• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fractional Insulators and their Parent Hamiltonians / Fraktionale Isolatoren und die zugehörigen Hamiltonoperatoren

Schnells, Vera January 2019 (has links) (PDF)
In the past few years, two-dimensional quantum liquids with fractional excitations have been a topic of high interest due to their possible application in the emerging field of quantum computation and cryptography. This thesis is devoted to a deeper understanding of known and new fractional quantum Hall states and their stabilization in local models. We pursue two different paths, namely chiral spin liquids and fractionally quantized, topological phases. The chiral spin liquid is one of the few examples of spin liquids with fractional statistics. Despite its numerous promising properties, the microscopic models for this state proposed so far are all based on non-local interactions, making the experimental realization challenging. In the first part of this thesis, we present the first local parent Hamiltonians, for which the Abelian and non-Abelian chiral spin liquids are the exact and, modulo a topological degeneracy, unique ground states. We have developed a systematic approach to find an annihilation operator of the chiral spin liquid and construct from it a many-body interaction which establishes locality. For various system sizes and lattice geometries, we numerically find largely gapped eigenspectra and confirm to an accuracy of machine precision the uniqueness of the chiral spin liquid as ground state of the respective system. Our results provide an exact spin model in which fractional quantization can be studied. Topological insulators are one of the most actively studied topics in current condensed matter physics research. With the discovery of the topological insulator, one question emerged: Is there an interaction-driven set of fractionalized phases with time reversal symmetry? One intuitive approach to the theoretical construction of such a fractional topological insulator is to take the direct product of a fractional quantum Hall state and its time reversal conjugate. However, such states are well studied conceptually and do not lead to new physics, as the idea of taking a state and its mirror image together without any entanglement between the states has been well understood in the context of topological insulators. Therefore, the community has been looking for ways to implement some topological interlocking between different spin species. Yet, for all practical purposes so far, time reversal symmetry has appeared to limit the set of possible fractional states to those with no interlocking between the two spin species. In the second part of this thesis, we propose a new universality class of fractionally quantized, topologically ordered insulators, which we name “fractional insulator”. Inspired by the fractional quantum Hall effect, spin liquids, and fractional Chern insulators, we develop a wave function approach to a new class of topological order in a two-dimensional crystal of spin-orbit coupled electrons. The idea is simply to allow the topological order to violate time reversal symmetry, while all locally observable quantities remain time reversal invariant. We refer to this situation as “topological time reversal symmetry breaking”. Our state is based on the Halperin double layer states and can be viewed as a two-layer system of an ↑-spin and a ↓-spin sphere. The construction starts off with Laughlin states for the ↑-spin and ↓-spin electrons and an interflavor term, which creates correlations between the two layers. With a careful parameter choice, we obtain a state preserving time reversal symmetry locally, and label it the “311-state”. For systems of up to six ↑-spin and six ↓-spin electrons, we manage to construct an approximate parent Hamiltonian with a physically realistic, local interaction. / In den letzten Jahren waren zweidimensionale Quantenflu¨ssigkeiten mit fraktionalen Anregungen aufgrund ihrer möglichen Anwendung auf dem aufstrebenden Forschungsgebiet der Quantencomputer und Quantenkryptographie von großem Interesse. Diese Dissertation hat sich zum Ziel gesetzt, einem tieferen Verständnis bekannter und neuer fraktionaler Quanten-Hall-Zust¨ande und ihrer Stabilisierung in lokalen Modellen beizutragen. In diesem Zusammenhang werden zwei Themen betrachtet: Chirale Spinflüssigkeiten und fraktional quantisierte, topologische Phasen. Die chirale Spinflüssigkeit ist eines der wenigen Beispiele fu¨r Spinflu¨ssigkeiten mit fraktionaler Statistik. Trotz ihrer zahlreichen vielversprechenden Eigenschaften beruhen die bisher vorgeschlagenen mikroskopischen Modelle für diesen Zustand alle auf nichtlokalen Wechselwirkungen. Dies erschwert eine experimentelle Realisierung. Im ersten Teil dieser Dissertation stellen wir die ersten Eltern-Hamiltonoperatoren vor, für die die Abelschen und nicht-Abelschen chiralen Spinflüssigkeiten die exakten und, abgesehen von einer topologischen Entartung, einzigen Grundzustände sind. Wir haben eine Methode entwickelt, um ausgehend von einem Vernichtungsoperator für die chirale Spinflüssigkeit eine lokale Mehrkörper-Wechselwirkung zu konstruieren. Numerisch finden wir für verschiedene Systemgrößen und Gittergeometrien Eigenspektren mit großer Anregungslücke und können mit Maschinengenauigkeit die Eindeutigkeit der chiralen Spinflüssigkeit als Grundzustand des jeweiligen Systems bestätigen. Damit liefern unsere Ergebnisse ein exaktes Spinmodell, in dem fraktionale Quantisierung untersucht werden kann. Topologische Isolatoren sind derzeit eines der am häufigsten untersuchten Themen in der Physik der kondensierten Materie. Mit ihrer Entdeckung kam die Frage auf: Gibt es eine verschränkte Gruppe fraktionaler Phasen mit Zeitumkehrsymmetrie? Ein intuitiver Ansatz für die theoretische Konstruktion eines solchen fraktionalen topologischen Isolators besteht darin, das direkte Produkt eines fraktionalen Quanten-HallZustands und seines Zeitumkehrkonjugats zu bilden. Solche Zustände bringen jedoch konzeptionell keinen Mehrwert, da Systeme bestehend aus einem Zustand und seinem Spiegelbild ohne zusätzliche Verschränkung im Kontext der topologischen Isolatoren im Detail erforscht sind. Daher wird aktuell nach Möglichkeiten gesucht, eine topologische Verschränkung zwischen verschiedenen Spinarten umzusetzen. Für alle Anwendungen in der Praxis scheint die Zeitumkehrsymmetrie jedoch die Menge möglicher fraktionaler Zustände auf solche ohne Verschränkung zwischen den beiden Spinspezies zu begrenzen. Im zweiten Teil dieser Dissertation schlagen wir eine neue Universalitätsklasse von fraktional quantisierten, topologisch geordneten Isolatoren vor, die wir “fraktionalen Isolator” nennen. Inspiriert vom fraktionalen Quanten-Hall-Effekt, Spin-Flüssigkeiten und fraktionalen Chern-Isolatoren entwickeln wir eine Wellenfunktion, die eine neue Klasse topologischer Ordnung in einem zweidimensionalen Kristall aus SpinOrbit-gekoppelten Elektronen beschreibt. Unser Ansatz basiert darauf, die topologische Ordnung gegen die Zeitumkehrsymmetrie verstoßen zu lassen, während alle lokal beobachtbaren Größen zeitumkehrinvariant sind. Wir bezeichnen diese Situation als “topologische Zeitumkehrsymmetriebrechung”. Unser Zustand basiert auf den Halperin-Doppelschichtzuständen und kann als ein Zweischichtensystem aus einer ↑-Spinund einer ↓-Spin-Sphäre betrachtet werden. Die Konstruktion beginnt mit zwei Laughlin-Zuständen für die ↑-Spin- und ↓-Spin-Elektronen und einem Wechselwirkungsterm, der eine Verschränkung zwischen den beiden Schichten erzeugt. Wir erhalten einen neuen Zustand, den “311-Zustand”, der lokal zeitumkehrinvariant ist. Für Systeme mit bis zu sechs ↑-Spin- und sechs ↓-Spin-Elektronen finden wir einen approximativen Eltern-Hamiltonoperator mit einer physikalisch realistischen, lokalen Wechselwirkung.
2

Quantum magnetism in three dimensions: Exploring phase diagrams and real materials using Functional Renormalization / Quantenmagnetismus in drei Dimensionen: Erforschung von Phasendigrammen und realen Materialien mittels funktionaler Renormierung

Müller, Tobias Leo Christian January 2023 (has links) (PDF)
Magnetism is a phenomenon ubiquitously found in everyday life. Yet, together with superconductivity and superfluidity, it is among the few macroscopically realized quantum states. Although well-understood on a quasi-classical level, its microscopic description is still far from being solved. The interplay of strong interactions present in magnetic condensed-matter systems and the non-trivial commutator structure governing the underlying spin algebra prevents most conventional approaches in solid-state theory to be applied. On the other hand, the quantum limit of magnetic systems is fertile land for the development of exotic phases of matter called spin-liquids. In these states, quantum fluctuations inhibit the formation of magnetic long-range order down to the lowest temperatures. From a theoretical point of view, spin-liquids open up the possibility to study their exotic properties, such as fractionalized excitations and emergent gauge fields. However, despite huge theoretical and experimental efforts, no material realizing spin-liquid properties has been unambiguously identified with a three-dimensional crystal structure. The search for such a realization is hindered by the inherent difficulty even for model calculations. As most numerical techniques are not applicable due to the interaction structure and dimensionality of these systems, a methodological gap has to be filled. In this thesis, to fill this void, we employ the pseudo-fermion functional renormalization group (PFFRG), which provides a scheme to investigate ground state properties of quantum magnetic systems even in three spatial dimensions. We report the status quo of this established method and extend it by alleviating some of its inherent approximations. To this end, we develop a multi-loop formulation of PFFRG, including hitherto neglected terms in the underlying flow equations consistently, rendering the outcome equivalent to a parquet approximation. As a necessary prerequisite, we also significantly improve the numerical accuracy of our implementation of the method by switching to a formulation respecting the asymptotic behavior of the vertex functions as well as employing state-of-the-art numerical algorithms tailored towards PFFRG. The resulting codebase was made publicly accessible in the open-source code PFFRGSolver.jl. We subsequently apply the technique to both model systems and real materials. Augmented by a classical analysis of the respective models, we scan the phase diagram of the three-dimensional body-centered cubic lattice up to third-nearest neighbor coupling and the Pyrochlore lattice up to second-nearest neighbor. In both systems, we uncover in addition to the classically ordered phases, an extended parameter regime, where a quantum paramagnetic phase appears, giving rise to the possibility of a quantum spin liquid. Additionally, we also use the nearest-neighbor antiferromagnet on the Pyrochlore lattice as well as the simple cubic lattice with first- and third-nearest neighbor couplings as a testbed for multi-loop PFFRG, demonstrating, that the inclusion of higher loop orders has quantitative effects in paramagnetic regimes and that the onset of order can be signaled by a lack of loop convergence. Turning towards material realizations, we investigate the diamond lattice compound MnSc\(_2\)S\(_4\), explaining on grounds of ab initio couplings the emergence of a spiral spin liquid at low temperatures, but above the ordering transition. In the Pyrochlore compound Lu\(_2\)Mo\(_2\)O\(_5\)N\(_2\), which is known to not magnetically order down to lowest temperatures, we predict a spin liquid state displaying a characteristic gearwheel pattern in the spin structure factor. / Das Phänomen des Magnetismus ist allgegenwärtig im täglichen Leben und doch ist es, zusammen mit der Supraleitung und -fluidität, eines der wenigen makroskopisch realisierten Quantenphänomene. Auf quasi-klassischer Ebene ist Magnetismus gut verstanden, doch seine mikroskopische Beschreibung ist noch weit davon entfernt, als gelöst bezeichnet zu werden. Das Zusammenspiel von starken Wechselwirkungen, die in magnetischer kondensierte Materie am Werke sind, und der nicht-trivialen Kommutatorstruktur, die die zugrunde liegende Spin-Algebra bestimmt, verhindert, dass konventionelle Herangehensweisen der Festkörpertheorie angewendet werden können. Andererseits ist der quantenmechanische Grenzfall magnetischer Systeme ein fruchtbarer Boden für die Herausbildung exotischer Phasen der Materie, die als Spin-Flüssigkeiten bezeichnet werden. In diesen Zuständen verhindern Quantenfluktuationen die Ausbildung einer langreichweitigen magnetischen Ordnung auch bei niedrigsten Temperaturen. Aus theoretischer Sicht eröffnen Spinflüssigkeiten die Möglichkeit, exotische Eigenschaften, wie fraktionalisierte Anregungen und emergente Eichfelder, zu studieren. Großen theoretischen und experimentellen Anstrengungen zum Trotz wurde jedoch bisher kein Material mit dreidimensionaler Kristallstruktur identifiziert, das unzweifelhaft die Eigenschaften von Spinflüssigkeiten aufweist. Die Suche nach einer solchen Realisierung wird von der Komplexität behindert, die sogar einfachen Modellrechnungen inhärent ist. Da die meisten numerischen Verfahren aufgrund der Wechselwirkungsstruktur und Dimensionalität der Systeme nicht anwendbar sind, bleibt eine methodische Lücke bestehen. In dieser Arbeit benutzen wir die pseudo-fermionische funktionale Renormierungsgruppe (PFFRG), um diese zu füllen. Mit ihr realisieren wir ein Verfahren, um die Grundzustandseigenschaften von quantenmagnetischen Systemen in drei Raumdimensionen zu studieren, Wir fassen den Status quo dieser bereits etablierten Methode zusammen und erweitern sie, indem wir einige ihrer inhärenten Näherungen abmildern. Dafür entwickeln wir eine Mehrschleifen-Formulierung der PFFRG, die bisher vernachlässigte Terme der zugrunde liegenden Flussgleichungen konsistent berücksichtigt und damit die PFFRG äquivalent zur Parquet-Näherung macht. Um dies zu erreichen, verbessern wir außerdem die numerische Genauigkeit der Methode signifikant, indem wir einerseits zu einer Formulierung wechseln, welche die Asymptotiken der Vertex-Funktionen explizit berücksichtigt und andererseits moderne Algorithmen, maßgeschneidert für die PFFRG, nutzt. Der daraus resultierenden Computercode wurde im Open-Source Paket PFFRGSolver.jl öffentlich zugänglich gemacht. Im Anschluss wenden wir die Methode sowohl auf Modellsysteme, als auch echte Materialien an. Vor dem Hintergrund klassischer Analysen scannen wir die Phasendiagramme des dreidimensionalen raumzentrierten kubischen und des Pyrochlorgitters, wobei wir Wechselwirkungen bis zu drittnächsten beziehungsweise übernächsten Nachbarn berücksichtigen. In beiden Systemen finden wir, neben den klassisch geordneten Phasen, einen ausgedehnten Parameterraum, in dem eine quantenparamagnetische Phase im Phasendiagramm erscheint, welche die Möglichkeit einer Quantenspinflüssigkeitsphase eröffnet. Wir nutzen außerdem den Nächstnachbarantiferromagnet auf dem Pyrochlorgitter und das kubische Gitter mit Nächst- und Drittnächstnachbarwechselwirkung als einen Prüfstand für die Vielschleifen-PFFRG, indem wir zeigen, dass die Berücksichtigung höherer Schleifenordnungen quantitative Auswirkungen in den paramagnetischen Regimen hat und außerdem magnetische Ordnung durch ein Fehlen der Schleifenkonvergenz signalisiert werden kann. Abschließend wenden wir uns den echten Materialien zu und untersuchen MnSc\(_2\)S\(_4\), welches eine Diamantgitterstruktur aufweist. Basierend auf ab intio Kopplungsstärken erklären wir das Auftreten einer Spiralspinflüssigkeit bei niedrigen Temperaturen, aber oberhalb des Ordnungsübergangs. Zudem sagen wir im Pyrochlormaterial Lu\(_2\)Mo\(_2\)O\(_5\)N\(_2\), welches in Experimenten auch bei niedrigsten Temperaturen nicht magnetisch ordnet, einen Spinflüssigkeitszustand voraus, der sich durch ein charakteristisches Zahnradmuster im Spinstrukturfaktor auszeichnet.
3

Growth and Properties of Na2IrO3 Thin Films

Jenderka, Marcus 20 April 2016 (has links) (PDF)
The layered honeycomb lattice iridate Na2IrO3 is a novel candidate material for either a topological insulator or spin liquid. These states of matter are one possible starting point for the future realization of scalable quantum computation, but may also find application in magnetic memory or low-power electronic devices. This thesis reports on the pulsed laser deposition of high-quality heteroepitaxial (001)-oriented Na2IrO3 thin films with well-defined in-plane epitaxial relationship on 5-by-5 and 10-by-10 square millimeter single-crystalline sapphire, YAlO3 and zinc oxide substrates. Three-dimensional Mott variable range hopping is the dominant conduction mechanism between 40 and 300 K. Moreover, a signature of the proposed topological insulator phase is found in magnetoresistance by observation of the weak antilocalization effect that is associated with topological surafce states. Compared to single crystals, a smaller, 200-meV optical gap in Na2IrO3 thin films is found by Fourier-transform infrared transmission spectroscopy.
4

Kitaev Honeycomb Model

Zschocke, Fabian 12 July 2016 (has links) (PDF)
Eine Vielzahl von interessanten Phänomenen entsteht durch die quantenmechanischeWechselwirkung einer großen Zahl von Teilchen. In den meisten Fällen ist die Beschreibung der relevanten physikalischen Eigenschaften extrem schwierig, da die Komplexität des Systems exponentiell mit der Anzahl der wechselwirkenden Teilchen anwächst und das Lösen der zugrunde liegenden Schrödingergleichung unmöglich macht. Trotzdem gab es in der Geschichte der Festkörperphysik eine Reihe von bahnbrechenden Entdeckungen, die unser Verständnis von komplexen Phänomenen deutlich voran gebracht haben. Dazu zählt die Entwicklung der Landau’schen Theorie der Fermiflüssigkeit, der BCS-Theorie der Supraleitung, der Theorie der Supraflüssigkeit und der Theorie des fraktionalen Quanten-Hall-Effekts. In all diesen Fällen ist ein theoretisches Verständnis mithilfe sogenannter Quasiteilchen gelungen. Anstatt ein komplexes Phänomen durch das Verhalten von fundamentalen Teilchen wie der Elektronen zu erklären, ist es möglich, die entsprechenden Eigenschaften durch das simple Verhalten von Quasiteilchen zu beschreiben, die allein auf Grund der komplexen kollektiven Wechselwirkung entstehen. Eines der seltenen Beispiele, bei dem ein stark korreliertes quantenmagnetisches Problem analytisch lösbar ist, ist das Kitaev Modell. Es beschreibt wechselwirkende Spins auf einem Sechseck-Gitter und zeichnet sich durch einen Spinflüssigkeits-Grundzustand aus. Auch hier gelang die Lösung mittels spezieller Quasiteilchen, den Majorana Fermionen. Experimentell ist es jedoch noch nicht gelungen eine Spinflüssigkeit eindeutig nachzuweisen, da diese sich gerade durch das Fehlen jeglicher klassischer Ordnung und üblicher experimenteller Kenngrößen auszeichnet. Dagegen kann die Beobachtung von Quasiteilchenanregungen einen Hinweis auf den zugrunde liegenden Zustand liefern. Aber auch der definitive Nachweis von Majorana Fermionen in jeglicher Art System, bleibt ein ausstehendes Ziel in der modernen Festkörperphysik. Diese Arbeit befasst sich daher mit der Frage, wie solche Quasiteilchen experimentell sichtbar gemacht werden könnten. Dazu untersuchen wir den Einfluss von Unordnung auf die Zustände und Messgrößen des Kitaev Modells. Dies ist in zweierlei Hinsicht relevant. Einerseits ist Unordnung in der Natur allgegenwärtig, andererseits kann sie auch strategisch herbeigeführt werden, um die Reaktion eines System gezielt zu testen. Das zentrale Ergebnis dieser Arbeit ist, dass den Majorana Fermionen dabei in der Tat eine physikalische, messbare Bedeutung zukommt. Die Arbeit beginnt mit einer Einführung in frustrierte quantenmagnetische Systeme und Spinflüssigkeiten und diskutiert einige Effekte, die durch Gitterverzerrungen oder Verunreinigungen entstehen können. Anschließend zeigen wir, wie sich durch die frustrierte Wechselwirkung im Kitaev Modell ein Spinflüssigkeits-Grundzustand herausbildet. Die analytische Lösung des Modells gelingt mit Hilfe von Majorana Fermionen, jedoch verdoppelt sich der Hilbertraum pro Spin durch die Einführung dieser Quasiteilchen. Ein zentraler Aspekt dieser Arbeit ist daher die richtige Auswahl der „physikalischen“ Zustände, also solcher, die einem Zustand im ursprünglichen Spin Modell entsprechen. Dabei unterscheiden wir zwischen offenen und periodischen Randbedingungen. Wir konnten beweisen, dass sich, in der Phase ohne Bandlücke und für periodische Systeme, stets ein angeregtes Fermion befindet. Dies führt zu großen Effekten in endlichen Systemen, wie wir anhand der Suszeptibilität und der Anregungslücke für magnetische Flüsse zeigen. Außerdem berechnen wir numerisch die statische und dynamische Suszeptibilität abhängig von der Unordnung in der Wechselwirkungsstärke. Diese Art der Unordnung entsteht beispielsweise durch unregelmäßige Gitterstrukturen oder chemische Verunreinigungen auf den nicht-magnetischen Gitterplätzen. Insbesondere ergibt die Verteilung der lokalen Suszeptibilitäten das Linienspektrum, welches sich in Kernspinresonanz Experimenten messen lässt. Für große Unordnung postulieren wir einen Übergang zu einem Zustand mit einer zufälligen Verteilung magnetischer Flüsse. Ein weiterer Kern der Dissertation ist die Untersuchung eines magnetischen Defekts im Kitaev Modell. Diese Situation beschreibt den ungewöhnlichen Fall eines Kondoeffekts in einer Spinflüssigkeit. In der Majorana Fermionen Darstellung gelingt es uns, das Problem in eine Form zu bringen, die mit Hilfe von Wilson’s numerischer Renormalisierungsgruppe untersucht werden kann. Es zeigt sich, dass dadurch eine Nullpunktsentropie des Defekts entsteht, die durch lokalisierte Majorana Fermionen erklärt werden kann. Durch die Darstellung des Kitaev Modells mithilfe von Quasiteilchen ist es möglich eine elegante Beschreibung eines komplexen, stark wechselwirkenden Systems zu finden. Die Ergebnisse dieser Arbeit zeigen, dass den Majorana Fermionen dabei durchaus eine physikalische Bedeutung zukommt. Gelingt es sie z.B. durch magnetische Störstellen zu lokalisieren, wäre ein direkter experimenteller Nachweis möglich. / Many interesting phenomena in quantum physics arise through the quantum mechanical interaction of a large number of particles. In most cases describing the relevant physical properties is extremely difficult, because the complexity of the system increases exponentially with the number of interacting particles and solving the underlying Schrödinger equation becomes impossible. Nevertheless, our understanding of complex phenomena has progressed through some groundbreaking discoveries in the history of condensed matter physics. Examples include the development of Landau’s theory of Fermi liquids, the BCStheory of superconductivity, the theory of superfluidity and the theory of the fractional quantum Hall effect. In all these cases a theoretical understanding was achieved with so-called quasi-particles. Instead of explaining a phenomenon through the behavior of fundamental particles, such as electrons, the corresponding properties can be described by the simple behavior of quasi-particles, which are themselves a result of the complex collective interaction. One of the rare examples, where a strongly correlated quantum mechanical problem can be solved analytical, is the Kitaev model. It describes interacting spins on a honeycomb lattice and exhibits a spin liquid ground state. Here the solution was achieved by means of certain quasi-particles, called Majorana fermions. However, it has not been possible to clearly identify such a spin liquid experimentally, because its defining feature is the absence of any conventional order, in particular magnetic order. In contrast, the observation of quasiparticle excitations may hint at the nature of the ground state. But also a definite detection of Majorana fermions in any kind of system remains one of the outstanding issues in modern condensed matter physics. Therefore this thesis is devoted to the question how such quasiparticles may be found experimentally. For this reason we study the influence of disorder on the states and observables of the Kitaev model. This is relevant in two respects: Firstly, disorder is ubiquitous in nature and secondly, it may be used strategically to probe the response of a system. The central result of this work is that Majorana fermions hereby indeed obtain a true physical and observable significance. The thesis starts with an introduction of frustrated quantum mechanical systems and spin liquids, and discusses some of the effects that arise through lattice distortions or impurities. Afterwards we show how the frustrated interactions in the Kitaev model lead to a spin liquid ground state. The analytical solution of the model is achieved through the introduction of Majorana fermions. However, resulting from the introduction of these quasi-particles the Hilbert space per spin doubles. A central aspect of this thesis is therefore the right selection of the “physical” states, which correspond to a state of the original spin Hamiltonian. To do this, we distinguish between periodic and open boundary conditions explicitly. We were able to prove that there is always one excited fermion in the gapless phase of the periodic system. This leads to large finite-size effects, as we will illustrate for the susceptibility and the magnetic flux gap. Moreover we compute the static and dynamic spin susceptibilities for finite-size systems subject to disorder in the exchange couplings. In a possible experimental realization, this kind of disorder arises from lattice distortions or chemical disorder on nonmagnetic sites. Specifically, we calculate the distribution of local susceptibilities and extract the lineshape, which can be measured in nuclear-magnetic-resonance experiments. Further, for increasing disorder we predict a transition to a random-flux state. Another core of this dissertation is the investigation of a magnetic impurity in the Kitaev model. This setup represents the unusual case of a Kondo effect in a quantum spin liquid. Utilizing the Majorana representation we are able to formulate the problem in a way that can be analyzed using Wilson’s numerical renormalization group. The numerics reveal an impurity entropy which can be explained by localized Majorana fermions. Through the representation of the Kitaev model in terms of quasi-particles an elegant description of a complex, strongly correlated system is possible. The results of this thesis indicate that these Majorana acquire a relevant physical meaning. If one can localize them, for example with the help of magnetic impurities, a direct experimental observation would be feasible.
5

Magnets with disorder and interactions:

Rehn, Jorge Armando 14 March 2017 (has links) (PDF)
A very important step in the art of cooking up models for the study of natural phenomena is the identification of the relevant ingredients. Taking into account too many details will lead to an overly complicated model, not at all useful to work with, but neglecting some crucial elements will lead to an equally useless model. So it is often the case that the actual experimental situation presents unavoidable sources of local randomness, whilst the analysed phenomenon does not really rely on presence/absence of such imperfections. For some other set of phenomena, however, disorder can play a crucial role, and must be carefully taken into account. Such is for example the case in certain phases of matter, the spin-glass phase, or the many-body localised phase. In this thesis we explore disorder in both of these situations and also as a theoretical means of testing the regime of liquidity in certain two-dimensional highly frustrated magnetic models. The focus here is placed on classical Heisenberg models defined on lattices consisting of clusters all sites of which interact mutually pairwise. This natural way to introduce frustration has been known in the literature to lead to so-called Coulomb spin-liquids, the single class of classical spin-liquids acknowledged to exist so far in Heisenberg models. Here we show that in fact two different classes of classical spin-liquids can be obtained from similarly defined frustrated models. In one of these, algebraic correlations exist at $T=0$, similar to the Coulomb phase, but the system exhibits a rather different low$-T$ effective action from the Coulomb phase. In the other class, the spin-liquid has spin correlations that decay exponentially with distance, with a correlation length smaller than a lattice spacing even at $T=0$. One special effect of disorder in these models, considered in the form of dilution by non-magnetic impurities, is to nucleate local degrees of freedom, so-called orphans, which express the concomitant spin-liquid phase through their non-trivial fractionalisation. When the associated spin-liquid exhibit algebraic correlations, it is also possible to find new effective spin-glass models as an effective $T=0$ description for interactions between the orphans, leading to so-called `random Coulomb magnets'. One part of this thesis is devoted to the first study of these new models. This investigation consists mainly of Monte Carlo simulations and numerical solution of the relevant large$-n$ equations ($n$ being the number of spin components). A clear spin-glass transition for infinitely large coupling strength is determined for the case of spins with an infinite number of components. The results presented on the situation for a finite number of spin components are more of an exploratory character, and large-scale simulations with further optimization schemes to ensure equilibration are still required to locate the transition. The final investigation treated in this thesis deals with the dynamics in a quantum model with disorder displaying the many-body localized phase, where in addition a periodic drive is applied. For a certain range of driving frequencies and amplitudes, it was found recently that the many-body localized phase is robust. These pioneering studies restricted themselves to an analysis of the stability of such a phase in the long time limit, while very little was known about the dynamics towards the asymptotic fate. Our study focuses on this aspect, and analyses the different dynamical behaviors as one varies the driving parameters, so that the many-body localized phase survives or is destroyed by the driving. We discover that on the border between these two asymptotic fates, a new dynamical behavior emerges, where the system heats up at a very slow, logarithmic in time, rate. / Die Bestimmung der wichtigsten Bestandteile stellt einen sehr wichtigen Schritt in der Kunst des Erstellens von Modellen dar. Die Annahme von zu vielen Details ergibt ein sehr kompliziertes, zu nichts zu gebrauchendes Modell, doch die Vernachlässigung von bedeutenden Zusammenhängen führt ebenfalls zu einem unbrauchbaren Ergebnis. Es ist so z.B. häufig der Fall, dass ein Experiment unter dem Einfluss von unvermeindlichen lokalen Zufälligkeiten steht, die allerdings kaum einen Einfluss auf ein beobachtetes Phänomen haben. Für gewisse Phänomene spielt Unordnung jedoch eine wesentliche Rolle und sie muss sehr genau in Betracht gezogen werden. Das ist für bestimmte Phasen, wie beispielsweise Spinglas oder die Vielteilchen-Lokalisation, der Fall. In dieser Dissertation untersuchen wir ungeordnete Systeme, die solche Phasen aufweisen. Außerdem verwenden wir Unordnung als ein theoretisches Werkzeug für die Analyse von bestimmten `Spinflüssigkeiten' in zweidimensionalen Spinmodellen. Der Fokus liegt hierbei auf klassischen Heisenberg Modellen definiert auf Gittern, die aus einer Anordnung von Clustern bestehen, sodass jede einzelne paarweise Heisenberg-Wechselwirkung innerhalb eines Clusters stattfindet. Dadurch weist das System geometrische Frustration auf und in mehreren Fällen tritt eine sogennante Coulomb Spinflüssigkeit ---die bislang einzig bekannte Klasse von klassischen Spinflüssigkeit in Heisenberg Modellen--- auf. Wir zeigen, dass mindestens zwei weitere Arten von klassischen Spinflüssigkeiten in solchen Modellen zu finden sind. Für die eine Klasse sind Spinkorrelationen zu erwarten, die algebraisch mit der Entfernung bei $T=0$ abnehmen, ähnlich wie für eine Coulomb Phase. Diese neu entdeckte Spinflüssigkeit lässt sich jedoch von der Coulomb Phase durch eine neue effektive Tieftemperatur-Theorie unterscheiden. Für die andere Klasse von Spinflüssigkeiten sind die Spinkorrelationen kurzreichweitig, und selbst bei $T=0$ nehmen sie exponentiell ab, mit einer Korrelationslänge, die kleiner als ein Gitterabstand ist. Unordnung, in der Form von nicht-magnetischen Störstellen, kann lokale Freiheitsgrade entstehen lassen (diese werden in der Literatur auch als `Orphans', Waisen, bezeichnet). Die Orphans verweisen durch ihre `Fraktionierung' eindeutig auf die nicht trivialen Korrelationen der spinflüssigen Phase. Falls die Spinflüssigkeit algebraische Korrelationen aufweist, findet man auch langreichweitige Wechselwirkungen zwischen den Orphans bei $T=0$. Dies führt zu neuen Spinglasmodellen, sogenannten `Random Coulomb Magnets'. Ein Teil dieser Dissertation ist der Untersuchung solcher Modelle gewidmet. Diese Untersuchung besteht hauptsächlich aus Monte Carlo Simulationen und numerischer Lösung der relevanten Large-$n$ Gleichungen (wobei $n$ hier auf die Anzahl an Spinkomponenten hinweist). In dem Fall von Spins mit unendlich vielen Spinkomponenten können wir einen eindeutigen Spinglas Phasenübergang für eine unendlich große Kopplungsstärke bestimmen. Die entsprechenden Ergebnisse für den Fall von Spins mit einer endlichen Anzahl an Spinkomponenten sind von einem exploratorischen Charakter. Zusätzliche Simulationen, die möglicherweise weitere Optimierungsschema verwenden um Äquilibrium zu gewährleisten, sind noch von nöten um eine eindeutige Aussage über den Übergang in solchen Fällen zu treffen. Der letzte Teil dieser Dissertation widmet sich der Untersuchung der Dynamik eines ungeordneten Quantenmodells. Das ausgewählte Modell weist die sogennante Vielteilchen-lokalisierte Phase auf, und wir untersuchen insbesondere den Effekt eines periodischen Antriebs auf die Dynamik des Systems. Für eine bestimmte Auswahl der Antriebs-frequenz und -amplitude, wurde es bereits vor kurzem bewiesen, dass die Vielteilchen-lokalisierte Phase diese Störung übersteht. Unsere Studie ist darauf ausgelegt, wie sich die Dynamik des Systems durch Variation der Antriebsparameter ändert, so dass die Vielteilchen-lokalisierte Phase für lange Zeit entweder den Antrieb übersteht oder von ihm zerstört wird. Wir konnten dadurch entdecken, dass an der Grenze zwischen diesen beiden Fällen ein neues dynamisches Verhalten entsteht, bei der das System eine sehr langsame, logarithmisch mit der Zeit, Erwärmung aufweist.
6

Ab initio insights into the electronic structure of 3d-systems with linear coordination and triangular-lattice 4f -systems

Zangenehpourzadeh, Ziba 13 January 2021 (has links)
This work outlines the numerical strategies for two sets of problems of great importance in correlated materials research. First, we analyze the electronic structure and magnetic properties of 3d transition metals with linear coordination. Second, we study the mutiplet structure of 4f ions arranged on the 2D triangular-lattice.
7

Growth and Properties of Na2IrO3 Thin Films

Jenderka, Marcus 03 December 2012 (has links)
The layered honeycomb lattice iridate Na2IrO3 is a novel candidate material for either a topological insulator or spin liquid. These states of matter are one possible starting point for the future realization of scalable quantum computation, but may also find application in magnetic memory or low-power electronic devices. This thesis reports on the pulsed laser deposition of high-quality heteroepitaxial (001)-oriented Na2IrO3 thin films with well-defined in-plane epitaxial relationship on 5-by-5 and 10-by-10 square millimeter single-crystalline sapphire, YAlO3 and zinc oxide substrates. Three-dimensional Mott variable range hopping is the dominant conduction mechanism between 40 and 300 K. Moreover, a signature of the proposed topological insulator phase is found in magnetoresistance by observation of the weak antilocalization effect that is associated with topological surafce states. Compared to single crystals, a smaller, 200-meV optical gap in Na2IrO3 thin films is found by Fourier-transform infrared transmission spectroscopy.
8

Thermal transport in a two-dimensional Kitaev spin liquid

Pidatella, Angelo 15 November 2019 (has links)
Quantum spin liquids represent a novel phase of magnetic matter where quantum fluctuations are large enough to suppress the formation of local order parameters, even down to zero temperature. Quantum spin liquid states can emerge from frustrated quantum magnets. These states show several peculiar properties, such as topological order, fractional excitations, and long-range entanglement. The Kitaev spin model on the honeycomb lattice is one of the few models proposed which can exactly show the existence of a $\mathbb{Z}_2$ quantum spin liquid. The model describes spins featuring frustrated compass interactions, and it exhibits a quantum spin liquid ground state. The model's ground state can be found exactly by representing spins in terms of Majorana fermions. It turns out that spin excitations fractionalize into two degrees of freedom: spinless matter fermions and flux excitations of the emergent $\mathbb{Z}_2$ gauge theory. Recently, possible solid-state realizations of Kitaev quantum spin liquids have been proposed in a class of frustrated Mott insulators. Unfortunately, experiments can not unambiguously identify quantum spin liquids, due to their elusive nature. Nevertheless, indirect observations on a spin liquid state can be done by looking at its excitations. Along this line, thermal transport investigations provide for an option to study heat-carrying excitations, and thus the properties of the related spin liquid state. In this doctoral thesis work, I performed a study of longitudinal thermal transport properties in the two-dimensional Kitaev spin model. This study aims to advance the understanding of transport in prototypical frustrated quantum magnets that might harbor Kitaev physics, and in particular quantum spin liquid states. For this purpose, I explored the model for varying exchange coupling regimes $-$ to underline the impact of anisotropy on transport $-$ and I studied transport over a wide range of temperatures. Transport properties have been explored within the formalism of the linear response theory. Based on the latter, thermal transport coefficients can be evaluated by calculating dynamical energy-current auto-correlation functions. First, I performed an analytical study of the uniform gauge sector of the model $-$ where excitations of gauge degrees of freedom are neglected. Analytical findings for the energy-current correlations, and their related transport coefficients, imply a finite-temperature ballistic heat conductor in terms of free matter fermion excitations $-$ independent of exchange couplings. Second, thermal transport has been studied at finite temperatures, considering thermal gauge excitations off the uniform gauge sector. For this purpose, I made use of two complementary numerical methods able to treat finite-temperature systems. On the one hand, I resorted on the exact diagonalization of the Kitaev Hamiltonian given in terms of fermions and a real-space dependent $\mathbb{Z}_2$ gauge potential, to study relatively small systems. On the other hand, I used an approximate method based on a mean-field treatment of thermal gauge fluctuations. The method allowed to extend the study of thermal transport to systems with up to $\sim\mathcal{O}(10^4)$ spinful sites. It made possible the computation of correlation functions by reducing the exact trace over all gauge states to an average over dominant gauge states suited to a given temperature range. The reliability of the method has been checked by comparing to numerically exact thermodynamics of systems. Based on the thermodynamic analysis, the method has been restricted to a temperature range where the mean-field treatment of gauge fluctuations is acceptable. Within such temperature range, the method succeeded in well reproducing exact results. The prime advantage of this method is its capability to reveal important features in the energy-current correlation spectra, not captured by the exact diagonalization approach because of finite-size effects. I found that the energy-current correlation spectra, in the presence of thermal gauge excitations, show clear signatures of spin fractionalization. In particular, the low-energy part of spectra displays features arising from a temperature-dependent matter-fermion density relaxation off an emergent thermal gauge disorder. This static gauge disorder also leads to the appearance of a pseudogap in the zero-frequency limit, which closes in the thermodynamic limit. The extracted dc heat conductivity is consequently influenced by this interplay between matter fermions and gauge degrees of freedom. The anisotropy in the exchange couplings moves Kitaev systems through gapless and gapped phases of the matter fermion sector. Effects of anisotropy are visible in the dc conductivities which display a low-temperature dependence crossing over from power-law to exponentially activated behavior upon entering the gapped phase. Therefore, I found that in the thermodynamic limit, two-dimensional Kitaev systems feature dissipative transport, regardless of exchange couplings. This finding is in contrast to the ballistic transport found discarding gauge excitations in the uniform gauge sector, which underlines the relevance of gauge degrees of freedom in thermal transport properties of Kitaev systems.
9

Kitaev Honeycomb Model: Majorana Fermion Representation and Disorder

Zschocke, Fabian 14 June 2016 (has links)
Eine Vielzahl von interessanten Phänomenen entsteht durch die quantenmechanischeWechselwirkung einer großen Zahl von Teilchen. In den meisten Fällen ist die Beschreibung der relevanten physikalischen Eigenschaften extrem schwierig, da die Komplexität des Systems exponentiell mit der Anzahl der wechselwirkenden Teilchen anwächst und das Lösen der zugrunde liegenden Schrödingergleichung unmöglich macht. Trotzdem gab es in der Geschichte der Festkörperphysik eine Reihe von bahnbrechenden Entdeckungen, die unser Verständnis von komplexen Phänomenen deutlich voran gebracht haben. Dazu zählt die Entwicklung der Landau’schen Theorie der Fermiflüssigkeit, der BCS-Theorie der Supraleitung, der Theorie der Supraflüssigkeit und der Theorie des fraktionalen Quanten-Hall-Effekts. In all diesen Fällen ist ein theoretisches Verständnis mithilfe sogenannter Quasiteilchen gelungen. Anstatt ein komplexes Phänomen durch das Verhalten von fundamentalen Teilchen wie der Elektronen zu erklären, ist es möglich, die entsprechenden Eigenschaften durch das simple Verhalten von Quasiteilchen zu beschreiben, die allein auf Grund der komplexen kollektiven Wechselwirkung entstehen. Eines der seltenen Beispiele, bei dem ein stark korreliertes quantenmagnetisches Problem analytisch lösbar ist, ist das Kitaev Modell. Es beschreibt wechselwirkende Spins auf einem Sechseck-Gitter und zeichnet sich durch einen Spinflüssigkeits-Grundzustand aus. Auch hier gelang die Lösung mittels spezieller Quasiteilchen, den Majorana Fermionen. Experimentell ist es jedoch noch nicht gelungen eine Spinflüssigkeit eindeutig nachzuweisen, da diese sich gerade durch das Fehlen jeglicher klassischer Ordnung und üblicher experimenteller Kenngrößen auszeichnet. Dagegen kann die Beobachtung von Quasiteilchenanregungen einen Hinweis auf den zugrunde liegenden Zustand liefern. Aber auch der definitive Nachweis von Majorana Fermionen in jeglicher Art System, bleibt ein ausstehendes Ziel in der modernen Festkörperphysik. Diese Arbeit befasst sich daher mit der Frage, wie solche Quasiteilchen experimentell sichtbar gemacht werden könnten. Dazu untersuchen wir den Einfluss von Unordnung auf die Zustände und Messgrößen des Kitaev Modells. Dies ist in zweierlei Hinsicht relevant. Einerseits ist Unordnung in der Natur allgegenwärtig, andererseits kann sie auch strategisch herbeigeführt werden, um die Reaktion eines System gezielt zu testen. Das zentrale Ergebnis dieser Arbeit ist, dass den Majorana Fermionen dabei in der Tat eine physikalische, messbare Bedeutung zukommt. Die Arbeit beginnt mit einer Einführung in frustrierte quantenmagnetische Systeme und Spinflüssigkeiten und diskutiert einige Effekte, die durch Gitterverzerrungen oder Verunreinigungen entstehen können. Anschließend zeigen wir, wie sich durch die frustrierte Wechselwirkung im Kitaev Modell ein Spinflüssigkeits-Grundzustand herausbildet. Die analytische Lösung des Modells gelingt mit Hilfe von Majorana Fermionen, jedoch verdoppelt sich der Hilbertraum pro Spin durch die Einführung dieser Quasiteilchen. Ein zentraler Aspekt dieser Arbeit ist daher die richtige Auswahl der „physikalischen“ Zustände, also solcher, die einem Zustand im ursprünglichen Spin Modell entsprechen. Dabei unterscheiden wir zwischen offenen und periodischen Randbedingungen. Wir konnten beweisen, dass sich, in der Phase ohne Bandlücke und für periodische Systeme, stets ein angeregtes Fermion befindet. Dies führt zu großen Effekten in endlichen Systemen, wie wir anhand der Suszeptibilität und der Anregungslücke für magnetische Flüsse zeigen. Außerdem berechnen wir numerisch die statische und dynamische Suszeptibilität abhängig von der Unordnung in der Wechselwirkungsstärke. Diese Art der Unordnung entsteht beispielsweise durch unregelmäßige Gitterstrukturen oder chemische Verunreinigungen auf den nicht-magnetischen Gitterplätzen. Insbesondere ergibt die Verteilung der lokalen Suszeptibilitäten das Linienspektrum, welches sich in Kernspinresonanz Experimenten messen lässt. Für große Unordnung postulieren wir einen Übergang zu einem Zustand mit einer zufälligen Verteilung magnetischer Flüsse. Ein weiterer Kern der Dissertation ist die Untersuchung eines magnetischen Defekts im Kitaev Modell. Diese Situation beschreibt den ungewöhnlichen Fall eines Kondoeffekts in einer Spinflüssigkeit. In der Majorana Fermionen Darstellung gelingt es uns, das Problem in eine Form zu bringen, die mit Hilfe von Wilson’s numerischer Renormalisierungsgruppe untersucht werden kann. Es zeigt sich, dass dadurch eine Nullpunktsentropie des Defekts entsteht, die durch lokalisierte Majorana Fermionen erklärt werden kann. Durch die Darstellung des Kitaev Modells mithilfe von Quasiteilchen ist es möglich eine elegante Beschreibung eines komplexen, stark wechselwirkenden Systems zu finden. Die Ergebnisse dieser Arbeit zeigen, dass den Majorana Fermionen dabei durchaus eine physikalische Bedeutung zukommt. Gelingt es sie z.B. durch magnetische Störstellen zu lokalisieren, wäre ein direkter experimenteller Nachweis möglich. / Many interesting phenomena in quantum physics arise through the quantum mechanical interaction of a large number of particles. In most cases describing the relevant physical properties is extremely difficult, because the complexity of the system increases exponentially with the number of interacting particles and solving the underlying Schrödinger equation becomes impossible. Nevertheless, our understanding of complex phenomena has progressed through some groundbreaking discoveries in the history of condensed matter physics. Examples include the development of Landau’s theory of Fermi liquids, the BCStheory of superconductivity, the theory of superfluidity and the theory of the fractional quantum Hall effect. In all these cases a theoretical understanding was achieved with so-called quasi-particles. Instead of explaining a phenomenon through the behavior of fundamental particles, such as electrons, the corresponding properties can be described by the simple behavior of quasi-particles, which are themselves a result of the complex collective interaction. One of the rare examples, where a strongly correlated quantum mechanical problem can be solved analytical, is the Kitaev model. It describes interacting spins on a honeycomb lattice and exhibits a spin liquid ground state. Here the solution was achieved by means of certain quasi-particles, called Majorana fermions. However, it has not been possible to clearly identify such a spin liquid experimentally, because its defining feature is the absence of any conventional order, in particular magnetic order. In contrast, the observation of quasiparticle excitations may hint at the nature of the ground state. But also a definite detection of Majorana fermions in any kind of system remains one of the outstanding issues in modern condensed matter physics. Therefore this thesis is devoted to the question how such quasiparticles may be found experimentally. For this reason we study the influence of disorder on the states and observables of the Kitaev model. This is relevant in two respects: Firstly, disorder is ubiquitous in nature and secondly, it may be used strategically to probe the response of a system. The central result of this work is that Majorana fermions hereby indeed obtain a true physical and observable significance. The thesis starts with an introduction of frustrated quantum mechanical systems and spin liquids, and discusses some of the effects that arise through lattice distortions or impurities. Afterwards we show how the frustrated interactions in the Kitaev model lead to a spin liquid ground state. The analytical solution of the model is achieved through the introduction of Majorana fermions. However, resulting from the introduction of these quasi-particles the Hilbert space per spin doubles. A central aspect of this thesis is therefore the right selection of the “physical” states, which correspond to a state of the original spin Hamiltonian. To do this, we distinguish between periodic and open boundary conditions explicitly. We were able to prove that there is always one excited fermion in the gapless phase of the periodic system. This leads to large finite-size effects, as we will illustrate for the susceptibility and the magnetic flux gap. Moreover we compute the static and dynamic spin susceptibilities for finite-size systems subject to disorder in the exchange couplings. In a possible experimental realization, this kind of disorder arises from lattice distortions or chemical disorder on nonmagnetic sites. Specifically, we calculate the distribution of local susceptibilities and extract the lineshape, which can be measured in nuclear-magnetic-resonance experiments. Further, for increasing disorder we predict a transition to a random-flux state. Another core of this dissertation is the investigation of a magnetic impurity in the Kitaev model. This setup represents the unusual case of a Kondo effect in a quantum spin liquid. Utilizing the Majorana representation we are able to formulate the problem in a way that can be analyzed using Wilson’s numerical renormalization group. The numerics reveal an impurity entropy which can be explained by localized Majorana fermions. Through the representation of the Kitaev model in terms of quasi-particles an elegant description of a complex, strongly correlated system is possible. The results of this thesis indicate that these Majorana acquire a relevant physical meaning. If one can localize them, for example with the help of magnetic impurities, a direct experimental observation would be feasible.
10

Magnets with disorder and interactions:: dilution in novel spin liquids and dynamics of driven disordered spin chains

Rehn, Jorge Armando 03 February 2017 (has links)
A very important step in the art of cooking up models for the study of natural phenomena is the identification of the relevant ingredients. Taking into account too many details will lead to an overly complicated model, not at all useful to work with, but neglecting some crucial elements will lead to an equally useless model. So it is often the case that the actual experimental situation presents unavoidable sources of local randomness, whilst the analysed phenomenon does not really rely on presence/absence of such imperfections. For some other set of phenomena, however, disorder can play a crucial role, and must be carefully taken into account. Such is for example the case in certain phases of matter, the spin-glass phase, or the many-body localised phase. In this thesis we explore disorder in both of these situations and also as a theoretical means of testing the regime of liquidity in certain two-dimensional highly frustrated magnetic models. The focus here is placed on classical Heisenberg models defined on lattices consisting of clusters all sites of which interact mutually pairwise. This natural way to introduce frustration has been known in the literature to lead to so-called Coulomb spin-liquids, the single class of classical spin-liquids acknowledged to exist so far in Heisenberg models. Here we show that in fact two different classes of classical spin-liquids can be obtained from similarly defined frustrated models. In one of these, algebraic correlations exist at $T=0$, similar to the Coulomb phase, but the system exhibits a rather different low$-T$ effective action from the Coulomb phase. In the other class, the spin-liquid has spin correlations that decay exponentially with distance, with a correlation length smaller than a lattice spacing even at $T=0$. One special effect of disorder in these models, considered in the form of dilution by non-magnetic impurities, is to nucleate local degrees of freedom, so-called orphans, which express the concomitant spin-liquid phase through their non-trivial fractionalisation. When the associated spin-liquid exhibit algebraic correlations, it is also possible to find new effective spin-glass models as an effective $T=0$ description for interactions between the orphans, leading to so-called `random Coulomb magnets'. One part of this thesis is devoted to the first study of these new models. This investigation consists mainly of Monte Carlo simulations and numerical solution of the relevant large$-n$ equations ($n$ being the number of spin components). A clear spin-glass transition for infinitely large coupling strength is determined for the case of spins with an infinite number of components. The results presented on the situation for a finite number of spin components are more of an exploratory character, and large-scale simulations with further optimization schemes to ensure equilibration are still required to locate the transition. The final investigation treated in this thesis deals with the dynamics in a quantum model with disorder displaying the many-body localized phase, where in addition a periodic drive is applied. For a certain range of driving frequencies and amplitudes, it was found recently that the many-body localized phase is robust. These pioneering studies restricted themselves to an analysis of the stability of such a phase in the long time limit, while very little was known about the dynamics towards the asymptotic fate. Our study focuses on this aspect, and analyses the different dynamical behaviors as one varies the driving parameters, so that the many-body localized phase survives or is destroyed by the driving. We discover that on the border between these two asymptotic fates, a new dynamical behavior emerges, where the system heats up at a very slow, logarithmic in time, rate. / Die Bestimmung der wichtigsten Bestandteile stellt einen sehr wichtigen Schritt in der Kunst des Erstellens von Modellen dar. Die Annahme von zu vielen Details ergibt ein sehr kompliziertes, zu nichts zu gebrauchendes Modell, doch die Vernachlässigung von bedeutenden Zusammenhängen führt ebenfalls zu einem unbrauchbaren Ergebnis. Es ist so z.B. häufig der Fall, dass ein Experiment unter dem Einfluss von unvermeindlichen lokalen Zufälligkeiten steht, die allerdings kaum einen Einfluss auf ein beobachtetes Phänomen haben. Für gewisse Phänomene spielt Unordnung jedoch eine wesentliche Rolle und sie muss sehr genau in Betracht gezogen werden. Das ist für bestimmte Phasen, wie beispielsweise Spinglas oder die Vielteilchen-Lokalisation, der Fall. In dieser Dissertation untersuchen wir ungeordnete Systeme, die solche Phasen aufweisen. Außerdem verwenden wir Unordnung als ein theoretisches Werkzeug für die Analyse von bestimmten `Spinflüssigkeiten' in zweidimensionalen Spinmodellen. Der Fokus liegt hierbei auf klassischen Heisenberg Modellen definiert auf Gittern, die aus einer Anordnung von Clustern bestehen, sodass jede einzelne paarweise Heisenberg-Wechselwirkung innerhalb eines Clusters stattfindet. Dadurch weist das System geometrische Frustration auf und in mehreren Fällen tritt eine sogennante Coulomb Spinflüssigkeit ---die bislang einzig bekannte Klasse von klassischen Spinflüssigkeit in Heisenberg Modellen--- auf. Wir zeigen, dass mindestens zwei weitere Arten von klassischen Spinflüssigkeiten in solchen Modellen zu finden sind. Für die eine Klasse sind Spinkorrelationen zu erwarten, die algebraisch mit der Entfernung bei $T=0$ abnehmen, ähnlich wie für eine Coulomb Phase. Diese neu entdeckte Spinflüssigkeit lässt sich jedoch von der Coulomb Phase durch eine neue effektive Tieftemperatur-Theorie unterscheiden. Für die andere Klasse von Spinflüssigkeiten sind die Spinkorrelationen kurzreichweitig, und selbst bei $T=0$ nehmen sie exponentiell ab, mit einer Korrelationslänge, die kleiner als ein Gitterabstand ist. Unordnung, in der Form von nicht-magnetischen Störstellen, kann lokale Freiheitsgrade entstehen lassen (diese werden in der Literatur auch als `Orphans', Waisen, bezeichnet). Die Orphans verweisen durch ihre `Fraktionierung' eindeutig auf die nicht trivialen Korrelationen der spinflüssigen Phase. Falls die Spinflüssigkeit algebraische Korrelationen aufweist, findet man auch langreichweitige Wechselwirkungen zwischen den Orphans bei $T=0$. Dies führt zu neuen Spinglasmodellen, sogenannten `Random Coulomb Magnets'. Ein Teil dieser Dissertation ist der Untersuchung solcher Modelle gewidmet. Diese Untersuchung besteht hauptsächlich aus Monte Carlo Simulationen und numerischer Lösung der relevanten Large-$n$ Gleichungen (wobei $n$ hier auf die Anzahl an Spinkomponenten hinweist). In dem Fall von Spins mit unendlich vielen Spinkomponenten können wir einen eindeutigen Spinglas Phasenübergang für eine unendlich große Kopplungsstärke bestimmen. Die entsprechenden Ergebnisse für den Fall von Spins mit einer endlichen Anzahl an Spinkomponenten sind von einem exploratorischen Charakter. Zusätzliche Simulationen, die möglicherweise weitere Optimierungsschema verwenden um Äquilibrium zu gewährleisten, sind noch von nöten um eine eindeutige Aussage über den Übergang in solchen Fällen zu treffen. Der letzte Teil dieser Dissertation widmet sich der Untersuchung der Dynamik eines ungeordneten Quantenmodells. Das ausgewählte Modell weist die sogennante Vielteilchen-lokalisierte Phase auf, und wir untersuchen insbesondere den Effekt eines periodischen Antriebs auf die Dynamik des Systems. Für eine bestimmte Auswahl der Antriebs-frequenz und -amplitude, wurde es bereits vor kurzem bewiesen, dass die Vielteilchen-lokalisierte Phase diese Störung übersteht. Unsere Studie ist darauf ausgelegt, wie sich die Dynamik des Systems durch Variation der Antriebsparameter ändert, so dass die Vielteilchen-lokalisierte Phase für lange Zeit entweder den Antrieb übersteht oder von ihm zerstört wird. Wir konnten dadurch entdecken, dass an der Grenze zwischen diesen beiden Fällen ein neues dynamisches Verhalten entsteht, bei der das System eine sehr langsame, logarithmisch mit der Zeit, Erwärmung aufweist.

Page generated in 0.432 seconds