• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 13
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 57
  • 30
  • 22
  • 13
  • 11
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Aufbau und Inbetriebnahme einer Photoneutronenquelle

Greschner, Martin 01 July 2013 (has links)
Das Institut für Kern- und Teilchenphysik (IKTP) der Technischen Universität Dresden (TUD) hat im Forschungszentrum Dresden-Rossendorf (FZD) ein Labor zur Untersuchung von neutroneninduzierten kernphysikalischen Prozessen in Materialien, die für die Fusionsforschung relevant sind, aufgebaut. Das Labor ist ausgestattet mit drei intensiven Neutronenquellen: einer 14 MeV-Neutronenquelle, einer weißen kontinuierlichen Photoneutronen-Quelle, die näher in dieser Arbeit beschrieben wird, und einer gepulsten Photoneutronen-Quelle, die vom FZD inKooperation mit der TUD aufgebaut wurde. Die kontinuierliche Photoneutronen-Quelle basiert auf einem Radiator aus Wolfram (engl. Tungsten Photoneutron Source (TPNS)). TPNS nutzt die im ELBE-Beschleuniger (Elektronen Linearbeschleuniger für Strahlen hoher Brillianz und niedriger Emittanz (ELBE)) beschleunigten Elektronen zur Neutronenerzeugung. Der Prozess läuft über Zwischenschritte ab, indem bei der Abbremsung der Elektronen im Radiator Bremsstrahlungsphotonen entstehen, die anschließend Neutronen durch (γ,xn)-Reaktionen erzeugen. Das Neutronenspektrum der TPNS kann mittels Moderatoren so modifiziert werden, dass es dem in der ersten Wand im Fusionsreaktor entspricht. Dies ermöglicht Untersuchungen mit einem für einen Fusionsreaktor typischen Neutronenspektrum. Die technische Verwirklichung des Projektes, die Inbetriebnahme der Anlage sowie die Durchführung der ersten Experimente zur Neutronenerzeugung ist Inhalt dieser Arbeit. Die Neutronenquelle ist insbesondere für qualitative Untersuchungen in der Fusionsneutronik bestimmt. Der Fusionsreaktor produziert, im Vergleich zu einem Spaltungsreaktor, keine langlebigen Isotope als Abfall. Die wesentliche Aktivität des Reaktors ist in Konstruktionsmaterialien akkumuliert. Durch sorgfältige Auswahl der Materialien kann man die Aktivierung minimieren und damit künftig wesentlich weniger radioaktives Inventar produzieren als in Spaltreaktoren. Ziel der kernphysikalischen Untersuchungen ist, solche Materialien für den Aufbau eines Fusionsreaktors zu erforschen, die niedrigaktivierbar sind, das heißt wenig Aktivität akkumulieren können, und eine Halbwertzeit von einigen Jahren haben. Es ist das Ziel, alle Konstruktionsmaterialien nach 100 Jahren wiederverwenden zu können. Die Neutronenflussdichte einer Photoneutronenquelle ist einige Größenordnungen höher als die, die mittels eines DT-Neutronengenerators mit anschließender Moderation erreicht werden kann. Die gesamte Arbeit ist in drei Teile geteilt. Der erste Teil leitet in die Problematik der Energieversorgung ein und zeigt die Kernfusion als eine vielversprechende Energiequelle der naher Zukunft auf. Das Neutronenlabor der TUD, in dem die TPNS aufgebaut ist, wird ebenfalls kurz vorgestellt. Der zweite Teil befasst sich mit der TPNS selbst, mit ihrem physikalischen Entwurf, der Konstruktion und dem Aufbau bis zu der Inbetriebnahme sowie dem ersten Experiment an der TPNS. Der letzte, dritte Teil ist die Zusammenfassung der vorhandenen Ergebnisse und gibt einen Ausblick auf die zukünftige Vorhaben. / The Institute for Nuclear and Particle Physics at the Technische Universität Dresden (TUD) has build a neutron physics laboratory at Forschungszentrum Dresden-Rossendorf (FZD) to investigate nuclear processes in materials. The experiments are focused on materials relevant to nuclear fusion. The laboratory is equipped with three intensive neutron sources. The first is a 14 MeV monochromatic neutron source based on the DT reaction (owned by TUD); the other two are continuous and pulsed white photoneutron sources based on (γ,xn) reactions. One pulsed photoneutron source is realized by FZD in cooperation with the TUD. The continuous photoneutron source utilises a tungsten radiator (Tungsten Photoneutron Source) to produce neutrons with a wide energy spectra. The TPNS uses the ELBE-accelerator as a source of electrons for neutron production. This process involves an intermediate step, where slowed down electrons produce bremsstrahlung (γ -rays) absorbed by tungsten nuclei. Consecutively, the excited nuclei emit neutrons. The neutron flux of the photoneutron source is five orders of magnitude higher than the flux of the DT neutron sources with appropriate moderation. The neutron spectrum of TPNS can be modified by moderators, in such a way that the spectrum is comparable to that in the first wall of a Tokamak-Reactor. That allows investigations with the typical neutron spectrum of the fusion reactor. The technical solution, initial operation and the first experiment are described in this work. The neutron source is, in particular, dedicated to quantitative investigations in fusion neutronics. A fusion reactor produces radioactive isotopes as a nuclear waste. The main activity is accumulated in the structural materials. Carefully selected structural materials can significantly minimize the activity and thereby the amount of nuclear waste. The purpose of this project is to find constructional materials with half-lives shorter than several years, which can be recycled after about 100 years. The work is divided into three parts. The first part is dedicated to the energy supply problem and nuclear fusion is addressed as a promising solution of the near future. The neutron laboratory housing the TPNS is also briefly described. The second part deals with the tungsten photoneutron source, the design, construction, operation and the first experiments for neutron production. The third part summarises results and presents an outlook for future experiments with the TPNS.
52

Laser decontamination and cleaning of metal surfaces : modelling and experimental studies

Leontyev, Anton 08 November 2011 (has links) (PDF)
Metal surface cleaning is highly required in different fields of modern industry. Nuclear industry seeks for new methods for oxidized surface decontamination, and thermonuclear installations require the cleaning of plasma facing components from tritium-containing deposited layer. The laser ablation is proposed as an effective and safe method for metal surface cleaning and decontamination. The important factor influencing the laser heating and ablation is the in-depth distribution of laser radiation. The model of light propagation in a scattering layer on a metal substrate is developed and applied to analyse the features of light distribution. To simulate the contaminated surfaces, the stainless steel AISI 304L was oxidized by laser and in a furnace. Radioactive contamination of the oxide layer was simulated by introducing europium and/or sodium. The decontamination factor of more than 300 was demonstrated with found optimal cleaning regime. The decreasing of the corrosion resistance was found after laser cleaning. The ablation thresholds of ITER-like surfaces were measured. The cleaning productivity of 0.07 m2/hour∙W was found. For mirror surfaces, the damage thresholds were determined to avoid damage during laser cleaning. The possibility to restore reflectivity after thin carbon layer deposition was demonstrated. The perspectives of further development of laser cleaning are discussed.
53

Fast wave heating and current drive in tokamaks

Laxåback, Martin January 2005 (has links)
This thesis concerns heating and current drive in tokamak plasmas using the fast magnetosonic wave in the ion cyclotron range of frequencies. Fast wave heating is a versatile heating method for thermonuclear fusion plasmas and can provide both ion and electron heating and non-inductive current drive. Predicting and interpreting realistic heating scenarios is however difficult due to the coupled evolution of the cyclotron resonant ion velocity distributions and the wave field. The SELFO code, which solves the coupled wave equation and Fokker-Planck equation for cyclotron resonant ion species in a self-consistent manner, has been upgraded to allow the study of more advanced fast wave heating and current drive scenarios in present day experiments and in preparation for the ITER tokamak. Theoretical and experimental studies related to fast wave heating and current drive with emphasis on fast ion effects are presented. Analysis of minority ion cyclotron current drive in ITER indicates that the use of a hydrogen minority rather than the proposed helium-3 minority results in substantially more efficient current drive. The parasitic losses of power to fusion born alpha particles and beam injected ions are concluded to be acceptably low. Experiments performed at the JET tokamak on polychromatic ion cyclotron resonance heating and on fast wave electron current drive are presented and analysed. Polychromatic heating is demonstrated to increase the bulk plasma ion to electron heating ratio, in line with theoretical expectations, but the fast wave electron current drive is found to be severely degraded by parasitic power losses outside of the plasma. A theoretical analysis of parasitic power losses at radio frequency antennas indicates that the losses can be significantly increased in scenarios with low wave damping and with narrow antenna spectra, such as in electron current drive scenarios. / QC 20100506
54

Modèle particulaire 2D et 3D sur GPU pour plasma froid magnétisé : Application à un filtre magnétique

Claustre, Jonathan 17 December 2012 (has links) (PDF)
La méthode PIC MCC (Particle-In-Cell Monte-Carlo Collision) est un outils très performant et efficace en ce qui concerne l'étude des plasmas (dans notre cas, pour des plasmas froids) car il permet de décrire l'évolution dans le temps et dans l'espace, des particules chargées sous l'effet des champs auto-consistants et des collisions. Dans un cas purement électrostatique, la méthode consiste à suivre les trajectoires d'un nombre représentatif de particules chargées, des électrons et des ions, dans l'espace des phases, et de décrire l'interaction collective de ces particules par la résolution de l'équation de Poisson. Dans le cas de plasmas froid, les trajectoires dans l'espace des phase sont déterminées par le champ électrique auto-consistant et par les collisions avec les atomes neutres ou les molécules et, pour des densités relativement importantes, par les collisions entre les particules chargées. Le coût des simulations pour ce type de méthode est très élevé en termes de ressources (CPU et mémoire). Ceci est dû aux fortes contraintes (dans les simulations PIC explicites) sur le pas de temps (plus petit qu'une fraction de la période plasma et inverse à la fréquence de giration électronique), sur le pas d'espace (de l'ordre de la longueur de Debye), et sur le nombre de particules par longueur de Debye dans la simulation (généralement de l'ordre de plusieurs dizaines). L'algorithme PIC MCC peut être parallélisé sur des fermes de calculs de CPU (le traitement de la trajectoires des particules est facilement parallélisable, mais la parallélisation de Poisson l'est beaucoup moins). L'émergence du GPGPU (General Purpose on Graphics Processing Unit) dans la recherche en informatique a ouvert la voie aux simulations massivement parallèle à faible coût et ceci par l'utilisation d'un très grand nombre de processeurs disponible sur les cartes graphiques permettant d'effectuer des opérations élémentaires (e.g. calcul de la trajectoires des particules) en parallèle. Un certain nombre d'outils numérique pour le calcul sur GPU ont été développés lors de ces 10 dernières années. De plus, le constructeur de cartes graphiques NVIDIA a développé un environnement de programmation appelé CUDA (Compute Unified Device Architecture) qui permet une parallélisation efficace des codes sur GPU. La simulation PIC avec l'utilisation des cartes graphiques ou de la combinaison des GPU et des CPU a été reporté par plusieurs auteurs, cependant les modèles PIC avec les collisions Monte-Carlo sur GPU sont encore en pleine étude. A l'heure actuelle, de ce que nous pouvons savoir, ce travail est le premier a montrer des résultats d'un code PIC MCC 2D et 3D entièrement parallélisé sur GPU et dans le cas de l'étude de plasma froid magnétisé. Dans les simulation PIC, il est relativement facile de suivre les particules lorsqu'il n'y a ni pertes ni création (e.g. limites périodiques ou pas d'ionisation) de particules au cours du temps. Cependant il devient nécessaire de réordonner les particules à chaque pas en temps dans le cas contraire (ionisation, recombinaison, absorption, etc). Cette Thèse met en lumière les stratégies qui peuvent être utilisées dans les modèles PIC MCC sur GPU permettant d'outre passer les difficultés rencontrées lors du réarrangement des particules après chaque pas de temps lors de la création et/ou des pertes. L'intérêt principal de ce travail est de proposer un algorithme implémenté sur GPU du modèle PIC MCC, de mesurer l'efficacité de celui-ci (parallélisation) et de le comparer avec les calculs effectués sur GPU et enfin d'illustrer les résultats de ce modèle par la simulation de plasma froid magnétisé. L'objectif est de présenter en détail le code utilisé en de montrer les contraintes et les avantages liées à la programmation de code PIC MCC sur GPU. La discussion est largement ciblé sur le cas en 2D, cependant un algorithme 3D a également été développé et testé comme il est montré à la fin de cette thèse.
55

Analyse de modèles pour ITER ; Traitement des conditions aux limites de systèmes modélisant le plasma de bord dans un tokamak

Auphan, Thomas 18 March 2014 (has links) (PDF)
Cette thèse concerne l'étude des interactions entre le plasma et la paroi d'un réacteur à fusion nucléaire de type tokamak. L'objectif est de proposer des méthodes de résolution des systèmes d'équations issus de modèles de plasma de bord. Nous nous sommes intéressés au traitement de deux difficultés qui apparaissent lors de la résolution numérique de ces modèles. La première difficulté est liée à la forme complexe de la paroi du tokamak. Pour cela, il a été choisi d'utiliser des méthodes de pénalisation volumique. Des tests numériques de plusieurs méthodes de pénalisation ont été réalisés sur un problème hyperbolique non linéaire avec un domaine 1D. Une de ces méthodes a été étendue à un système hyperbolique quasilinéaire avec bord non caractéristique et conditions aux limites maximales strictement dissipatives sur un domaine multidimensionnel : il est alors démontré que cette méthode de pénalisation ne génère pas de couche limite. La deuxième difficulté provient de la forte anisotropie du plasma, entre la direction parallèle aux lignes de champ magnétique et la direction radiale. Pour le potentiel électrique, cela se traduit par une résistivité parallèle très faible. Afin d'éviter les difficultés liées au fait que le problème devient mal posé quand la résistivité parallèle tend vers 0, nous avons utilisé des méthodes de type asymptotic-preserving (AP). Pour les problèmes non linéaires modélisant le potentiel électrique avec un domaine 1D et 2D, nous avons fait l'analyse théorique ainsi que des tests numériques pour deux méthodes AP. Des tests numériques sur le cas 1D ont permis une étude préliminaire du couplage entre les méthodes de pénalisation volumique et AP.
56

LA PRIMA LEGGE ITALIANA "CONTRO LA VIOLENZA SESSUALE". UN DIBATTITO LUNGO VENT'ANNI (1976 - 1996)

BOSSINI, LAURA ELISABETTA 20 June 2017 (has links)
La presente ricerca indaga il dibattito sociale, culturale e politico che ha anticipato la legge n. 66 Norme penali contro la violenza sessuale, licenziata dal Parlamento italiano nel febbraio 1996 e che, a quasi settant’anni dall’entrata in vigore del Codice penale Rocco, modificò la normativa vigente in materia di reati sessuali. Quel risultato arrivò a conclusione di un dibattito ventennale che visse due fasi principali: la prima coincise con il decennio degli anni Settanta ed ebbe come protagonista il movimento femminista, la seconda prese avvio all’inizio degli anni Ottanta e spostò il baricentro della discussione all’interno delle aule parlamentari. Nel lavoro di analisi proposto sono state seguite tre direttrici principali. Innanzitutto si è indagato il ruolo giocato dal movimento femminista nell’accendere i riflettori sul tema dello stupro e nel rompere il muro di silenzio che lo aveva relegato a questione privata. In secondo luogo si è tentato di fotografare il fermento sociale e culturale che accompagnò l’iniziativa femminista contribuendo a diffondere nella società civile italiana una nuova consapevolezza sul tema della violenza e degli abusi sessuali. L’attenzione si è infine soffermata sulla pluralità di approcci, punti di vista ed interpretazioni che animarono il dibattito parlamentare sulla riforma in materia di reati sessuali con l’intento di portare alla luce le ragioni più o meno nascoste che per cinque legislature impedirono alle forze politiche di approdare ad una soluzione condivisa. / This research aims to investigate the social, cultural and political debate that has anticipated law no. 66 Norme penali contro la violenza sessuale, dismissed by the Italian Parliament in February 1996. That result amended the current law in sex offenses and it was the final step of a twenty-year debate during which the Italian feminist movement played a crucial role. This research has three principle objectives. Firstly, it investigates the role played by the Italian feminist movement in bringing to light the subject of rape and breaking the wall of silence that had relegated it to a private sphere. Secondly, it aims to photograph the social and cultural turmoil raised by the feminist initiative which spread a new awareness about violence and sexual abuses in the Italian civil society. Thirdly, the research analyses the plurality of opinions and points of view that animated the parliamentary debate and prevented political forces from reaching a shared approach on the reform of criminal sex offenses.
57

Thermal finite element analysis of ceramic/metal joining for fusion using X-ray tomography data

Evans, Llion Marc January 2013 (has links)
A key challenge facing the nuclear fusion community is how to design a reactor that will operate in environmental conditions not easily reproducible in the laboratory for materials testing. Finite element analysis (FEA), commonly used to predict components’ performance, typically uses idealised geometries. An emerging technique shown to have improved accuracy is image based finite element modelling (IBFEM). This involves converting a three dimensional image (such as from X ray tomography) into an FEA mesh. A main advantage of IBFEM is that models include micro structural and non idealised manufacturing features. The aim of this work was to investigate the thermal performance of a CFC Cu divertor monoblock, a carbon fibre composite (CFC) tile joined through its centre to a CuCrZr pipe with a Cu interlayer. As a plasma facing component located where thermal flux in the reactor is at its highest, one of its primary functions is to extract heat by active cooling. Therefore, characterisation of its thermal performance is vital. Investigation of the thermal performance of CFC Cu joining methods by laser flash analysis and X ray tomography showed a strong correlation between micro structures at the material interface and a reduction in thermal conductivity. Therefore, this problem leant itself well to be investigated further by IBFEM. However, because these high resolution models require such large numbers of elements, commercial FEA software could not be used. This served as motivation to develop parallel software capable of performing the necessary transient thermal simulations. The resultant code was shown to scale well with increasing problem sizes and a simulation with 137 million elements was successfully completed using 4096 cores. In comparison with a low resolution IBFEM and traditional FEA simulations it was demonstrated to provide additional accuracy. IBFEM was used to simulate a divertor monoblock mock up, where it was found that a region of delamination existed on the CFC Cu interface. Predictions showed that if this was aligned unfavourably it would increase thermal gradients across the component thus reducing lifespan. As this was a feature introduced in manufacturing it would not have been accounted for without IBFEM.The technique developed in this work has broad engineering applications. It could be used similarly to accurately model components in conditions unfeasible to produce in the laboratory, to assist in research and development of component manufacturing or to verify commercial components against manufacturers’ claims.

Page generated in 0.0546 seconds