:val="&#45;-"/> <m:smallFrac m:val="off"/> <m:dispDef/> <m:lMargin m:val="0"/> <m:rMargin m:val="0"/> <m:defJc m:val="centerGroup"/> <m:wrapIndent m:val="1440"/> <m:intLim m:val="subSup"/> <m:naryLim m:val="undOvr"/> </m:mathPr></w:WordDocument></xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal"/> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/> <w:LsdException Locked="false" Priority="39" Name="toc 1"/> <w:LsdException Locked="false" Priority="39" Name="toc 2"/> <w:LsdException Locked="false" Priority="39" Name="toc 3"/> <w:LsdException Locked="false" Priority="39" Name="toc 4"/> <w:LsdException Locked="false" Priority="39" Name="toc 5"/> <w:LsdException Locked="false" Priority="39" Name="toc 6"/> <w:LsdException Locked="false" Priority="39" Name="toc 7"/> <w:LsdException Locked="false" Priority="39" Name="toc 8"/> <w:LsdException Locked="false" Priority="39" Name="toc 9"/> <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title"/> <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong"/> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote"/> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title"/> <w:LsdException Locked="false" Priority="37" Name="Bibliography"/> <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/> </w:LatentStyles></xml><![endif]--><!--[if gte mso 10]><style> /* Style Definitions */ table.MsoNormalTable{mso-style-name:"Table Normal";mso-tstyle-rowband-size:0;mso-tstyle-colband-size:0;mso-style-noshow:yes;mso-style-priority:99;mso-style-qformat:yes;mso-style-parent:"";mso-padding-alt:0in 5.4pt 0in 5.4pt;mso-para-margin-top:0in;mso-para-margin-right:0in;mso-para-margin-bottom:10.0pt;mso-para-margin-left:0in;line-height:115%;mso-pagination:widow-orphan;font-size:11.0pt;font-family:"Calibri","sans-serif";mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:"Times New Roman";mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;}</style><![endif]--></p><p class="MsoNormal">In&nbsp; this&nbsp; doctoral&nbsp; thesis,&nbsp; ionic&nbsp; liquids&nbsp; based&nbsp; on&nbsp; imidazolium&nbsp; and cholinium cation were synthesized, in order to obtain new class of ILs with reduced toxicity. Imidazolium based ionic liquids were functionalized&nbsp; with hydroxyl and ether&nbsp; group in &nbsp; order to reduce their&nbsp; lipophilicity.&nbsp; All&nbsp; newly&nbsp; synthesized&nbsp; compounds&nbsp; were&nbsp; confirmed&nbsp; by&nbsp; measuring&nbsp; IR&nbsp; and&nbsp; NMR&nbsp; spectra.&nbsp; For&nbsp; pure&nbsp; ionic&nbsp; liquids, density, conductivity and viscosity were measured. Based on&nbsp; the&nbsp; obtained&nbsp; experimental&nbsp; results&nbsp; supported&nbsp; with&nbsp; results&nbsp; of&nbsp; molecular simulations, it was concluded that presence of oxygen in&nbsp; alkyl&nbsp; side&nbsp; chain&nbsp; of&nbsp; imidazolium&nbsp; ionic&nbsp; liquids&nbsp; significantly contribute to position of anion. Further,&nbsp; density&nbsp; and&nbsp; viscosity&nbsp; of&nbsp; diluted&nbsp; aqueous&nbsp; ILs&nbsp; solutions were&nbsp; measured&nbsp; with&nbsp; a&nbsp; purpose&nbsp; to&nbsp; investigate&nbsp; their&nbsp; influence&nbsp; on water&nbsp; structure.&nbsp; Based&nbsp; on&nbsp; obtained&nbsp; values&nbsp; for&nbsp; viscosicty&nbsp; B coefficient,&nbsp; expansibility&nbsp; and&nbsp; from&nbsp; MD&nbsp; simulations,&nbsp; all&nbsp; ionic&nbsp; liquids&nbsp; express&nbsp; structure&nbsp; making&nbsp; tendency.&nbsp; From&nbsp; calculated specific&nbsp; apparent&nbsp; molar&nbsp; volumes&nbsp; for&nbsp; cholinium&nbsp; ionic&nbsp; liquids&nbsp; it was noted bitter taste.&nbsp; The&nbsp; toxicity&nbsp; of&nbsp; functionalized&nbsp; imidazolium&nbsp; ionic&nbsp; liquids&nbsp; was investigated&nbsp; on&nbsp; different&nbsp; plant&nbsp; species&nbsp; (wheat ,&nbsp; barley&nbsp; and cucumber),&nbsp; on&nbsp; larvae&nbsp; of&nbsp;<em><span style="font-family:&quot;Calibri&quot;,&quot;sans-serif&quot;;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:&quot;Times New Roman&quot;;mso-bidi-theme-font:minor-bidi"> A.&nbsp; salina</span></em>&nbsp; and&nbsp; cell&nbsp; line&nbsp; MRC-5.&nbsp; From<br />obtained&nbsp; results&nbsp; it&nbsp; was&nbsp; concluded&nbsp; that&nbsp; introduction&nbsp; of&nbsp; hydroxyl group in alkyl side chain reduce toxicity significantly more than&nbsp; ether&nbsp; group.&nbsp; Experiments&nbsp; on&nbsp; cytotoxicicity&nbsp; and&nbsp; antibacterial effects&nbsp; allowed&nbsp; to&nbsp; conclude&nbsp; that&nbsp; those&nbsp; newly&nbsp; synthesized cholinium ionic liquids can be considered as non-toxic.</p>
238

Kapalné elektrolyty pro lithno-iontové akumulátory s vyšší požární bezpečností / Liquid Electrolytes for Lithium-Ion Batteries with Enhance Fire Safety

Máca, Josef January 2018 (has links)
Dissertation thesis is focused on study of liquid electrolytes for lithium ion batteries. The electrical and physical properties of aprotic electrolytes are observed. The main goal is to increase the fire safety of the batteries. An anhydrous solvents and there blends was investigated. The common used solvents mixtures and new low flammable solvents were used. The common used solvents were used propylene carbonate, ethylene carbonate and others. The new solvents were sulfolane and dimethyl sulfone. In the second part of the work the phosphor base flame retardants as additive in electrolytes was investigated. The last part deals with ionic liquids and there possible use as electrolyte in lithium ion batteries.
239

Utilisations originales d'un liquide ionique : catalyseur et support pour la préparation de polymères biodégradables et composant d'une phase stationnaire séparative à base d'une beta-cyclodextrine et d'un polymère ionique / Original uses of a ionic liquid : as a catalyst and support for the preparation of biodegradable polymers and as a component of a stationary separative phase based on a beta-cyclodextrin and a ionic polymer

Bouyahya, Asmaa 27 June 2018 (has links)
Les liquides ioniques, unions de cations organiques et d’anions, sont des milieux structurés sur plusieurs nanomètres et présentent des propriétés très intéressantes et modulables. Grâce à ces propriétés, les liquides ioniques ont retrouvé une place dans d’abondantes applications, particulièrement en synthèse organique. Dans le cadre de cette thèse nous avons présenté trois utilisations différentes : i) La première utilisation est basée sur l’emploi des LIs comme catalyseur de polymérisation par ouverture de cycle (POC) contrôlée de l’-caprolactone dans des conditions douces. ii) La deuxième utilisation des liquides ioniques repose sur la synthèse d’un nouveau catalyseur/initiateur organostannique supporté sur un liquide ionique pour la préparation d’un polymère biodégradable. La présence du LI devrait permettre d’éliminer le catalyseur par simple filtration. iii) La troisième et la dernière application repose sur la réalisation d’un assemblage original composé de -cyclodextrines native et perméthylée, d’un liquide ionique et d’un polymère chargé. Cette assemblage est totalement nouveau et pourrait donner accès à des matériaux hydrosolubles avec de nouvelles applications séparatives. / Ionic liquids, combinations of organic cations and anions, are structured media of several nanometers and have very interesting and flexible properties. Thanks to these properties, ionic liquids have found a place in abundant applications, particularly in organic synthesis. In this thesis we have presented three different uses: i) The first use is based on the use of ILs as a controlled ring-opening polymerization (POC) catalyst for -caprolactone under mild condition. ii) The second use of ionic liquids is based on the synthesis of an innovative organotin catalyst / initiator supported on an ionic liquid for the preparation of a biodegradable polymer. The presence of the IL should make possible the elimination of the catalyst by simple filtration. The biological tests must agree our theory. iii) The third and last application is based on the creation of an original assembly composed of native and permethylated -cyclodextrins, an ionic liquid and a charged polymer. This new association could give access to water-soluble materials with new separation applications.
240

Investigation of anticorrosive properties of some ionic liquids on selected metals

Nkuna, Anitah 18 May 2018 (has links)
MSc (Chemistry) / Department of Chemistry / The corrosion potential of three ionic liquids (ILs) namely, 5-(Trifluoromethyl)dibenzothiophenium tetrafluoroborate (TDTB), 5-(Trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate (TDTM) and 1-Ethyl-3-methylimidazolium ethyl sulfate [EMIM][ESO4] was studied for mild steel and zinc corrosion in 1.0 M hydrochloric acid using electrochemical, spectroscopic and gravimetric techniques. The studied ILs showed appreciable inhibition efficiencies at the considered concentration range. The highest inhibition efficiencies were observed at 30°C when inhibitor concentration was 8.0 × 10-2 M. The gravimetric data revealed that inhibition efficiencies decreased with an increase in temperature, the lowest inhibition efficiencies for mild steel and zinc were observed at 50°C. The potentiodynamic polarization results indicated that all three inhibitors are mixed-type inhibitors, with TDTM being a predominantly anodic inhibitor. The orders of inhibition efficiency at 8.0 × 10-2 M were TDTM > TDTB > [EMIM][ESO4] and TDTB > TDTM > [EMIM]ESO4] for mild steel and zinc, respectively. All inhibitors showed superior performance in mild steel than in zinc. The adsorption of the studied ILs on mild steel and zinc obeyed the Langmuir adsorption isotherm. The Gibbs free energy of adsorption (ΔG°ads) indicated that the adsorption process was spontaneous, and that corrosion inhibition occurred by a physical adsorption process. Surface morphology analysis through scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) revealed a great improvement in the surface morphologies of mild steel and zinc specimens in the inhibited systems. The Fourier transform infrared spectroscopy studies confirmed the chemical interactions between the metal surface and the ILs. This is observed by means of the disappearance of characteristic absorption bands in the adsorption film FTIR spectra. / NRF

Page generated in 0.0562 seconds