• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • Tagged with
  • 17
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Field NMR Investigation of Kitaev Spin Liquid Candidate Cu2IrO3

Wang, Jiaming January 2019 (has links)
The search for quantum spin liquids (QSLs) introduces some of the most challenging and interesting problems in contemporary physics. The recently discovered iridate Cu2IrO3,which contains a honeycomb lattice of Ir4+ions with effective spin 1/2 coupled by frustrated Ising interactions, presents itself as a promising candidate for a Kitaev QSL. In this study, we use nuclear magnetic resonance (NMR), a spectroscopic technique based on the energy levels of nuclear spin states, to probe the intrinsic spin excitations of Cu2IrO3. By measuring the NMR frequency shift of 63Cu from 4.2 K to 298 K,we demonstrate that its spin susceptibility χ spin behaves nearly identically to its parent compound Na2IrO3, without showing evidence of magnetic ordering at low temperatures. We showed that the upturn of bulk susceptibility χ below T=50 K is due to the contribution of defect spins. The hyperfine coupling constant Ahf between Cu and Ir4+was also estimated by comparing the Knight shift 63K to χ / Thesis / Master of Science (MSc)
2

Magnetic Characterization of Y_(2-x)Bi_xIr_2O_7: A Muon Spin Rotation/Relaxation and Susceptibility Study

Medina Fernandez, Teresa 11 1900 (has links)
Pyrochlore iridates have received considerable attention for the past few years as they possess strong electron correlations and spin orbit coupling, giving rise to a finite temperature metal-insulator transition (MIT). The nature of this MIT transition is related to the magnetic order of the Ir atoms which also experience frustration as they are part of a pyrochore structure. The aim of this study is to elucidate the magnetic configuration of the magnetic iridium ions by doping Y2Ir2O7 with Bi. Here we present a study on the magnetic properties of the Y2−xBixIr2O7 (x = 0, 0.2, 0.4, 0.9, 1.3, 2) system using μSR and DC susceptibility. Our results show that pure Y2Ir2O7 has a magnetic transition to a long- range ordered state. Substituting Bi by Y results in a lower temperature transition with increasing amount of bismuth. When the system goes into the ordered state a weak ferromagnetic moment is seen. This is in agreement with the belief that the system orders in an canted antiferromagnetic fashion with all-in all-out spins in the tetrahedron of the pyrochlore structure. However the addition of bismuth into the sample does not change the internal magnetic field measured at low temperatures with μSR, but only changes the transition temperature and the ordered volume fraction. For the Bi2Ir2O7 system two magnetic transitions had been measured previously counter to the belief that this material did not order magnetically. In this work, our μSR measurements show no evidence of such a transition. In the transverse field μSR set up a small Knight shift is measured due to the local susceptibility of Bi2Ir2O7. / Thesis / Master of Science (MSc)
3

Thin Film Growth and Characterization of the Transition Metal Oxides Magnetite and Layered Perovskite Iridates / Dünnschichtwachstum und Charakterisierung der Übergangsmetalloxide Magnetit und aus Perowskitlagen geschichtete Iridate

Kirilmaz, Ozan Seyitali January 2019 (has links) (PDF)
This thesis describes the growth and characterization of both the all-oxide heterostructure Fe3O4/ZnO and the spin-orbit coupling driven layered perovskite iridates. As for Fe3O4/ZnO, the 100% spin-polarized Fe3O4 is a promising spin electrode candidate for spintronic devices. However, the single crystalline ZnO substrates exhibit different polar surface termination which, together with substrate preparation method, can drastically affect the physical properties of Fe3O4/ZnO heterostructures. In this thesis two different methods of substrate preparation were investigated: a previously used in situ method involving sputtering and annealing treatments and a recent ex situ method containing only the annealing procedure. For the latter, the annealing treatment was performed in dry and humid O2 gas flow for the O- and Zn-terminated substrates, respectively, to produce atomically at surfaces as verified by atomic force microscopy(AFM). With these methods, four different ZnO substrates were fabricated and used further for Fe3O4 film growth. Fe3O4 films of 20 nm thickness were successfully grown by reactive molecular beam epitaxy. AFM measurements reveal a higher film surface roughness for the samples with in situ prepared substrates. Moreover, X-ray photoelectron spectroscopy (XPS) measurements indicate significant Zn substitution within the Fe3O4 film for these samples, whereas the samples with ex situ prepared substrates show stoichiometric Fe3O4 films. X-ray diffraction measurements confirm the observations from XPS, revealing additional peaks due to Zn substitution in Fe3O4 films grown on in situ prepared ZnO substrates. Conductivity, as well as magnetometry, measurements show the presence of Zn-doped ferrites in films grown on in situ prepared substrates. Such unintentionally intercalated Zn-doped ferrites dramatically change the electrical and magnetic properties of the films and, therefore, are not preferred in a high-quality heterostructure. X-ray reflectivity (XRR) measurements show for the film grown on ex situ prepared Zn-terminated substrate a variation of film density close to the interface which is also confirmed by transmission electron microscopy (TEM). Using polarized neutron reflectometry, magnetic depth profiles of the films grown on ex situ prepared substrates clearly indicate Fe3O4 layers with reduced magnetization at the interfaces. This result is consistent with earlier observations made by resonant magnetic X-ray reflectometry (RMXR), but in contrast to the findings from XRR and TEM of this thesis. A detailed TEM study of all four samples shows that the sample with ex situ prepared O-terminated substrate has the sharpest interface, whereas those with ex situ prepared Zn-terminated as well as in situ prepared substrates indicate rougher interfaces. STEM-EELS composition profiles of the samples reveal the Zn substitution in the films with in situ prepared substrates and therefore confirm the presence of Zn-doped ferrites. Moreover, a change of the Fe oxidation state of the first Fe layer at the interface which was observed in previous studies done by RMXR, was not verified for the samples with in situ prepared substrates thus leaving the question of a possible presence of the magnetically dead layer open. Furthermore, density functional theory calculations were performed to determine the termination dependent layer sequences which are ...-Zn-O-(interface)-[Fe(octa)-O-Fe(tetra)-Fe(octa)-Fe(tetra)-O]-[...]-... and ...-O-Zn-(interface)-[O-Fe(octa)-O-Fe(tetra)-Fe(octa)-Fe(tetra)]-[...]-... for the samples with O- and Zn-terminated substrates, respectively. Spin density calculations show that in case of O-termination the topmost substrate layers imitate the spin polarization of film layers close to the interface. Here, the first O layer is affected much stronger than the first Zn layer. Due to the strong decrease of this effect toward deeper substrate layers, the substrate surface is supposed to be sensitive to the contiguous spin polarization of the film. Thus, the topmost O layer of the O-terminated substrate could play the most essential role for effective spin injection into ZnO. The 5d transition metal oxides Ba2IrO4 (BIO) and Sr2IrO4 (SIO) are associated with the Ruddlesden-Popper iridate series with phase type "214" (RP{214), and due to the strong spin-orbit coupling belong to the class of Mott insulators. Moreover, they show many similarities of the isostructural high Tc-cuprate superconductors, e.g. crystal structure, magnetism and electronic band structure. Therefore, it is of great interest to activate a potential superconducting phase in (RP{214) iridates. However, only a small number of publications on PLD grown (RP{214) iridates in the literature exists. Furthermore, published data of soft X-ray angle resolved photoemission spectroscopy (SX-ARPES) experiments mainly originate from measurements which were performed on single crystals or MBE grown films of SIO and BIO. In this thesis La-doped SIO films (La0:2Sr1:8IrO4, further referred as LSIO) were used to pursue a potential superconducting phase. A set of characterization methods was used to analyze the quality of the PLD grown BIO, SIO and LSIO films. AFM measurements demonstrate that thick PLD grown(RP{214) iridate films have rougher surfaces, indicating a transition from a 2D layer-bylayer growth (which is demonstrated by RHEED oscillations) to a 3D island-like growth mode. In addition, chemical depth profiling XPS measurements indicate an increase of the O and Ir relative concentrations in the topmost film layers. Constant energy k-space maps and energy distribution curves (EDCs) measured by SX-ARPES show for every grown film only weak energy band dispersions, which are in strong contrast to the results obtained on the MBE grown films and single crystals from the literature. In this thesis, a subsequent TEM study reveals missing SrO layers within the grown films which occur mainly in the topmost layers, confirming the results and suggestions from XPS and SX-ARPES data: the PLD grown films have defects and, therefore, incoherently scatter photoelectrons. Nevertheless, the LSIO film shows small additional spectral weight between the highsymmetry M points close to the Fermi level which can be attributed to quasiparticle states which, in turn, indicates the formation of a Fermi-arc. However, neither conductivity measurements nor valence band analysis via XPS confirm an activation of a superconducting phase or presence of spectral weight of quasiparticle states at the Fermi level in this LSIO film. It is possible that these discovered difficulties in growth are responsible for the low number of SX-ARPES publications on PLD grown (RP{214) iridate films. For further investigations of (RP{214) iridate films by SX-ARPES, their PLD growth recipes have to be improved to create high quality single crystalline films without imperfections. / Diese Arbeit beschäftigt sich mit dem Wachstum und der Charakterisierung der oxidischen Heterostruktur Fe3O4/ZnO sowie der durch Spin-Bahn-Kopplung angetriebenen, aus Perowskitlagen geschichteten Iridate. In Bezug auf Fe3O4/ZnO, ist das zu 100% spinpolarisierte Magnetit ein vielversprechender Kandidat, um als Spinelektrode in Spintronikbauteilen eingesetzt zu werden. Die einkristallinen ZnO Substrate besitzen auf deren Oberflächen jedoch unterschiedlich polare Terminierungen, welche, zusammen mit dem verwendeten Verfahren für die Substratpraparation, die physikalischen Eigenschaften von Fe3O4/ZnO Heterostrukturen drastisch beeinflussen können. In dieser Arbeit wurden zwei unterschiedliche Verfahren für die Substratpräparation untersucht: zum einen ein bereits früher verwendetes in situ Verfahren, das eine Sputter- und Temperbehandlung beinhaltet, zum anderen ein neues ex situ Verfahren, das ausschließlich aus einer Temperbehandlung besteht. Im letzteren Fall wurde für O- und Zn-terminierte Substrate die Temperbehandlung entsprechend in trockener und feuchter O2 Atmosphäre durchgeführt, um atomar glatte Oberflächen zu erzielen. Dies wurde mithilfe der Rasterkraftmikroskopie (AFM) verifiziert. Mit diesen Verfahren wurden vier verschiedene ZnO Substrate hergestellt und anschließend für das Fe3O4 Filmwachstum verwendet. 20 nm dicke Fe3O4 Filme wurden mithilfe der reaktiven Molekularstrahlepitaxie erfolgreich gewachsen. AFM Messungen zeigen, dass die Proben mit in situ präparierten Substraten eine höhere Rauigkeit der Filmoberfläche besitzen. Des Weiteren zeigen Messungen mit Röntgenphotoelektronenspektroskopie (XPS) fü diese Proben eine signifikante Zn-Substitution innerhalb des Fe3O4 Films, wohingegen Proben mit ex situ präparierten Substraten stöchiometrisch gewachsene Filme vorweisen. Messungen mit Röntgenbeugung bestätigen die Beobachtungen aus XPS, indem sie zusätzliche Peaks aufdecken, welche aufgrund der Zn-Substitution in den Fe3O4 Filmen mit in situ präparierten Substraten entstehen. Sowohl Leitfähigkeits- als auch Magnetometriemessungen zeigen, dass Zn-dotierte Ferrite in den Filmen mit in situ präparierten Substraten vorhanden sind. Solche unabsichtlich eingelagerten Zn-dotierten Ferrite ändern die elektrischen und magnetischen Eigenschaften der Filme grundlegend und sind aus diesem Grund für die gewünschte Qualität der Heterostruktur schädlich. Für die Filme mit Zn-terminierten ex situ präparierten Substraten zeigen XRR Messun- gen eine Veränderung der Dichte des Films in Grenzschichtnähe an, die auch mithilfe der Transmissionselektronenmikroskopie (TEM) bestätigt wird. Unter Verwendung der polarisierten Neutronenreflektometrie zeigen die magnetischen Tiefenprofile der Filme mit ex situ präparierten Substraten eindeutig Fe3O4 Lagen mit reduzierter Magnetisierung an der Grenzschicht an. Dieses Resultat ist vereinbar mit früheren Beobachtungen aus der resonanten magnetischen Röntgenreflektometrie (RMXR), das jedoch im Gegensatz zu den Ergebnissen aus XRR und TEM aus dieser Arbeit steht. Eine detaillierte TEM Studie über alle vier Proben demonstriert, dass die Probe mit O-terminiertem ex situ präpariertem Substrat die schärfste Grenzschicht aufweist, während jene mit in situ präparierten sowie Zn-terminierten ex situ präparierten Substraten rauere Grenzschichten anzeigen. STEM-EELS Kompositionsprofile der Proben lassen die Zn-Substitution in den Filmen mit in situ präparierten Substraten erkennen und bestätigen somit die Präsenz von Zn-dotierten Ferriten. Außerdem wurde eine Ä nderung des Oxidationszustandes von Fe in den ersten Fe Lagen an der Grenzschicht, das in früheren Studien mithilfe RMXR beobachtet wurde, bei den Proben mit in situ präparierten Substraten nicht bestätigt. Dadurch bleibt die Frage nach der möglichen Präsenz einer magnetisch toten Schicht offen. Weiterhin wurden mithilfe der Dichtefunktionaltheorie Rechnungen durchgeführt, um die terminierungsabhängige Lagenabfolge zu bestimmen, welche ...-Zn-O-(interface)- [Fe(octa)-O-Fe(tetra)-Fe(octa)-Fe(tetra)-O]-[...]-... und ...-O-Zn-(interface)-[O-Fe(octa)- O-Fe(tetra)-Fe(octa)-Fe(tetra)]-[...]-... entsprechend für die Proben mit O- und Zn- terminierten Substraten sind. Rechnungen zur Spindichte zeigen, dass im Fall von O- Terminierung die obersten Substratlagen die Spinpolarisation der Filmlagen nahe an der Grenzschicht nachahmen. Hierbei ist die erste O Lage viel stärker beeinflusst als die erste Zn Lage. Aufgrund der starken Abnahme dieses Effekts Richtung tiefere Substratlagen wird die Substratoberfläche als besonders sensitiv auf die angrenzende Spinpolarisation des Films angenommen. Damit könnte die oberste O Lage des O-terminierten Substrates den entscheidensten Faktor für effektive Spininjektion ins ZnO spielen. Die 5d Übergangsmetalloxide Ba2IrO4 (BIO) und Sr2IrO4 (SIO) hängen mit der Ruddles- den-Popper Iridatserie mit Phasentyp ”214” (RP–214) zusammen und gehören aufgrund der starken Spin-Bahn-Kopplung zu der Klasse der Mott Isolatoren. Zudem haben sie viele Gemeinsamkeiten mit den isostrukturellen Kuprat-Hochtemperatursupraleitern, wie zum Beispiel Kristallstruktur, Magnetismus und elektronische Bandstruktur. Daher ist es von großem Interesse eine potentiell supraleitende Phase in (RP–214) Iridaten zu aktivieren. In der Literatur existiert jedoch nur eine kleine Anzahl an Ver¨offentlichungen über gepulste Laserdeposition (PLD) gewachsene (RP–214) Iridate. Außerdem stammen veröffentlichte Daten von Experimenten mit winkelaufgelöster Photoelektronen- spektroskopie mit weicher Röntgenstrahlung (SX-ARPES) hauptsächlich von Messungen, welche an Einkristallen oder MBE gewachsenen Filmen aus SIO und BIO durchgeführt wurden. In dieser Arbeit wurden La-dotierte SIO Filme (La0.2Sr1.8IrO4, im Weiteren bezeichnet als LSIO) verwendet, um eine potentiell supraleitende Phase anzustreben. Ein Satz von Charakterisierungsmethoden wurde verwendet, um die Qualität der PLD gewachsenen BIO, SIO und LSIO Filme zu untersuchen. AFM Messungen demonstrieren, dass dicke PLD gewachsene (RP–214) Iridatfilme rauere Oberfl¨achen aufweisen, welche durch einen Übergang vom 2D Lagenwachstum (der durch RHEED Oszillationen bekräftigt ist) zu einem 3D Inselwachstumsmodus erklärt werden. Zusätzlich zeigen chemische Tiefenprofilmessungen mittels XPS eine Zunahme der relativen Konzentrationen von O und Ir in den obersten Filmlagen. Die mit SX-ARPES erzeugten k-Raum Abbildungen mit konstanter Energie und Energieverteilungskurven (EDCs) zeigen für jeden gewachsenen Film nur schwache Energiebanddispersionen, die im starken Gegensatz zu den Resultaten aus der Literatur stehen, welche von MBE gewachsenen Filmen und Einkristallen erhalten wurden. Die darauf folgende TEM Studie in dieser Arbeit enthüllte fehlende SrO Lagen innerhalb der gewachsenen Filme, die vor allem in den obersten Lagen auftreten und bestätigte damit die Resultate und Vermutungen aus den XPS und SX-ARPES Daten: die PLD gewachsenen Filme besitzen Defekte und streuen somit die Photoelektronen inkohärent. Dennoch zeigt der LSIO Film kleines zusätzliches spektrales Gewicht zwischen den M Hochsymmetriepunkten nahe der Fermienergie, das einem Quasipartikelzustand zugeordnet werden kann, der wiederum die Ausbildung eines Fermibogens anzeigt. Aber weder Leitfähigkeitsmessungen noch Valenzbandanalysen mittels XPS bestätigen für diesen LSIO Film die Aktivierung einer supraleitenden Phase oder das Vorhandensein von spektralem Gewicht von Quasipartikelzuständen an der Fer- mienergie. Es kann sein, dass diese entdeckten Schwierigkeiten im Wachstum für die geringe An- zahl von SX-ARPES Publikationen über PLD gewachsene (RP–214) Iridatfilme verantwortlich sind. Für weitere Untersuchungen von (RP–214) Iridatfilmen mittels SX- ARPES müssen die Rezepte für deren PLD Wachstum verbessert werden, um hochqualitative einkristalline Iridatfilme ohne Fehlstellen zu erzeugen.
4

Electronic and Magnetic Properties of the Cuprates, Iridates, Rutheno-Iridates:

Mion, Thomas Romano January 2019 (has links)
Thesis advisor: Michael J. Naughton / Synchrotron based experiments of quantum coupled states reveal a delicate balance of energy levels facilitating the Mott driven antiferromagnetic state responsible for High Temperature Superconductivity (HTSC). High resolution spectroscopic experiments including Angle Resolved Photoemission (ARPES), Resonant Elastic X-ray Scattering (REXS), X-ray Natural and Magnetic Circular Dichroism (XNCD & XMCD) are used to investigate the Cuprate, Iridate, and Rutheno-Iridate systems. Highly correlated Mott driven systems producing the antiferromagnetic Cuprate and Iridate series of layered perovskites are perturbed using doping and temperature to elucidate the correlation of states within the materials. Similar to the Cuprate HTSC, the Rutheno-Iridate system undergoes a phase segregation of magnetic domains resulting in Sr₃IrRuO₇ where ARPES measurements reveal a temperature and momentum dependent pseudogap. Electronic band structure investigations yield a Fermi surface with gap parameters similar to extended s-wave symmetry. Additional observations of a p-wave symmetry centered at the (π, π) scattering vector within Fermi surface maps provide evidence for long range magnetic coupling. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
5

Local and Bulk Measurements in Novel Magnetically Frustrated Materials:

Kenney, Eric Michael January 2022 (has links)
Thesis advisor: Michael J. Graf / Quantum spin liquids (QSL)’s have been one of the most hotly researched areas ofcondensed matter physics for the past decade. Yet, science has yet to unconditionally identify any one system as harboring a QSL state. This is because QSL’s are largely defined as systems whose electronic spins do not undergo a thermodynamic transition as T→0. Quantum spin liquids remain fully paramagnetic, including dynamical spin fluctuations, at T=0. As a result, distinguishing a QSL system from a conventionally disordered system remains an outstanding challenge. If a system spin freezes or magnetically orders, it cannot be a QSL. In this thesis I present published experiments I have performed on QSL candidate materials. By using muon spin rotation (μSR) and AC magnetic susceptibility I have evaluated the ground states of several candidates for the absence of long-range magnetic disorder and low-temperature spin-fluctuations. For the systems which order or spin-freeze, my research provided key knowledge to the field of frustrated magnetism. The systems I studied are as follows: The geometrically frustrated systems NaYbO2 and LiYbO2; the Kitaev honeycomb systems Cu2IrO3 and Ag3LiIr2O6; and the metallic kagome system KV3Sb5. Each of these systems brought new physics to the field of frustrated magnetism. NaYbO2 is a promising QSL candidate. LiYbO2 harbors an usual form of spiral incommensurate order that has a staggered transition. Cu2IrO3 has charge state disorder that results in a magnetically inhonogenious state. Ag3LiIr2O6 illustrates the role structural disorder plays in disguising long-range magnetic order. And finally, KV3Sb5 isn’t conventionally magnetic at all; our measurements ruled out ionic magnetism and uncovered a type-II superconductor. Our measurements on KV3Sb5 stimulated further research into KV3Sb5 and it’s unconventional electronic states. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
6

Neutron and X-ray scattering studies of honeycomb iridates

Choi, Sungkyun January 2014 (has links)
This thesis presents neutron and x-ray scattering measurements on quasi-two-dimensional honeycomb antiferromagnets A2IrO<sub>3</sub> (A=Na, Li) and the solid-solution intermediate material (Na<sub>1-x</sub>Li<sub>x</sub>)<sub>2</sub>IrO<sub>3</sub>. The aim is to study the magnetic order and excitations of 5d Ir<sup>4+</sup> ions in a honeycomb lattice, where unusual magnetic properties have been theoretically predicted to be stabilised by the combinations of strong spin-orbit coupling and honeycomb lattice geometry with 90 degree Ir-O-Ir bonding. By using an optimised setup to minimise the strong neutron absorption by Ir nuclei, inelastic neutron scattering measurements on powder sample of Na<sub>2</sub>IrO<sub>3</sub> observed dispersive excitations below 5meV with a dispersion that can be accounted for by including substantial further-neighbor exchanges that stabilize zigzag magnetic order. The onset of long-range magnetic order was confirmed by the observation of oscillations in zero-field muon-spin rotation experiments. Higher-resolution inelastic neutron data found features consistent with a spin gap of 1.8meV and the data was parameterised by including Ising-type exchange anisotropy. Combining single-crystal diffraction and density functional calculations, a revised crystal structure model with significant departures from the ideal 90 degree Ir-O-Ir bonds required for dominant Kitaev exchange was proposed. Various "idealised'' crystal structures were constructed to emphasize the departures between the actual structure and structures with cubic IrO<sub>6</sub> octahedra. The magnetic excitations from the isostructural Li<sub>2</sub>IrO<sub>3</sub> revealed strongly dispersive magnetic excitations, qualitatively different from Na<sub>2</sub>IrO<sub>3</sub>. Elastic neutron diffraction detected a magnetic Bragg peak with a wavevector consistent with spiral orders. To explain the observed neutron data, the spiral H2 phase in the Heisenberg J<sub>1</sub>-J<sub>2</sub>-J<sub>3</sub> model was proposed, and a full calculation was performed with strong in-plane anisotropic interaction. A further measurement for improving the lower-energy excitation found no clear evidence for a spin gap down to E=0.7meV. Lastly, the crystal structure of (Na<sub>1-x</sub>Li<sub>x</sub>)<sub>2</sub>IrO<sub>3</sub> was investigated with single-crystal x-ray diffraction, revealing a site-mixing of Ir and Na ions in the honeycomb lattice and insensitivity of the refinement to the Li positions. Ab initio calculations suggested that up to x=0.25 Li ions replaced Na in the honeycomb centre and phase separation occurred beyond that, which is consistent with the evolution of observed lattice parameters.
7

Probing the spin-orbit Mott state in Sr3Ir2O7 by electron doping

Hogan, Thomas C. January 2016 (has links)
Thesis advisor: Stephen D. Wilson / Iridium-based members of the Ruddlesden-Popper family of oxide compounds are characterized by a unique combination of energetically comparable effects: crystal-field splitting, spin-orbit coupling, and electron-electron interactions are all present, and the combine to produce a Jeff = 1/2 ground state. In the bilayer member of this series, Sr3Ir2O7, this state manifests as electrically insulating, with unpaired Ir4+ spins aligned along the long axis of the unit cell to produce a G-type antiferromagnet with an ordered moment of 0.36 uB. In this work, this Mott state is destabilized by electron doping via La3+ substitution on the Sr-site to produce (Sr1−x Lax)3Ir2O7. The introduction of carriers initially causes nano-scale phase-separated regions to develop before driving a global insulator-to-metal transition at x=0.04. Coinciding with this transition is the disappearance of evidence of magnetic order in the system in either bulk magnetization or magnetic scattering experiments. The doping also enhances a structural order parameter observed in the parent compound at forbidden reciprocal lattice vectors. A more complete structural solution is proposed to account for this previously unresolved distortion, and also offers an explanation as to the anomalous net ferromagnetism seen prior in bulk measurements. Finally, spin dynamics are probed via a resonant x-ray technique to reveal evidence of spin-dimer-like behavior dominated by inter-plane interactions. This result supports a bond-operator treatment of the interaction Hamiltonian, and also explains the doping dependence of high temperature magnetic susceptibility. / Thesis (PhD) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
8

Anisotropic interactions in transition metal oxides

Bogdanov, Nikolay 16 April 2018 (has links) (PDF)
This thesis covers different problems that arise due to crystal and pseudospin anisotropy present in 3d and 5d transition metal oxides. We demonstrate that the methods of computational quantum chemistry can be fruitfully used for quantitative studies of such problems. In Chapter 2, Chapter 3, and Chapter 7 we show that it is possible to reliably calculate local multiplet splittings fully ab initio, and therefore help to assign peaks in experimental spectra to corresponding electronic states. In a situation of large number of peaks due to low local symmetry such assignment using semi-empirical methods can be very tedious and non-unique. Moreover, in Chapter 4 we present a computational scheme for calculating intensities as observed in the resonant inelastic X-ray scattering and X-ray absorption experiments. In our scheme highly-excited core-hole states are calculated explicitly taking into account corresponding orbital relaxation and electron polarization. Computed Cu L-edge spectra for the Li2CuO2 compound reproduce all features present in experiment. Unbiased ab initio calculations allow us to unravel a delicate interplay between the distortion of the local ligand cage around the transition metal ions and the anisotropic electrostatic interactions due to second and farther coordination shells. As shown in Chapter 5 and Chapter 6 this interplay can lead to the counter intuitive multiplet structure, single-ion anisotropy, and magnetic g factors. The effect is quite general and may occur in compounds with large difference between charges of metal ions that form anisotropic environment around the transition metal, like Ir 4+ in plane versus Sr 2+ out of plane in the case of Sr2IrO4. An important aspect of the presented study is the mapping of the quantum chemistry results onto simpler physical models, namely extended Heisenberg model, providing an ab initio parametrization. In Chapter 5 we employ the effective Hamiltonian technique for extracting parameters of the anisotropic Heisenberg model with single-ion anisotropy in the case of quenched orbital moment and second-order spin-orbit coupling. Calculated strong easy-axis anisotropy of the same order of magnitude as the symmetric exchange is consistent with experimentally-observer all-in/all-out magnetic order. In Chapter 6 we introduce new flavour of the mapping procedure applicable to systems with first-order spin-orbit coupling, such as 5d 5 iridates based on analysis of the wavefunction and interaction with magnetic field. In Chapter 6 and Chapter 7 we use this new procedure to obtain parameters of the pseudospin anisotropic Heisenberg model. We find large antisymmetric exchange leading to the canted antiferromagnetic state in Sr2IrO4 and nearly ideal one-dimensional Heisenberg behaviour of the CaIrO3, both agree very well with experimental findings.
9

Anisotropic interactions in transition metal oxides: Quantum chemistry study of strongly correlated materials

Bogdanov, Nikolay 06 April 2018 (has links)
This thesis covers different problems that arise due to crystal and pseudospin anisotropy present in 3d and 5d transition metal oxides. We demonstrate that the methods of computational quantum chemistry can be fruitfully used for quantitative studies of such problems. In Chapter 2, Chapter 3, and Chapter 7 we show that it is possible to reliably calculate local multiplet splittings fully ab initio, and therefore help to assign peaks in experimental spectra to corresponding electronic states. In a situation of large number of peaks due to low local symmetry such assignment using semi-empirical methods can be very tedious and non-unique. Moreover, in Chapter 4 we present a computational scheme for calculating intensities as observed in the resonant inelastic X-ray scattering and X-ray absorption experiments. In our scheme highly-excited core-hole states are calculated explicitly taking into account corresponding orbital relaxation and electron polarization. Computed Cu L-edge spectra for the Li2CuO2 compound reproduce all features present in experiment. Unbiased ab initio calculations allow us to unravel a delicate interplay between the distortion of the local ligand cage around the transition metal ions and the anisotropic electrostatic interactions due to second and farther coordination shells. As shown in Chapter 5 and Chapter 6 this interplay can lead to the counter intuitive multiplet structure, single-ion anisotropy, and magnetic g factors. The effect is quite general and may occur in compounds with large difference between charges of metal ions that form anisotropic environment around the transition metal, like Ir 4+ in plane versus Sr 2+ out of plane in the case of Sr2IrO4. An important aspect of the presented study is the mapping of the quantum chemistry results onto simpler physical models, namely extended Heisenberg model, providing an ab initio parametrization. In Chapter 5 we employ the effective Hamiltonian technique for extracting parameters of the anisotropic Heisenberg model with single-ion anisotropy in the case of quenched orbital moment and second-order spin-orbit coupling. Calculated strong easy-axis anisotropy of the same order of magnitude as the symmetric exchange is consistent with experimentally-observer all-in/all-out magnetic order. In Chapter 6 we introduce new flavour of the mapping procedure applicable to systems with first-order spin-orbit coupling, such as 5d 5 iridates based on analysis of the wavefunction and interaction with magnetic field. In Chapter 6 and Chapter 7 we use this new procedure to obtain parameters of the pseudospin anisotropic Heisenberg model. We find large antisymmetric exchange leading to the canted antiferromagnetic state in Sr2IrO4 and nearly ideal one-dimensional Heisenberg behaviour of the CaIrO3, both agree very well with experimental findings.
10

Growth and Properties of Na2IrO3 Thin Films

Jenderka, Marcus 20 April 2016 (has links) (PDF)
The layered honeycomb lattice iridate Na2IrO3 is a novel candidate material for either a topological insulator or spin liquid. These states of matter are one possible starting point for the future realization of scalable quantum computation, but may also find application in magnetic memory or low-power electronic devices. This thesis reports on the pulsed laser deposition of high-quality heteroepitaxial (001)-oriented Na2IrO3 thin films with well-defined in-plane epitaxial relationship on 5-by-5 and 10-by-10 square millimeter single-crystalline sapphire, YAlO3 and zinc oxide substrates. Three-dimensional Mott variable range hopping is the dominant conduction mechanism between 40 and 300 K. Moreover, a signature of the proposed topological insulator phase is found in magnetoresistance by observation of the weak antilocalization effect that is associated with topological surafce states. Compared to single crystals, a smaller, 200-meV optical gap in Na2IrO3 thin films is found by Fourier-transform infrared transmission spectroscopy.

Page generated in 0.0364 seconds