Spelling suggestions: "subject:"ischemia"" "subject:"lschemia""
431 |
External counterpulsation (ECP): a new, non-invasive method to enhance cerebral blood flow and its application in ischemic stroke. / CUHK electronic theses & dissertations collectionJanuary 2007 (has links)
Han, Jinghao. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 182-204). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese.
|
432 |
A tirosina como marcador de lesão intestinal na isquemia mesentérica.Contrin, Ligia Marcia 19 December 2005 (has links)
Made available in DSpace on 2016-01-26T12:51:49Z (GMT). No. of bitstreams: 1
ligiacontrin_dissert.pdf: 344354 bytes, checksum: 8dbacef82b40fff155fbaac7fd5118f6 (MD5)
Previous issue date: 2005-12-19 / Introduction: The intestinal tract plays a central role in the protein catabolic response after infection or injury. Tyrosine (an index of overall proteolysis) and the release of lactate in intestinal luminal perfusate (ILP) during ligation of the superior mesenteric artery (SMA) were assessed. The present study aims to determine whether tyrosine flow from intracellular compartment to lumen could occur during ischemia induced-gut injury. Methods: Fourteen New-Zealand rabbits were allocated into 2 groups (group I: control (n=6) and group II: ischemia (n=8). SMA (QSMA) and aortic (Qaorta) flows were measured using ultrasonic flow probes. A segment from the ileum was isolated using two multilumen tubes with inflated balloons to delimit a closed segment to be perfused. In a second gut segment, a tonometric catheter (TRIP® Tonometry Catheter, Datex, Finland) was placed. Animals in group II were submitted to ligation of SMA after baseline measurements. The concentrations of tyrosine and lactate in intestinal lumen of both serum and perfusate were determined. Tyrosine was assayed by the fluorometric method as previously described. (1) Results: The lactate concentrations significantly increased in ILP after the ligation of SMA in 4 hours (from de 0.1 ± 0.7 mEq/L to 3.3 ± 1.6 mEq/L in 2 hours) compared to control group (from 0.1 ± 0.5 mEq/L para 0.3 ± 0.1 mEq/L in 2 hours) (p<0.05). Luminal tyrosine significantly increased during ischemia compared to control group in 2 hours (from 10.1 ± 7.7 mM/mL to 93 ± 63 mM/mL, group II; from 9.9 ± 7.8 mM/mL to 25.6 ± 24.0 mM/mL, group I, p<0.05). Conclusion: Tyrosine flow from intracellular compartment to lumen
xiii
occurred in this model suggesting ischemia-gut-derived proteolysis and a potential role for tyrosine as a marker of cell injury. / O trato gastrintestinal exerce um papel central na resposta catabólica da proteína após lesão ou infecção. Avaliaram-se a tirosina (um índice de proteólise global) e a liberação de lactato no perfusado do lúmen intestinal durante a ligação da artéria mesentérica superior (AMS). O objetivo deste estudo é determinar se o fluxo de tirosina proveniente do compartimento intracelular para o lúmen poderia ocorrer durante lesão do intestino induzida por isquemia. Métodos: Catorze coelhos da raça New-Zealand foram divididos em dois grupos (grupo I: controle, n=6 e grupo II: isquemia, n=8). Os fluxos da artéria mesentérica superior (QSMA) e da aorta (Qaorta) foram mensurados usando sondas de fluxo ultra-sônicas. Isolou-se, para realizar a perfusão, um segmento do íleo usando dois cateteres multilumen com balões inflados para delimitar um segmento fechado. Em um segundo segmento intestinal, colocou-se um cateter de tonometria (TRIP® Tonometry Catheter, Datex, Finland). Submeteram-se os animais no grupo II à ligação da AMS após mensurações iniciais. Determinaram-se as concentrações de lactato e tirosina no soro e no perfusado do lúmen intestinal (PLI). Analisou-se a Tirosina pelo método de fluorometria como descrito anteriormente. (1) Resultados: As concentrações de lactato aumentaram significativamente no PLI após ligação da AMS em 4 horas no grupo II (de 0,1 ± 0,7 mEq/l para 3,3 ± 1,6 mEq/l em 2 horas) em comparação com o controle (de 0,1 ± 0,5 mEq/l para 0,3 ± 0,1 mEq/l em 2 horas) (p<0,05). A tirosina no lúmen aumentou significativamente durante a isquemia em comparação com o controle em 2 horas (de 10,1 ± 7,7 mM/ml para 93 ± 63 mM/ml, grupo II; de 9,9 ± 7,8 mM/ml para 25,6 ± 24,0 mM/ml, grupo I, p<0,05). Conclusão: O fluxo da tirosina proveniente do compartimento intracelular para o lúmen ocorreu nesse modelo, sugerindo uma proteólise induzida pela isquemia intestinal, e um potencial papel para a tirosina como um marcador da lesão celular.
|
433 |
Effect of hyperkalemia and ischemia on large conductance calcium-activated potassium channels in porcine coronary arterial smooth muscle: relevance to cardioplegic arrest. / 高鉀和缺血對豬冠狀動脈平滑肌大電導鈣激活鉀通道的影響--與心臟手術的相關性 / Gao jia he que xue dui zhu guan zhuang dong mai ping hua ji da dian dao gai ji huo jia tong dao de ying xiang -- yu xin zang shou shu de xiang guan xingJanuary 2008 (has links)
Han, Jianguo. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 66-76). / Abstracts in English and Chinese. / Declaration --- p.i / Acknowledgement --- p.□ / Publication --- p.□ / Abstract (English) --- p.□xi / Abstract (Chinese) --- p.□ / Abbreviations --- p.ix / List of figures / tables --- p.x / Chapter Chapter 1. --- General Introduction / Chapter 1.1 --- Role of vascular smooth muscle cells in the control of coronary circulation --- p.1 / Chapter 1.1.1 --- Potassium channels in the coronary smooth muscle cells --- p.2 / Chapter 1.1.1.1 --- Voltage -dependent potassium (Kv) channels --- p.3 / Chapter 1.1.1.2 --- Inward rectifier K+ (Kir) channels --- p.4 / Chapter 1.1.1.3 --- ATP-sensitive potassium (Katp) channels --- p.4 / Chapter 1.1.2 --- BKCa channels in the regulation of vascular function --- p.6 / Chapter 1.1.2.1 --- The structure of BKCa channels --- p.6 / Chapter 1.1.2.2 --- Role of BKCa channels in the regulation of vascular function --- p.6 / Chapter 1.2 --- Functional alteration of the coronary SMCs during cardiac surgery --- p.7 / Chapter 1.2.1 --- Effect of ischemia on the function of SMCs in the coronary circulation --- p.8 / Chapter 1.2.2 --- Effect of cardioplegic/organ preservation solutions on the function of SMCs in the coronary circulation --- p.11 / Chapter Chapter 2. --- Materials and Methods --- p.14 / Chapter 2.1 --- Isometric force study in small coronary arteries --- p.14 / Chapter 2.1.1 --- Preparation of porcine small coronary arteries --- p.14 / Chapter 2.1.2 --- Experiment procedure --- p.15 / Chapter 2.1.2.1 --- Mounting of small coronary arteries --- p.15 / Chapter 2.1.2.2 --- Normalization procedure for small coronary arteries --- p.16 / Chapter 2.1.2.3 --- Precontraction and relaxation --- p.17 / Chapter 2.1.3 --- Data acquisition and analysis --- p.17 / Chapter 2.2 --- Patch-clamp electrophysiology --- p.18 / Chapter 2.2.1 --- Preparation of porcine coronary arteries --- p.18 / Chapter 2.2.2 --- Enzymatic dissociation of coronary arterial SMCs --- p.18 / Chapter 2.2.3 --- Primary cell culture --- p.19 / Chapter 2.2.4 --- Recording of BKca channel currents --- p.19 / Chapter 2.3 --- Statistical analysis --- p.21 / Chapter 2.4 --- Chemicals --- p.21 / Chapter Chapter 3. --- The Effect of Ischemia on BKCa channels in the Isolated SMCs of Coronary Arteries --- p.22 / Chapter 3.1 --- Abstract --- p.22 / Chapter 3.2 --- Introduction --- p.23 / Chapter 3.3 --- Experimental design and analysis --- p.25 / Chapter 3.3.1 --- Isometric force study in small coronary arteries --- p.25 / Chapter 3.3.2 --- Effect of ischemia on NS1619-induced relaxation in small coronary arteries --- p.26 / Chapter 3.3.3 --- Effect of ischemia on smooth muscle BKca channel currents --- p.27 / Chapter 3.3.3.1 --- Preparation of porcine coronary artery --- p.27 / Chapter 3.3.3.2 --- Enzymatic dissociation of coronary arterial SMCs --- p.27 / Chapter 3.3.3.3 --- Recording of BKCa channel currents --- p.27 / Chapter 3.3.4 --- Data acquisition and analysis --- p.28 / Chapter 3.4 --- Results --- p.28 / Chapter 3.4.1 --- Electrophysiological studies --- p.28 / Chapter 3.4.1.1 --- Effect of IBTX on the whole cell outward currents --- p.29 / Chapter 3.4.1.2 --- Effect of ischemia on the IBTX-sensitive BKca currents --- p.30 / Chapter 3.4.2 --- Relaxation studies --- p.30 / Chapter 3.4.2.1 --- Resting force --- p.30 / Chapter 3.4.2.2 --- U46619-induced contraction force --- p.31 / Chapter 3.4.2.3 --- Effect of IBTX on the NS1619-induced relaxation --- p.31 / Chapter 3.4.2.4 --- Effect of ischemia on the NS1619-induced relaxation --- p.31 / Chapter 3.5 --- Discussion --- p.32 / Chapter 3.5.1 --- Functional changes of the coronary smooth muscle BKca channels after ischemic exposure --- p.33 / Chapter 3.5.2 --- Role of BKca channels in SMCs during ischemia --- p.33 / Chapter 3.5.3 --- Clinical implications --- p.35 / Chapter Chapter 4. --- The Effect of Hyperkalemia on BKCa channels in the Isolated SMCs of Coronary Arteries --- p.41 / Chapter 4.1 --- Abstract --- p.41 / Chapter 4.2 --- Introduction --- p.42 / Chapter 4.3 --- Experimental design and analysis --- p.44 / Chapter 4.3.1 --- Isometric force study in small coronary arteries --- p.44 / Chapter 4.3.1.1 --- Effect of hyperkalemia on NS1619-mediated relaxation in small coronary arteries --- p.44 / Chapter 4.3.2. --- Effect of hyperkalemia on BKCa currents of SMCs --- p.45 / Chapter 4.3.2.1 --- Preparation of porcine coronary arteries --- p.45 / Chapter 4.3.2.2 --- Enzymatic dissociation of coronary arterial SMCs --- p.45 / Chapter 4.3.2.3 --- Recording of BKca channel currents --- p.46 / Chapter 4.3.3. --- Data acquisition and analysis --- p.46 / Chapter 4.4 --- Results --- p.47 / Chapter 4.4.1 --- Effect of hyperkalemia on the iberiotoxin-sensitive BKCa channel currents --- p.47 / Chapter 4.4.2 --- Relaxation studies --- p.48 / Chapter 4.4.2.1 --- Resting force --- p.48 / Chapter 4.4.2.2 --- U46619- and high K+-induced contraction force --- p.48 / Chapter 4.4.2.3 --- Effect of high K+ on the NS1619-induced relaxation --- p.48 / Chapter 4.4.2.4 --- Effect of IBTX on the NS1619-induced relaxation --- p.49 / Chapter 4.5 --- Discussion --- p.49 / Chapter 4.5.1 --- Role of BKCa channels in the isolated SMCs in hyperkalemic solution --- p.50 / Chapter 4.5.2 --- Functional changes of BKCa channels in coronary SMCs in hyperkalemia exposure --- p.51 / Chapter 4.5.3 --- Clinical implications --- p.52 / Chapter Chapter 5. --- General Discussion --- p.58 / Chapter 5.1 --- BKCa channels in porcine coronary SMCs --- p.59 / Chapter 5.2 --- Alteration of BKCa function related to ischemia in porcine coronary SMCs --- p.60 / Chapter 5.3 --- Alteration of BKCa function related to hyperkalemia in porcine coronary SMCs --- p.61 / Chapter 5.4 --- Limitation of the study --- p.62 / Chapter 5.5 --- Future investigations --- p.63 / Chapter 5.6 --- Conclusions --- p.63 / References --- p.66
|
434 |
Potential of serotonin in stem cell technology and therapy in a mouse ischemic stroke model. / CUHK electronic theses & dissertations collectionJanuary 2012 (has links)
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in the embryonic neural development and adult neurogenesis. But the effects of 5-HT on stem cells are not fully known. In this study, the effects and underlying signal pathways of 5- HT on proliferation and neural differentiation of mouse embryonic stem (ES) cells, neural progenitor (NP) cell line C 17.2 and embryonic neural stem (NS) cells were explored. Molecular analysis, immunostaining and western blotting revealed that NP/NB cells expressed the rate-limiting enzyme tryptophan hydroxylase (TPH) and produced endogenous 5-HT. While mouse ES cells showed no expression of TPH. Quantitative PCR demonstrated that ES cells and NPINS cells expressed majority of 5-HT receptor sUbtypes. In serum free propagation culture, WST1, BrdU incorporation and neural colony forming cell assay demonstrated that 5-HT enhanced proliferation of ES cells and NPINS cells in a dose-dependent manner. Tryptophan hydroxylase (TPH) inhibitor para-chlorophenylalanine (PCPA) which can inhibit biosynthesis of endogenous 5-HT decreased viability of mouse NP/NS cells. Mouse ES cells derived embryoid bodies (EB) and NS/NP cells were subjected to neural induction in serum-free medium with and without 5-HT or PCPA. On day 8 of EB cultures, immunofluorescence staining displayed a less percentage of SSEA-1+ cells derived from cultures supplemented with 5-HT. Nestin positivity are comparable. Quantitative PCR analysis suggested that supplement of 5-HT in EB culture inhibit neural differentiation of ES cells and induce mesodermal commitment. On day 21 of ES cells neural induction, compared to cultures without 5-HT treatment, a significantly less number of ß-tubulin III+ neurons, GEAP+ astrocytes and GaIC+ oligodendrocytes were noted in 5-HT -supplemented cultures. For NS/NP cells, the inhibitory effects of 5-HT on neuronal and oligodendrocytic commitment were also observed. And the application of PCPA exerted a promoting effect on neural differentiation of NS cells. Manipulating 5-HT level can affect the expression level of key genes which involved in 5-HT metabolism. ES and NS/NP cells treated with 5-HT showed decreased production of endogenous reactive oxygen species (ROS). 5-HT demonstrated a significant anti-apoptotic effect on NP cells and this antiapoptotic effect may be mediated by up-regulated expression of anti-apoptotic gene Bel- 2. Whole genome cDNA microarray analysis and quantitative RT-PCR revealed that notch signal pathway was involved in mediating the biological effects of 5-HT. Western blotting further confirmed that 5-HT treatment up-regulated the protein level of NICD and notch downstream effectors Hes-l and Hes-5. Finally, the therapeutic effects of ES cell-derived neural cells were testified in a mouse model of global ischemia. Two weeks post-transplantation, BrdU labeled ES cell-derived neural cells survived and migrated throughout brain parenchyma. A majority of transplanted cells remained nestin positive. The cognitive functions of cell transplanted groups showed significant recovery compared with untransplanted arms, but no significant difference was observed between transplanted groups treated with and without 5-HT. Taken together, data of this study indicated 5-HT play an important role in neural development and ES cell-derived neural cells might be applicable in the treatment of stroke. / Li, Jin. / "November 2011." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 195-241). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstracts in English. / ACKNOWLEDGEMENTS --- p.i / LIST OF PUBLICATIONS --- p.ii / ABSTRACT --- p.iii / ABSTRACT [in Chinese] --- p.v / TABLE OF CONTENT --- p.vi / LISTS OF FLOWCHARTS --- p.xii / LISTS OF FIGURES --- p.xiii / LIST OF TABLES --- p.xvi / LIST OF EQUIPMENTS --- p.xvii / LIST OF ABBREVATIONS --- p.xvii / Chapter Chapter1 --- Introduction --- p.1 / Chapter 1.1 --- Central nervous system disorder --- p.1 / Chapter 1.1.1 --- Stroke --- p.1 / Chapter 1.1.2 --- Spinal cord injuries --- p.4 / Chapter 1.1.3 --- Parkinson's disease --- p.6 / Chapter 1.1.4 --- Amyotrophic Lateral Sclerosis --- p.8 / Chapter 1.2 --- Stem cell therapy --- p.10 / Chapter 1.2.1 --- General considerations in stem cell therapy --- p.11 / Chapter 1.2.2 --- Stem cell therapy for stroke --- p.11 / Chapter 1.2.3 --- Stem cell therapy for spinal cord injury --- p.15 / Chapter 1.2.4 --- Stem cell therapy for Parkinson's disease --- p.16 / Chapter 1.2.5 --- Stem cell therapy for ALS --- p.18 / Chapter 1.3 --- Stem cells --- p.20 / Chapter 1.3.1 --- Embryonic stem cells --- p.21 / Chapter 1.3.1.1 --- Derivation and characterization --- p.21 / Chapter 1.3.1.2 --- Biology of ES cells --- p.21 / Chapter 1.3.1.2.1 --- Pluripotency of ES cells --- p.21 / Chapter 1.3.1.2.2 --- Differentiation of ES cells to multiple lineages --- p.24 / Chapter 1.3.1.2.2.1 --- Ectodermal differentiation --- p.25 / Chapter 1.3.1.2.2.2 --- Mesodermal differentiation --- p.27 / Chapter 1.3.1.2.2.3 --- Endodermal differentiation --- p.28 / Chapter 1.3.2 --- Neural stem cells --- p.30 / Chapter 1.3.2.1 --- Derivation and characterization --- p.30 / Chapter 1.3.2.2 --- Biology of NS cells --- p.32 / Chapter 1.3.3 --- Induced pluripotent stem cells --- p.34 / Chapter 1.3.4 --- Mesenchymal stem cells --- p.35 / Chapter 1.4 --- Serotonin (5-HT) --- p.36 / Chapter 1.4.1 --- Distribution --- p.37 / Chapter 1.4.2 --- Metabolism --- p.37 / Chapter 1.4.3 --- Biological effects of 5-HT --- p.38 / Chapter 1.4.4 --- Serotonin receptor subtypes and receptor signal transduction pathways --- p.40 / Chapter Chapter2 --- Aim --- p.43 / Chapter 2.1 --- Hypothesis and study objectives --- p.43 / Chapter Chapter3 --- Materials and Methods --- p.49 / Chapter 3.1 --- Chemicals and Reagents --- p.49 / Chapter 3.1.1 --- Cell culture --- p.49 / Chapter 3.1.2 --- Serotonin, serotonin receptor subtypes specific agonists/antagonists and drugs that regulate serotonin metabolism --- p.51 / Chapter 3.1.3 --- Cell proliferation assay --- p.52 / Chapter 3.1.4 --- Cell apoptosis assay --- p.52 / Chapter 3.1.5 --- Immunohistochemistry and staining --- p.52 / Chapter 3.1.6 --- Western blotting --- p.55 / Chapter 3.1.7 --- Molecular biology --- p.56 / Chapter 3.1.8 --- Whole genome cDNA micro array --- p.58 / Chapter 3.1.9 --- MAO activity assay --- p.58 / Chapter 3.1.10 --- Endogenous ROS production assay --- p.58 / Chapter 3.2 --- Consumable --- p.58 / Chapter 3.3 --- Cells --- p.60 / Chapter 3.3.1 --- Feeder cell --- p.60 / Chapter 3.3.1.1 --- Mouse embryonic fibroblasts --- p.60 / Chapter 3.3.2 --- ES cells --- p.61 / Chapter 3.3.2.1 --- ES cell D3 --- p.61 / Chapter 3.3.2.2 --- ES cell-E14TG2a --- p.61 / Chapter 3.3.3 --- NS cells --- p.61 / Chapter 3.3.3.1 --- Neural progenitor cells line C172 --- p.61 / Chapter 3.3.3.2 --- Mouse embryonic neural stem cells --- p.61 / Chapter 3.4 --- In-house prepared solutions --- p.62 / Chapter 3.4.1 --- Stock solution ofInsulin, Transferrin, Selentine (ITS) Supplement --- p.63 / Chapter 3.4.2 --- Gelatin solution 01% --- p.62 / Chapter 3.4.3 --- Paraformaldehyde solution 4% (PFA) --- p.62 / Chapter 3.4.4 --- Tritox X-lOO solution 03% --- p.63 / Chapter 3.4.5 --- Popidium iodide solution 1 ug/ml (PI) --- p.63 / Chapter 3.4.6 --- Poly-L-ornithine solution --- p.63 / Chapter 3.4.7 --- Laminin solution --- p.64 / Chapter 3.4.7 --- MEF Maintenance medium --- p.64 / Chapter 3.4.9 --- Cryopreservation Media for MEF and C172 (2X) --- p.64 / Chapter 3.4.10 --- Cryopreservation Media for mouse ES cell (2X) --- p.65 / Chapter 3.4.11 --- Cryopreservation Media for mouse NS cell (2X) --- p.65 / Chapter 3.4.12 --- Serum based maintenance medium for C172 --- p.65 / Chapter 3.4.13 --- Serum free maintenance medium for C172 --- p.66 / Chapter 3.4.14 --- Serum-based propagation medium for ES cells --- p.66 / Chapter 3.4.15 --- Serum-free propagation medium forES cells --- p.67 / Chapter 3.4.16 --- Serum-free induction medium for ES cells --- p.67 / Chapter 3.4.16.1 --- Serum-free induction medium I --- p.67 / Chapter 3.4.16.2 --- Serum-free induction medium II --- p.68 / Chapter 3.4.16.3 --- Serum-free induction medium III --- p.68 / Chapter 3.4.17 --- Tris-HCl (1 M), pH 74 --- p.68 / Chapter 3.4.18 --- Tris-HCl (1 M), pH 87 --- p.69 / Chapter 3.4.19 --- Tris-HCI (1 M), pH 69 --- p.69 / Chapter 3.4.20 --- APS 10% (wt/vol) --- p.69 / Chapter 3.4.21 --- Protease inhibitor (10X) --- p.70 / Chapter 3.4.22 --- RIPA --- p.70 / Chapter 3.4.23 --- Resolving buffer (8X) --- p.70 / Chapter 3.4.24 --- Stacking buffer (4X) --- p.71 / Chapter 3.4.25 --- Protein running buffer (lOX) --- p.71 / Chapter 3.4.26 --- Transfer buffer (10X) --- p.72 / Chapter 3.4.27 --- Transfer buffer (IX) --- p.72 / Chapter 3.4.28 --- Blocking buffer (lOX) --- p.72 / Chapter 3.4.29 --- TBS (10X) --- p.73 / Chapter 3.4.30 --- TBS-T (IX) --- p.73 / Chapter 3.4.31 --- Stacking gel --- p.73 / Chapter 3.4.32 --- Resolving gel --- p.74 / Chapter 3.5 --- Methods --- p.75 / Chapter 3.5.1 --- Cell culture --- p.75 / Chapter 3.5.1.1 --- Preparation of acid washed cover slips --- p.75 / Chapter 3.5.1.2 --- Preparation of gelatinized culture wares --- p.75 / Chapter 3.5.1.3 --- Poly-L-omithine and laminin coating --- p.76 / Chapter 3.5.1.4 --- Thawing cryopreserved cells --- p.76 / Chapter 3.5.1.5 --- Passage of culture --- p.77 / Chapter 3.5.1.5 --- 6 Cell count --- p.78 / Chapter 3.5.1.7 --- Cytospin --- p.78 / Chapter 3.5.1.8 --- Trypan blue dye exclusion test --- p.78 / Chapter 3.5.1.9 --- Cryopreservation --- p.79 / Chapter 3.5.1.10 --- Derivation and culture of mouse embryonic fibroblasts (MEF) --- p.79 / Chapter 3.5.1.11 --- Propagation of ES cells in serum-based/free medium --- p.81 / Chapter 3.5.1.12 --- Neural differentiation ofES cells --- p.83 / Chapter 3.5.1.13 --- Propagation ofNP cell C172 in serum-based or serum-free medium --- p.84 / Chapter 3.5.1.14 --- Neural differentiation ofC172 --- p.85 / Chapter 3.5.1.15 --- Derivation and propagation of embryonic NS cells --- p.85 / Chapter 3.5.1.13 --- Neural differentiation of embryonic NS cells --- p.86 / Chapter 3.5.1.17 --- BrdU labeling of the ES cells derived products --- p.87 / Chapter 3.5.2 --- Cell proliferation assay --- p.87 / Chapter 3.5.2.1 --- Cell morphology --- p.87 / Chapter 3.5.2.2 --- WST-1 assay --- p.88 / Chapter 3.5.2.3 --- BrdU incorporation assay --- p.88 / Chapter 3.5.2.4 --- NCFC assay --- p.89 / Chapter 3.5.3 --- Conventional and quantitative RT-PCR --- p.89 / Chapter 3.5.3.1 --- RNA extraction --- p.89 / Chapter 3.5.3.2 --- RNA quantitation --- p.90 / Chapter 3.5.3.3 --- Reverse Transcription ofthe First Strand complementary DNA --- p.90 / Chapter 3.5.3.4 --- Polymerase chain reaction --- p.91 / Chapter 3.5.3.5 --- RNA Integrity Check --- p.91 / Chapter 3.5.3.6 --- Electrophoresis and visualization of gene products --- p.91 / Chapter 3.5.3.7 --- Real-time quantitative PCR --- p.92 / Chapter 3.5.4 --- Microarray --- p.94 / Chapter 3.5.5 --- Immunofluoresent staining --- p.94 / Chapter 3.5.6 --- Western blot --- p.95 / Chapter 3.5.6.1 --- Harvesting samples --- p.95 / Chapter 3.5.6.2 --- Protein extraction --- p.96 / Chapter 3.5.6.3 --- Protein quantification --- p.96 / Chapter 3.5.6.4 --- SDS-PAGE --- p.97 / Chapter 3.5.6.5 --- Wet transfer of protein to PVDF membrane --- p.97 / Chapter 3.5.6.6 --- Blocking the membrane --- p.97 / Chapter 3.5.6.7 --- Immunoblotting --- p.97 / Chapter 3.5.6.8 --- Signal detection --- p.98 / Chapter 3.5.7 --- Cell apoptosis assay --- p.98 / Chapter 3.5.7.1 --- ANNEXINV-FITC apoptosis detection --- p.98 / Chapter 3.5.7.2 --- TUNEL --- p.99 / Chapter 3.5.8 --- Endogenous ROS assay --- p.100 / Chapter 3.5.9 --- In vivo studies --- p.101 / Chapter 3.5.9.1 --- Induction of cerebral ischemia in mice --- p.101 / Chapter 3.5.9.2 --- Transplantation --- p.101 / Chapter 3.5.9.3 --- Assessment of learning ability and memory --- p.102 / Chapter 3.5.10 --- Histological analysis --- p.103 / Chapter 3.5.10.1 --- Animal sacrifice for brain harvest --- p.103 / Chapter 3.5.10.2 --- Cryosectioning --- p.103 / Chapter 3.5.10.3 --- Haematoxylin and eosin staining --- p.104 / Chapter 3.6 --- Data analysis --- p.104 / Chapter Chapter4 --- Results --- p.113 / Chapter 4.1 --- Expression profile of 5-HT receptors and metablism of endogenous 5-HT --- p.113 / Chapter 4.1.1 --- Expression profiles of 5-HT receptors in stem cells --- p.113 / Chapter 4.1.2 --- Biosynthesis of endogenous 5-HT --- p.115 / Chapter 4.2 --- Effects of 5-HT on proliferation of mouse ES cells and NS cells --- p.115 / Chapter 4.2.1 --- Effects of 5-HT on proliferation ofES cells --- p.115 / Chapter 4.2.2 --- Effects of 5-HT on proliferation ofNP and NS cells --- p.117 / Chapter 4.3 --- Effects of 5-HT on differentiation of mouse ES cells and NS cells --- p.119 / Chapter 4.3.1 --- Neural differentiation ofES cells --- p.119 / Chapter 4.3.2 --- Effects of 5-HT on differentiation ofES cells --- p.119 / Chapter 4.3.3 --- Neural differentiation ofNP and NS cells --- p.120 / Chapter 4.3.4 --- Effects of 5-HT on differentiation ofNP and NS cells --- p.121 / Chapter 4.4 --- 5-HT metabolism in mouse ES cells and NS cells --- p.122 / Chapter 4.4.1 --- Expression of key 5-HT metablic genes in stem cells --- p.122 / Chapter 4.4.2 --- Detection ofROS generation in mouse NS cells --- p.123 / Chapter 4.4.3 --- Effects of 5-HT on expression level of MAO-A, MAO-B and SERT --- p.123 / Chapter 4.5 --- Anti-apoptotic effect of 5-HT on NP and NS cells in neural induction --- p.127 / Chapter 4.6 --- Potential signaling pathways mediated by 5-HT --- p.130 / Chapter 4.7 --- Therapeutic effects of 5-HT treated mouse ES cell-derived cells in a stoke model --- p.130 / Chapter 4.7.1 --- Induction of global ischemia by transient BCCAO --- p.130 / Chapter 4.7.1.1 --- HE staining of post ischemic brain --- p.131 / Chapter 4.7.1.2 --- TUNEL analysis of cell apoptosis at post ischemia day 3 --- p.132 / Chapter 4.7.2 --- Cell labelling --- p.132 / Chapter 4.7.3 --- Cognition monitoring post transplantation --- p.133 / Chapter 4.7.4 --- Survival, migration and differentiation of transplanted neural cells --- p.135 / Chapter Chapter5 --- Discussion --- p.180 / Chapter Chapter6 --- Conclusions --- p.192 / References --- p.195
|
435 |
Novel Therapeutic Approaches for Ischemic Heart and Brain Injury: Modulation of Toll-Like Receptor-Mediated Signaling Pathways and PI3K/Akt SignalingLu, Chen 01 May 2014 (has links)
Innate immune and inflammatory responses contribute to myocardial and cerebral ischemia/reperfusion (I/R) injury. Toll-like receptors (TLRs) play a critical role in the induction of innate immune and inflammatory responses via activation of nuclear factor kappa B (NF-κB). We have shown that activation of NF-κB contributes to myocardial and cerebral I/R injury. Indeed, inhibition of TLR4-mediated NF-κB activation significantly decreased myocardial and cerebral I/R injury via activation of PI3K/Akt signaling. PI3K/Akt signaling is an important pathway in regulating cellular survival and inflammatory responses. Therefore, an important question is how to differentially modulate PI3K/Akt signaling and TLR/NF-κB-mediated signaling pathway during I/R injury?
We demonstrated that pretreatment of mice with Pam3CSK4, a specific TLR2 ligand, significantly decreased cerebral I/R injury and improved neuronal functional recovery. Importantly, therapeutic administration of Pam3CSK4 also markedly decreased cerebral I/R injury. The mechanisms involved suppression of NF-κB binding activity and activation of PI3K/Akt signaling. We also demonstrated that CpG-ODN, a specific TLR9 ligand, induced protection against cerebral I/R injury via activation of PI3K/Akt signaling. Our findings were consistent with our previous reports showing that administration of Pam3CSK4 or CpG-ODN protected against myocardial I/R injury via a PI3K/Akt-dependent mechanism. In addition, we demonstrated for the first time that TLR3 located in endosomes played a deleterious role in myocardial I/R injury via activation of NF-κB.
To investigate how to activate PI3K/Akt signaling during I/R injury, we examined the role of microRNA (miRs) in regulating PI3K/Akt signaling during myocardial ischemic injury. We discovered that Pam3CSK4 or CpG-ODN treatment significantly increased the expression of miR-130a in the myocardium, while myocardial infarction markedly decreased the levels of miR-130a in the myocardium. The data indicated that miR-130a served a protective role in myocardial ischemic injury. Indeed, we demonstrated for the first time that increased expression of miR-130a significantly attenuated cardiac dysfunction and promoted angiogenesis after myocardial infarction. The mechanisms involved activation of PI3K/Akt signaling via targeting PTEN expression by microRNA-130a.
This dissertation discovers novel mechanisms of cerebral and myocardial ischemic injury and provides solid basis for developing new approaches for the treatment and management of stroke and heart attack patients.
|
436 |
Μελέτη της αναγεννητικής ικανότητας του ήπατος μετά απο ισχαιμία και μερική ηπατεκτομή επι χολοστατικού ήπατος σε επίμυες. / Experimental study on the regeneration capacity of the liver, after partial hepatectomy with and without ischemia,on cholestatic liver in rats.Κρητικός, Νεοκλής 26 June 2007 (has links)
ΣΚΟΠΟΣ: Σήμερα είναι πλέον γνωστό ότι το χολοστατικό ήπαρ είναι πιο ευαίσθητο στην ισχαιμία από το φυσιολογικό ήπαρ. Η ηπατική αναγέννηση μετά μερική ηπατεκτομή (ΡΗχ) ρυθμίζεται από διάφορους παράγοντες οι οποίοι ενεργοποιούν ή αναστέλλουν τον πολλαπλασιασμό των ηπατοκυττάρων. Ένα από τα κυτταρικά στοιχεία που συμβάλλει στην αναγέννηση του ήπατος είναι το ηπατοκύτταρο με χολαγγειακή μορφολογία (DΗ). Από την άλλη μεριά, η απόπτωση φαίνεται να παίζει ένα σημαντικό ρόλο στον κυτταρικό πολλαπλασιασμό και στην ηπατική αναγέννηση. Στην παρούσα μελέτη, μετά από Ρηχ σε φυσιολογικούς ποντικούς και σε άλλους με ίκτερο, με ή χωρίς επιπλέον ισχαιμία, ερευνήσαμε: α) τα ιστοπαθολογικά χαρακτηριστικά της ισχαιμικής ηπατικής βλάβης και αναγέννησης, β) το δυνητικό ρόλο των ηπατοκυττάρων με χολαγγειακή μορφολογία κατά τη διάρκεια της ηπατικής αναγέννησης και γ)την έκφραση των γονιδίων bcl-2 και bax, τα οποία σχετίζονται με την απόπτωση, καθώς και την παρουσία της απόπτωσης.
ΥΛΙΚΑ ΚΑΙ ΜΕΘΟΔΟΙ: Η μελέτη συμπεριέλαβε 140 ποντικούς Wistar οι οποίοι χωρίστηκαν σε 14 ομάδες: Ι –control, II - εγχείρηση sham. III-IV-V-παροδικός αγγειακός αποκλεισμός ηπατικής αρτηρίας και πυλαίας φλέβας (ολική ηπατική ισχαιμία) (TLI) για 15-30-60 λεπτά αντίστοιχα. VI - απολίνωση του κοινού χοληδόχου πόρου (BDL) για 10 ημέρες, VII-VIII-ΙΧ-BDL-ΤLI-ΡΗχ. Χ-μερική ηπατεκτομή (ΡΗχ 68%}, XI- ΡΗχ + TLI (30 min), XII-BDL+ΡΗχ, XIII-BDL+ ΡΗχ+TLI (30 min) και XIV- BDL+TLI (30 min) + ΡΗχ. Τα ζώα θυσιάστηκαν 24 και 48 ώρες μετά από Ρηχ, με εξαίρεση τις περιπτώσεις όπου η κατάσταση υγείας ήταν κρίσιμη. Η μελέτη του ηπατικού ιστού περιελάμβανε:
(α) Η&Α stain, (β) υβριδισμό in situ (ανίχνευση mRΝΑ των bcl-2 και bax σε παραφίνη, (γ) ανάλυση Western Blot για τη μελέτη των πρυτεϊνικών επιπέδων των bcl-2 και bax, (δ) in situ υβριδισμός (TUNEL) για την ανίχνευση παραγόντων απόπτωσης, (ε) ανοσοϊστοχημικά stains σε παραφίνη (μέθοδος στρεπταβιδίνης-βιοτίνης) με σκοπό να μελετηθεί η έκφραση των ακόλουθων αντιγόνων: κυτοκερατίνη 7 και 19 (χολικός φαινότυπος), ηπατοκυτταρίκή και α1-σντιθρυψίνη (ηπατοκυτταρικός φαινότυπος), βιμεντίνη, CD34, α-φετοπρωτείνη, GST-π(γλουταθειονιν-S-τρανσφεράση-π). Κι67 (κυτταρικός πολλαπλασιασμός), bcl-2 και bax (γονίδια απόπτωσης).
ΑΠΟΤΕΛΕΣΜΑΤΑ: Ήπαρ από ποντικούς α)με TLI ανέπτυξε βλάβες ηπατικής ισχαιμίας, β)με BDL βλάβες ηπατικής απόφραξης, γ)με BDL+TLI ανέπτυξαν βλάβες ηπατικής ισχαιμίας μαζί με αλλαγές λόγω απόφραξης των χοληφόρων. Το ποσοστό του επηρεασμένου ηπατικού παρεγχύματος (%ηπατικής νέκρωσης) ήταν υψηλότερο στις ομάδες με TLI+BDL. Σε αυτές τις ομάδες, ο ηπατοκυτταρικός δείκτης (δείκτης πολλαπλασιασμού) του Κi67 ήταν μικρότερος από τον αντίστοιχο της ομάδας χωρίς TLI. Το εύρημα αυτό υποδηλώνει ότι το χολοστστικό ήπαρ είναι πιο ευαίσθητο στην ισχαιμία κι εκδηλώνει μειωμένη αναγεννητική ικανότητα, συγκρινόμενο με μη χολοστατικό ήπαρ. Βιοψίες ήπατος έδειξαν χαρακτήρες ηπατικής αναγέννησης προερχόμενης από τη ζώνη 2, η οποία επεκτεινόταν στη ζώνη 1 και κάποιες φορές στη ζώνη 3. Ανοσοϊστοχημικές αναλύσεις ανέδειξαν κύτταρα θετικά στο ΑΕ1 και κύτταρα θετικά στο ΗΕΡΡΑΡ. Σε όλες τις ομάδες με TLI τα ηπατοκύτταρα χολαγγειακής μορφολογίας εμφανίζονταν κυρίως σε περιοχές περι-πυλαίες. Εξέφραζαν κυτοκερατίνες 19 και 7, ηπατοκυτταρίκή και α1-αντιθρυψίνη ενώ εμφάνιζαν και συνδυασμένη έκφραση CΚ7/CΚ19 και ηπατοκυτταρική ή ΑΕ1/CΚ19 και α1-αντιθρυψϊνη. Το ποσοστό των κυττάρων αυτών ήταν ευθέως ανάλογο με το χρόνο επιβίωσης των ζώων (r=0,354, ρ<0,05). Όσον αφορά την απόπτωση, προ ηπατεκτομής, τα επίπεδα του bcl-2 ( πρωτεΐνη ή mRΝΑ) ήταν υψηλότερα σε ποντικούς με ίκτερο απ' ό,τι στους ποντικούς controls. Επιπλέον τα επίπεδα του bax (πρωτεΐνη ή mRΝΑ) και ο σωματικός δείκτης απόπτωσης (ΑΒΙ) ήταν υψηλότερα σε χολοστατικό ήπαρ. Μετά ηπατεκτομή, παρατηρήθηκε πρώιμη ελάττωση των επιπέδων πρωτεϊνών και mRΝΑ του γονιδίου bcl-2 και μια ύστερη αύξηση του προ-αποπτωτικού γονιδίου bax και του ΑΒΙ, σε σύγκριση με τα controls.
ΣΥΜΠΕΡΑΣΜΑΤΑ: Σε περιπτώσεις αποφρακτικού ίκτερου (χολαγγειοπάθεια), η ηπατική ισχαιμία καθιστά το όργανο πιο ευαίσθητο σε ενδεχόμενη βλάβη, καθώς προκαλεί ευρύτερη νέκρωση παρεγχύματος και ελαττώνει το ρυθμό πολλαπλασιασμού των ηπατοκυττάρων, Η διεργασία αναγέννησης του ήπατος επιτελείται κυρίως μέσω του πολλαπλασιασμού μη νεκρωτικών κυττάρων τα οποία εκφράζουν ηπατοκυτταρικά ή χολαγγειακά επιθηλιακά χαρακτηριστικά. Σε τέτοιες περιπτώσεις, το κύριο στοιχείο της ηπατικής αναγέννησης αποτελεί η παρουσία των ηπατοκυττάρων με χολαγγειακή μορφολογία (κύτταρα που εκδηλώνουν φαινότυπο ενδιάμεσο μεταξύ κυττάρων χολαγγειακής και ηπατικής προέλευσης) και η διαφοροποίηση τους σε ώριμα ηπατοκύτταρα. Τέλος, η απόπτωση έχει ρόλο στο χολοστατικό ήπαρ με ή χωρίς επιπλέον ισχαιμία και πιστεύεται ότι μπορεί να συμβάλλει στην παρουσία κατεσταλμένης αναγεννητικής απόκρισης που παρατηρήθηκε σε ήπαρ ποντικών με ίκτερο μετά από μερική ηπατεκτομή. / AIM: Today, it is known that cholestatic liver is more susceptible to ischemia than normal liver. Liver regeneration after partial hepatectomy (PHx) is regulated by several factors that activate or inhibit hepatocyte proliferation. One of the cellular elements that contributes to liver regeneration is ductular hepatocyte (DH). On the other hand, apoptosis seems to play an important role in cellular proliferation and liver regeneration. In this study and. after PHx. in normal and jaundiced rats with or without superimposed ischemia, we assessed a) the histopathologic features of hepatic Ischemic damage and liver regeneration, b) the potential role of ductular hepatocytes during liver regeneration and c) the expression apoptosis-asscciated genes bcl-2 and bax. and the presence of apoptosis,
MATERIALS £ METHODS: The study comprised 140 male Wistar rats, assigned randomly in 14-groups: l-controls. ll-sham. Ill-IV-V-cIamping of hepatic artery and portal vein (total liver Ischemia-TLI) for 15-30-60 min respectively. Vl-common bile duct ligation (BDL) for lOdays. VII-VIII-IX-BDL-TLI-X-partial hepatectomy(PHx-68%). XI-PHx+TLI(30min). XU-BDL+PHx. XIII-BDL+PHx+TLI(30min) and XIV-BDL+TLI (30min)+PHx. Animals were sacrificed 24 and 48hrs after PHx unless their condition was critical. Liver tissue evaluation Included: (a) H&E stain, (b) in situ hybridization (detection of bcl-2 and bax mRNA) in paraffin sections, (c) Western blot analysis for the evaluation of bcl-2 and bax protein levels, (d) in situ hybridization (TUNEL) for the detection of apoptotic bodies, and (e) immunohistochemical stains (streptavidin-biotin method) in paraffin sections, in order to evaluate the expression of the following antigens: cytokeratins 7 and 16 (biliary phenotype), Hepatocyte and a 1-antitrypsin (hepatocytic phenotype), vimentin, CD34, alpha-fetoprotein, GST-pi (glutahione-S-trarsferase-pi), Ki67 cell proliferation), bcl-2 and bax (apoptotlc genes).
RESULTS: Sections from rats a) with TLI developed changes of liver ischemia, b) with BDL changes of liver obstruction and c) with BDL+TLI developed changes of ischemia together with changes of biliary obstruction. The total liver parenchymal area affected (% liver necrosis} was higher in groups with TLI+BDL. In these groups the Ki67 hepatocytic index (proliferation index) was lower compared to the groups without TLI. This finding implies that cholestatic livers are more vulnerable to ischemia and also display impaired generative capabilities, compared to non-cholestatic ones. Liver biopsies exhibited features of liver regeneration that originated from zone 2, extended to zone 1 and occasionally to zone 3. Immunonistochemical stains revealed cells positive to AE1 and cells positive to HEPPAR. In all groups with TLI, DHs appeared mainly in periportal areas. They expressed cytokeratirs-19 and 7. hepatocyte and al-antrtrypsm and co-expressed CK7/CK1S and Hepatocyte or AE1/CK1S and a 1-antitrypsin The percentage of DHs was directly correlated with the time that animals survived (r=0,354, p<0,05). Regarding apoptosis, before hepatectomy, bcl-2 (protein or mRNA} levels were higher in jaundiced rats vs controls. Furthermore, bax (protein or mRNA) levels and apoptotic body index (ABl) were higher in cholestatic livers. After hepatectomy, there was an early decease in the protein and mRNA levels of antiapoptotic gene bcl-2 and a late increase of proapoptotic gene bax and the A8I. compared to controls.
CONCLUSIONS: In cases with obstructive jaundice (cholangiopathy), liver ischemia makes the organ more vulnerable to damage because it causes greater parenchymal necrosis and decreases the degree of hepatocyles proliferation. Liver regenerative process is mediated mainly by proliferation of non-necrotic cells that express hepatocellular or ductular epithelial features. In such cases a main element of liver regeneration is the presence of DHs, cells that display a phenotype intermediate between ductular and hepatocytic origin} and their differentiation to mature hepatocytes. Finally, apoptosis takes place in cholestatic livers with or without superimposed ischemia and may contribute in the impaired regenerative response observed in livers of jaundiced rats after partial hepatectomy.
|
437 |
Uncovering the mechanisms of trans-arachidonic acids : function and implications for cerebral ischemia and beyondKooli, Amna. January 2008 (has links)
Cerebral ischemia is the principal cause of morbidity and mortality worldwide. In addition to neuronal loss associated with hypoxic-ischemic damage, cerebral ischemia is characterized by a neuromicrovascular injury. Nitrative stress and lipid peroxidation increase in hypoxic-ischemic damages and play an essential role in neuromicrovascular injury leading to cerebral ischemia. We hypothesized that newly described lipid peroxidation products, termed trans-arachidonic acids (TAA), could be implicated in the pathogenesis of hypoxia-ischemia by affecting the cerebral vasomotricity and microvascular integrity. / The effects of TAA on neuromicrovascular tone were tested ex vivo by monitoring the changes in vascular diameter of rat cerebral pial microvessels. Four isomers of TAA, namely 5 E-AA, 8E-AA, IIE-AA and 14 E-AA induced an endothelium-dependent vasorelaxation. Possible mechanisms involved in TAA-induced vasorelaxation were thoroughly investigated. Collectively, data enclosed revealed that TAA induce cerebral vasorelaxation through the interactive activation of BKCa channels with heme oxygenase-2. This interaction leads to generation of carbon monoxide which in turn activates soluble guanylate cyclase and triggers vasorelaxation. / Chronic effects of TAA on microvascular integrity were examined by generating a unilateral hypoxic-ischemic (HI) model of cerebral ischemia on newborn rat pups. Our HI model showed microvascular degeneration as early as 24h post-HI, preceded by an increase in cerebral TAA levels. HI-induced microvascular lesions were dependent on nitric oxide synthase activation and ensued TAA formation. Although the molecular mechanisms leading to TAA-induced microvascular degeneration were, in part uncovered for the retina, the primary site of action of TAA remains unknown. We demonstrated that TAA binds and activates GPR40 receptor, a newly described free fatty acid receptor. Importantly, GPR40 receptor knock-out prevents TAA-induced reduction in cerebral microvascular density and limits HI-induced brain infarct.
|
438 |
Predictors of cerebral ischemic events in patients with asymptomatic carotid artery stenosis : systematic reviewEhrensperger, Eric, 1966- January 2008 (has links)
Background. Carotid stenosis is an important cause of stroke. Carotid endarterectomy is a means of reducing the burden of stroke but is of marginal benefit in individuals with asymptomatic carotid stenosis. The identification of factors associated with increased risk of cerebral ischemic events would help select individuals who may obtain a greater benefit. / Methods. A comprehensive search was performed to identify studies examining risk factors for cerebral ischemic events in patients with asymptomatic carotid stenosis. Inclusion criteria were defined a priori. Relevant studies were reviewed, assessed for quality, and data were extracted. / Results. Thirty-four studies met the inclusion criteria. There was a suggestion of increasing neurological events with increasing severity and progression of carotid stenosis. There was some evidence for an association with carotid plaque morphology. No consistent association was found with clinical factors, impaired cerebral vasoreactivity, or cerebral embolic signals. / Conclusions. The evidence is insufficient to reliably identify individuals with asymptomatic carotid stenosis who are at a higher risk of cerebral ischemic events.
|
439 |
Therapeutic myocardial angiogenesis and its pharmacological modulation /Siddiqui, Anwar J., January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 4 uppsatser.
|
440 |
The importance of nitric oxide bioavailability and endothelial mechanisms for cardioprotection by pharmacological intervention during myocardial ischaemia and reperfusion /Gourine, Andrey, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
|
Page generated in 0.0569 seconds