• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A study of novel acidophilic Firmicutes and their potential applications in biohydrometallurgy

Holanda, Roseanne January 2018 (has links)
The application of biotechnologies in the mining sector has intensified over the last 30 years, driven by the increasing demand for metals associated with the rise in energy costs and the awareness for environmentally responsible mining practices. Acidophilic prokaryotes play an important role in biohydrometallurgy, facilitating the solubilisation and recovery of base metals from ores and waste materials. The potential of novel acidophiles of the phylum Firmicutes for applications in biohydrometallurgical processes is examined in this thesis. Eight strains of extremely acidophilic bacteria were studied and shown to belong to the proposed novel genus “Acidibacillus”. These had been isolated previously from several distinct global locations and were shown to be obligately heterotrophic bacteria with potential to carry out tasks critical to biomining such as regenerating ferric iron (by catalysing the dissimilatory oxidation of ferrous iron), generating sulfuric acid (by the oxidation of zero-valent sulfur and tetrathionate; two strains only), and removing potentially inhibitory dissolved organic carbon. These isolates also demonstrated the ability to catalyse the dissimilatory reduction of ferric iron in anaerobic conditions. Results obtained during this study provide the basis for future research to assess their potential roles in microbial consortia applied in the bio-processing of metal ores. A novel obligately anaerobic acidophilic Firmicute (strain I2511) isolated from sediment obtained from an abandoned copper mine, was characterised in terms of its phylogeny and physiology. This isolate formed a separated clade within the Firmicutes, and was considered to represent a novel candidate genus. It also displayed a unique set of physiological traits, distinct from currently validated species of acidophilic Firmicutes. The isolate was an obligate anaerobe that grew via zero-valent sulfur (ZVS) respiration, generating H2S over a wide pH range (1.8 - 5.0), and also catalysed the dissimilatory reduction of ferric iron. Strains of acidophilic sulfatereducing bacteria (aSRB), also Firmicutes, were shown to reduce ZVS at pH as low as 3. These aSRB, together with isolate I2511, populated a novel variant of a low pH sulfidogenic bioreactor. The “hybrid sulfidogenic bioreactor” (HSB) operated using both sulfate and ZVS as electron acceptors, and glycerol as electron donor. The bioreactor successfully remediated and recovered zinc from circum-neutral pH mine-impacted waters with distinct chemical composition collected from two abandoned lead/zinc mines in the U.K. The microbial consortium used in this system proved to be robust, in which the HSB generated H2S consistently under a wide pH range (2 – 7). Experiments demonstrated that H2S could also be generated abiotically in a non-inoculated low pH reactor, by the chemical reaction of ZVS and zero-valent iron to form iron sulfide, and the consequent acid dissolution of the latter. Operational costs and the advantages of biogenic and abiotic generation of H2S for recovery of transition metals from mine waters are discussed.
12

Estudo experimental do processo de oxidação do ferro com vapor de água para a produção de gás hidrogênio. / Experimental study of iron oxidation process with water vapor to produce hydrogen gas11.

Tiago Gonçalves Goto 11 August 2016 (has links)
Neste trabalho, foi estudado a oxidação do ferro com vapor d\'água em forno elétrico, para a produção de gás hidrogênio. Partindo-se da revisão bibliográfica, escolheu-se o ferro devido suas propriedades e por apresentar um bom rendimento, além disso o ferro é um material barato e abundante. Na estudo experimental foi três experimentos diferentes. No primeiro, o ferro foi oxidado em forno elétrico em temperaturas de 600 a 1000ºC, variando a cada 100ºC, e tempo fixado em 3 horas. Na segunda série de experimento, foi fixado a temperatura em 800ºC e variou a duração do processo de oxidação de 1 a 4 horas, com variação de 1 hora. E na terceira série de experimentos foi realizado a análise termogravimétrica para avaliação da cinética química do processo de oxidação. Os resultados dos experimentos indicaram a produção de gás hidrogênio em quantidades maiores em temperatura de 1000ºC. Além disso foi possível observar que a taxa de oxidação do ferro é maior durante a primeira hora de ensaio. A estimativa de hidrogênio produzido é de 0,9549 g/min -m2 em oxidação a 1000ºC. Já nos resultados da termogravimetria foi obtido a energia de ativação de 147 kJ/mol. / In this work was studied the oxidation of iron by steam in the electric furnace to produce hydrogen. The first step was the literature review and iron oxide was chose to be oxidized, due to its characteristics and good yield. Furthermore, the iron is a cheap and abundant in the earth. In the experimental studies was conducted three different experiments. The First one, the iron was oxidized in the electric furnace in the temperature range of 600 - 1000ºC with a variation of 100ºC and the oxidation time was fixed in 3 hours. The second experiment was conducted with fixed temperature of 800ºC and varied the oxidation time, the range of time was from 1 to 4 hours with a variation of 1 hour. The third experiment was the thermogravimetric analysis to study the chemical kinetics, with three different temperature, 600, 800 and 1000ºC. The result of studies showed that a high temperature the hydrogen production increased and decreased with low temperature. Furthermore, the high oxidation rate was observed in the first hour of the experiment. The hydrogen production was estimated in 0.9549 g/min - m2 at 1000ºC. Another result was the activation energy Ea= 147 kJ/mol.
13

Kinetics of the chemical and biological iron (II) oxydation

Nengovhela, Nkhangweleni Ryneth 13 December 2006 (has links)
Please read the abstract (Summary) in the 00front part of this document / Dissertation (MSc (Chemistry))--University of Pretoria, 2003. / Chemistry / unrestricted
14

Subsurface Igneous Mineral Microbiology: Iron-Oxidizing Organotrophs on Olivine Surfaces and the Significance of Mineral Heterogeneity in Basalts

Smith, Amy Renee 01 January 2011 (has links)
The subsurface igneous biome contains a vast portion of Earth's total biomass, yet we still know so little about it. Igneous environments such as iron-rich ocean crust and lava tubes may also host analogs to chemolithotrophically-driven life on other planets, so studying life in this biome is essential to understanding how life may survive on other planets. In this study, three igneous surface and subsurface environments were investigated for microbial preference for olivine, microbial physiologies and phylotypes present on olivine, and microbial growth on olivine in the laboratory via iron oxidation. These environments include a subseafloor borehole drilled into the ocean crust basalt basement, a lava tube with perennial ice, and a trio of Columbia River basalt-hosted freshwater terrestrial habitats. The subseafloor borehole (IODP Hole 1301A) is situated on the eastern flank of Juan de Fuca Ridge (JFR) and was used in the first long-term deployment of microbial enrichment flow cells using osmotically-driven pumps. The flow cells contained igneous minerals and glasses, for which cell density and microbial abundances were evaluated. Total cell density and viable oligotrophs were highest for Fe(II)-rich olivines. Organotrophic bacterial isolates were capapble of iron oxidation and nitrate reduction, and grew on olivine in the laboratory. Putative neutrophilic iron oxidizers were also isolated from igneous riparian and cave environments in northwest and central Oregon. Isolated bacteria from all three environments were capable of chemolithotrophic growth with olivine and oxygen or nitrate in the laboratory. Bacteria isolated from river basalt were putatively capable of producing alteration textures on olivine surfaces in culture. Microbial life in the igneous subsurface preferentially attach to Fe²⁺-rich minerals, which suggests that life in the subsurface is heterogeneously distributed. The isolation of oligotrophic iron oxidizers that grow on olivine suggests that olivine supports a chemolithotrophic subsurface community based on primary productivity via iron oxidation. This generation of biomass on olivine surfaces creates organic carbon-rich coated mineral surfaces that may support a more complex community. The identification of Mars analogs living in Oregon lava tubes and the discovery that iron oxidizers may produce biosignatures on olivine surfaces are key findings that may provide the foundation for a new chapter in the search for life on Mars.
15

The microbiological assessment of a biofiltration system in KwaZulu-Natal (South Africa) treating borehole water containing Mn (II) and Fe (II).

Beukes, Lorika Selomi. January 2013 (has links)
In the following study, the potential role that microorganisms play in the removal of Mn (II) and Fe (II) was assessed using biofilter sand and water samples collected from a biofiltration system (operated by Umgeni Water in KwaZulu-Natal, Nottingham Road, at the Nottingham combined school, South Africa) treating borehole water containing manganese and iron. Initially the presence of Mn (II) and Fe (II) oxidizing bacteria was demonstrated in the biofiltration system. Thereafter, the contribution of individual microorganisms to the overall removal of manganese and iron was assessed in the laboratory by determining the difference in metal oxidation in the presence and absence of active bacteria at neutral pH, simulating conditions in the biofilter. Controls were run to verify the elimination via physiochemical reactions occurring within the biofiltration system. Finally a diversity snapshot of the bacteria present within the biofilter matrix was established via analysis of a clone library. Viable bacterial counts for the biofiltration system were established using MSVP (minimal salts vitamins pyruvate) medium - plus added manganese sulfate or iron sulfate targeting Mn (II) and Fe (II) oxidizing bacteria - and R2A for heterotrophic bacteria. In the first experimental chapter, batch tests using MSVP were employed to determine manganese oxidation, by measuring the pH and ORP (oxidation reduction potential) in experimental flasks and controls over time. There was a clear drop in pH and a concomitant increase in ORP when an isolated manganese oxidizing strain (designated LB1) was grown in MSVP plus added manganese sulfate, indicating manganese oxidation. Based on physiological characteristics established by the VITEK-2 system as well as by 16S rRNA gene sequence analysis and MALDI-TOF (Matrix assisted laser desorption ionization-time of flight mass spectrometry) mass spectrometry of cell extracts, the isolate was identified as a member of the genus Acinetobacter. EDX (energy dispersive X-ray analysis) analysis of crystals formed in batch culture tests, containing MSVP plus either added manganese or iron sulfate, confirmed the ability of the isolate to oxidize both Mn (II) and Fe (II). The leucoberbelin blue colorimetric assay and batch tests using MSVP both demonstrated that in the presence of the isolated strain, Acinetobacter sp. LB1, the rate of Mn (II) oxidation at neutral pH was enhanced as compared to abiotic controls. In the second experimental chapter the difference in Fe (II) oxidation between biological and abiological systems at neutral pH was determined using batch tests run with Acinetobacter sp. LB1 and Fe (II) in saline. In addition, the rate of Fe (II) oxidation was also determined at acidic pH and at alkaline pH in experimental and control flasks. To determine Fe (II) removal under conditions simulating those in the biofiltration system, batch tests were set up using borehole water freshly collected from the biofiltration system. In order to verify the contribution of native microorganisms in the borehole water to Fe (II) oxidation, these flasks were spiked with bacterial strains isolated from the biofiltration system - Acinetobacter sp. LB1 and Burkholderia sp. strain LB2 - and two known iron oxidizing strains Leptothrix mobilis (DSM 10617) and Sphaerotilus natans (DSM 565) were used to determine the contribution of reference iron oxidizers to Fe (II) oxidation. A separate set of the same flasks with the addition of filter sand was used to qualitatively demonstrate iron oxidation as it would occur within the biofiltration system. The ferrozine assay was employed to quantify the amount of Fe (II) in batch tests employing saline medium and in batch tests employing borehole water. EDX analysis was employed to confirm the presence of Fe (II) in oxidation products in the batch test flask with filter sand spiked with Acinetobacter sp. LB1. In the presence of Acinetobacter sp. LB1 at neutral pH in saline medium, the rate of Fe (II) oxidation was very similar to that in the abiological controls thus demonstrating that the presence of metabolically active microorganisms does not per se enhance the oxidation of Fe (II) like in the case of Mn (II) at neutral pH. Surprisingly, in the heat inactivated control, apparently the highest amount of Fe (II) was oxidized. As expected, at acidic pH very little oxidation of Fe (II) took place and at alkaline pH almost all Fe (II) in the flasks was removed and small amounts oxidized as determined by the amount of Fe (III) produced. Batch tests using borehole water proved that native microorganisms within the biofiltration system were more efficient in the oxidative removal of Fe (II) from the system, in comparison to the reference iron oxidizing strains. In the final experimental chapter, the presence of biofilms with actively metabolizing cells was examined on a pooled sample of biofilter matrix from the manganese and iron filter using CLSM (confocal laser scanning microscopy) image analysis. DNA was extracted from the biofilm material associated with biofilter matrix to establish a diversity snapshot of the bacteria present within the biofilter matrix. ARDRA (amplified “rDNA” restriction analysis) analysis of the clone library revealed the presence of 15 unique OTU’s (operational taxonomic unit) based upon restriction patterns of amplified 16S rRNA genes of a total of 100 randomly selected clones. The majority of the clones were closely related to the genera Nitrospira and Lactococcus. Overall, 42% of the clones were assigned to the phylum Proteobacteria, 13% to the phylum Actinobacteria, 24% to the phylum Firmicutes and 21% to the phylum Nitrospirae. Overall, the results demonstrate that bacteria present within an established biofiltration system at neutral pH can contribute to the oxidative removal of Mn (II) and, apparently only to a smaller degree, to that of Fe (II) present in borehole water and that species within the proteobacterial genus Acinetobacter are potentially involved in the geochemical cycling of these two metals. Keywords: Biofiltration, iron and manganese oxidation, Acinetobacter sp. LB1, batch tests, 16S rRNA, MALDI-TOF MS analysis, Mn (II) and Fe (II) colorimetric assays, EDX analysis, biofilm formation, CLSM image analysis, 16S rRNA clone library Abbreviations: MSVP (minimal salts vitamins pyruvate), ORP (oxidation reduction potential), EDX (energy dispersive X-ray analysis), MALDI-TOF MS (Matrix assisted laser desorption ionization-time of flight mass spectrometry), rRNA (ribosomal RNA), ARDRA (amplified “rDNA” restriction analysis), CLSM (confocal laser scanning microscopy), OTU (operational taxonomic unit) / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
16

Studies On Bio-Oxidation A Refractory Gold Containing Sulphidic Concentrate With Respect To Optimization And Modeling

Chandraprabha, M N 11 1900 (has links)
Although bacterial leaching of sulphidic minerals is a well-known phenomenon, it is only in the last ten years that full-scale bacterial leaching plants have been commissioned for gold processing. In order for bacterial leaching to compete successfully with other pretreatment processes for refractory ores, particularly with established technologies such as roasting and pressure leaching, it needs to be efficient. This requires the optimization of the parameters affecting the leaching reaction and the growth of bacteria. The entire biotreatment process is agitation leaching, carried out in stirred reactors or Pachuca type reactors. The bacterial oxidation is a complex reaction involving gaseous, liquid and solid phases. The interactions are highly complex, and analysis is complicated by the presence of solids in the leaching medium. Inspite of the amount of research that has been performed, kinetic and process models are underdeveloped. Since kinetic data varies widely with the type and source of concentrate, experimental data should be generated before doing the full-scale reactor design. In sizing reactors for a commercial scale process, it would be useful to have a mathematical model that one could use to predict the amount and rate of release of metal, as a function of the various operating parameters of the system. G.R.Halli arsenical gold sulphide concentrate obtained from Hutti Gold Mines Ltd., Karnataka, was chosen for our study, because of its high refractoriness. An indegenous strain of Thiobacillus ferrooxidans was used for biooxidation. The experiments were conducted in a well-agitated stirred tank reactor under controlled conditions. Sparged air was supplemented with carbon-dioxide for optimized growth. In this work, more than 90% gold and 95% silver could be recovered from the sulphidic gold concentrate when bioleaching was used ahead of cyanidation, compared to 40% and 50% by direct cyanidation. A generalized model, which accounts for both direct bacterial attack and indirect chemical leaching, has been proposed for the biooxidation of refractory gold concentrates. The bacterial balance, therefore, accounts for its growth both on solid substrate and in solution, and for the attachment to and detachment from the surface. The overall process is considered to consist of several sub-processes, each of which can be described in terms of a mechanism and related rate expressions. These sub-processes were studied seperately under kinetically controlled conditions. The key parameters appearing in the rate equations were evaluated using the experimental data. Since the refractory concentrate contains pyrite and arsenopyrite as the major leachable entities, leaching studies have been done on pure pyrite and arsenopyrite as test minerals and the key parameters in the rate equations are evaluated using this data. The model so developed is tested with the leaching kinetics of the concentrate. The growth of bacteria is dependent on the availability of the substrate, ferrous iron, and the dependence is modelled by the widely accepted Monod equation. The effect of carbon dioxide supplementation on the bacterial activity was studied and the optimal concentration for growth was found to be l%(v/v). Studies on indirect chemical leaching showed that the rate is sensitive to surface area of concentrate. Indirect rate constant of arsenopyrite was found to be greater than that of pyrite, since pyrite is more nobler than arsenopyrite. Conditions of direct leaching alone was obtained at high pulp density and using substrate adapted bacteria. The rate constant of arsenopyrite was found to be greater than that of pyrite. The parameters obtained were tested with the overall batch leaching data of the concentrate and favourable comparision was obtained. Thus, it has been possible to isolate the various simultaneous sub-processes occurring during the leaching and propose useful models to describe these processes in some detail. The model has been extended successfully to predict the continuous leaching behaviour using the parameters obtained from the batch data. Studies on the effect of residence time and pulp density on steady state behaviour showed that there is a critical residence time and pulp density below which washout conditions occur. The critical residence time at 10% pulp density was found to be 11 hrs. Operation at pulp densities lower than 5% and residence times lower than 72 hrs is not favourable for efficient leaching. Studies on the effect of initial ferric iron concentration showed that there exists an optimum concentration of ferric iron at which the time required to reach steady state is minimum.
17

Investigation of the Iron Oxidation Kinetics in Mantua Reservoir

Lathen, Scott H. 08 May 2007 (has links) (PDF)
Irrigation of the municipal cemetery in Brigham City, Utah resulted in stained headstones in 2001 and 2002. The water used in the irrigation came from Mantua reservoir, a medium sized impoundment situated near the mouth of Box Elder Canyon. In order for Brigham City to establish a city wide secondary pressurized irrigation system using water from Mantua reservoir, the cause and the source of staining problem must be determined. Previous research (Wallace 2006) determined that the source of the staining was the reduction of iron found in Mantua Reservoir sediments that occurred when seasonal variations in the reservoir caused anaerobic conditions. The reduced iron then dissolved in the water and was used in the irrigation system, causing re-oxidation of the iron. The oxidized iron then precipitated out on the headstones causing the staining. The purpose of this investigation is to determine the iron oxidation kinetics after the re-aeration of the water which will help determine appropriate mitigation methods. A secondary purpose is to confirm the Mantua reservoir's capacity to become anaerobic, resulting in the conditions which cause staining. Using laboratory investigations and computer modeling, I determined that on re-aeration, fifty percent of the dissolved iron in the water precipitates in five hours. Using first-order kinetics to model this process, I found the rate constant of the kinetic reaction to be 0.0029 min-1. Fitting a geochemical computer model of the iron oxidation kinetics in Mantua reservoir, which uses a higher-order kinetics model to better model this process, to experimental kinetic data yielded a rate constant of 4x1013 /atm x min. I also recreated the staining process in the laboratory using concrete. This was successful and provided visual evidence that the iron precipitates out of the water and stained the concrete within a couple of hours of application. Field data collected from Mantua reservoir showed that the dissolved oxygen concentration in the reservoir drops regularly below levels consistent with equilibrium to the atmosphere. While my field measurements did not record anaerobic conditions, based on the patterns shown, this study shows that it would be possible for anaerobic conditions to occur during warmer weather.
18

Nitrate removal and Fe(III) recovery through Fe(II)-driven denitrification with different microbial cultures / Élimination des nitrates et récupération du Fe(III) par la dénitrification autotrophe utilisant le fer ferreux avec différentes cultures microbiennes

Kiskira, Kyriaki 15 December 2017 (has links)
La dénitrification autotrophe utilisant le fer Ferreux est un bioprocédé innovant pour l'élimination des nitrates, en même temps que l'oxydation du fer dans les eaux usées. Les dénitrifiants chimio-autotrophes convertissent le nitrate en azote gazeux et l'oxydation du Fe(II) conduit à la production de précipités de fer ferrique qui peuvent ensuite être enlevés et récupérés. La possibilité de maintenir une dénitrification autotrophe avec le fer ferreux en utilisant une culture mixte de Thiobacillus, un inoculum de boue activée et des cultures pures de la souche Pseudogulbenkiania 2002 et de T. denitrificans dans différentes conditions de pH et d'EDTA:Fe(II) a été initialement étudiée dans des essais biologiques par lots. Des ratios plus faibles d’EDTA:Fe(II) se traduisent par une efficacité et des taux d'élimination des nitrates plus élevés. La culture mixte de Thiobacillus présente le taux d'élimination de nitrate le plus élevé, égal à 1.18 mM•(g VSS•d)-1.Par la suite, la culture mixte de Thiobacillus a été ensemencée dans deux réacteurs à lit tassé à flux montant identiques. Les deux réacteurs (réacteur 1 et 2) ont reçu respectivement 120 et 60 mg / L de nitrate et une alimentation différente de Fe (II) afin de respecter un rapport molaire Fe(II):NO3- de 5:1. L’EDTA a été supplémenté à un rapport molaire EDTA:Fe(II) de 0,5:1. Le pH, le TRH et la température étaient de 6,5-7,0, 31 h et 22 ± 2 ° C. Dans le réacteur 1, le TRH a été raccourci de 31 à 24 h et la concentration de NO3- a été maintenue stable à 250 mg / L. Inversement, le réacteur 2 a été mis en fonctionnement avec un TRH décroissant et une concentration de NO3- en alimentation, maintenant ainsi un taux de charge de NO3- stable. Après environ 80 jours d'incubation, l'élimination des nitrates était de 88% dans le réacteur 1 pour un THR de 31 h. L'élimination de nitrates la plus élevée obtenue dans le réacteur 2 était de 80%. Une diminution du TRH de 31 à 24 h n'a pas affecté l'élimination du nitrate dans le réacteur 1, alors que dans le réacteur 2 l'élimination du nitrate a diminué à 64%.De plus, l'influence des métaux lourds (Ni, Cu, Zn) sur la dénitrification autotrophe utilisant du fer ferreux a été évaluée dans des essais biologiques discontinus, en utilisant les mêmes quatre cultures microbiennes différentes. L'efficacité et les taux d'élimination des nitrates les plus élevés ont été obtenus avec la culture mixte dominante de Thiobacillus, alors que la souche Pseudogulbenkiania de 2002 était la moins efficace. Cu s'est avéré être le métal le plus inhibiteur pour les cultures mixtes. Un impact plus faible a été observé lorsque le Zn a été ajouté. Le Ni présentait l'effet inhibiteur le plus faible. Une sensibilité plus élevée à la toxicité des métaux a été observée pour les cultures pures. Enfin, la caractérisation minérale des précipités obtenus pour les expériences avec du Cu, Ni et Zn a été étudiée. Chez les témoins abiotiques, l'oxydation chimique du Fe (II) a entraîné la formation d'hématite. Un mélange de différents (hydro)oxides de Fe(III) a été observé pour toutes les cultures microbiennes, et en particulier : i) un mélange d'hématite, d'akaganéite et / ou de ferrihydrite a été observé dans les précipités des expériences réalisées avec la culture mixte dominée par la présence de Thiobacillus; ii) en plus d'hématite, de l'akaganeite et / ou de la ferrihydrite, la maghémite a été identifiée lorsque la culture pure de T. denitrificans a été utilisée; iii) l'utilisation de la culture pure de la souche Pseudogulbenkiania 2002 a entraîné la formation d'hématite et de maghémite; enfin, l'enrichissement en boues activées a permis la production d'hématite et de magnétite en plus de la maghémite. Aucune différence concernant la minéralogie des précipités n'a été observée avec l'addition de Cu, alors que l'addition de Ni et de Zn a probablement stimulé la formation de maghémite. Une caractérisation minérale supplémentaire est cependant nécessaire / Ferrous iron mediated autotrophic denitrification is an innovative bioprocess for nitrate removal, simultaneously with iron oxidation in wastewaters. Chemoautotrophic denitrifiers convert nitrate to nitrogen gas and Fe(II) oxidation results in the production of ferric iron precipitates that can be subsequently removed and recovered. The feasibility of maintaining Fe(II)-mediated autotrophic denitrification with a Thiobacillus mixed culture, an activated sludge inoculum and pure cultures of Pseudogulbenkiania strain 2002 and T. denitrificans under different pH and EDTA:Fe(II) conditions was initially investigated in batch bioassays. Lower EDTA: Fe(II) ratios resulted in higher nitrate removal efficiency and rates. The Thiobacillus mixed culture resulted in the highest specific nitrate removal rate, equal to 1.18 mM•(g VSS•d)-1.Subsequently, the Thiobacillus mixed culture was seeded in two identical up-flow packed bed reactors. The two reactors (reactor 1 and 2) were fed with 120 and 60 mg/L of nitrate, respectively, and a different Fe(II) feed in order to respect a molar ratio Fe(II):NO3- 5:1. EDTA was supplemented at a EDTA:Fe(II) molar ratio 0.5:1. The pH, HRT and temperature were 6.5-7.0, 31 h and 22±2°C. In reactor 1, HRT was shortened from 31 to 24 h and NO3- concentration was maintained stable at 250 mg/L. Conversely, reactor 2 was operated with decreasing HRT and feed NO3- concentration, thus maintaining a stable NO3- loading rate. After approximately 80 d of incubation, nitrate removal was 88% in reactor 1 at HRT of 31 h. The highest nitrate removal achieved in reactor 2 was 80%. A HRT decrease from 31 to 24 h did not affect nitrate removal in reactor 1, whereas nitrate removal decreased to 64% in reactor 2.Moreover, the influence of heavy metals (Ni, Cu, Zn) on Fe(II)-mediated autotrophic denitrification was assessed in batch bioassays. The highest nitrate removal efficiency and rates were achieved with the Thiobacillus-dominated mixed culture, whereas Pseudogulbenkiania strain 2002 was the least effective. Cu showed to be the most inhibitory metal for mixed cultures. A lower impact was observed when Zn was supplemented. Ni showed the lowest inhibitory effect. A higher sensitivity to metal toxicity was observed for the pure cultures. Finally, the mineral characterization of the precipitates obtained in the experiments with Cu, Ni and Zn was investigated. In abiotic controls, the chemical Fe(II) oxidation resulted in hematite formation. A mixture of different Fe(III) (hydr)oxides was observed with all microbial cultures, and in particular: i) a mixture of hematite, akaganeite and/or ferrihydrite was observed in the precipitates of the experiments carried out with the Thiobacillus-dominated mixed culture; ii) on top of hematite, akaganeite and/or ferrihydrite, maghemite was identified when the T.denitrificans pure culture was used; iii) the use of the pure culture of Pseudogulbenkiania strain 2002 resulted in hematite and maghemite formation; finally, the activated sludge enrichment allowed the production of hematite and magnetite besides maghemite. No difference in the mineralogy of the precipitates was observed with the addition of Cu, whereas the addition of Ni and Zn likely stimulated the formation of maghemite. Further mineral characterization is however required
19

The Dominance of the Archaea in the Terrestrial Subsurface

Johnston, Michael David January 2013 (has links)
No description available.

Page generated in 0.1093 seconds