Spelling suggestions: "subject:"kühlung"" "subject:"fühlung""
21 |
Temperaturverhältnisse und Reaktionskinetik beim Ziehen und Wärmebehandeln von DrahtMüller, Wolfhart 13 March 1998 (has links)
Die Temperaturverhältnisse beim Ziehen und Wärmebehandeln von Draht werden mit mathematisch-analytischen Methoden auf der Grundlage der FOURIERschen Wärmeleitungsgleichung eingehend untersucht. Insbesondere wird unter den spezifischen Wärmeübergangsbedingungen zwischen Draht und Ziehdüse sowie zwischen Draht und Ziehtrommel deren thermische Wechselwirkung analysiert. Ein Näherungsverfahren zur Berechnung der Drahttemperaturen in Zugfolgen unter Berücksichtigung des Ziehdüseneinflusses wird angegeben und mit einem Beispiel zum Nassziehen stark verzinkten Stahldrahts illustriert. Aus geschwindigkeitsabhängig gemessenen Änderungen des Drahtdurchmessers werden unter thermoelastischer Ziehringdurchmesserkorrektur Schmierfilmdicken bestimmt. Diffusionsgleichungen werden analysiert und ein Zusammenhang zur Reaktionskinetik wird hergestellt. Ein neues reaktionskinetisches Werkstoffmodell, das insbesondere auch im Falle stärker anisothermer Verhältnisse, also bei Kurzzeitwärmebehandlung anwendbar ist, wird vorgestellt.
|
22 |
Kontrollierte natürliche Lüftung in Büro- und Verwaltungsgebäuden: Ein Beitrag zur Steigerung von Energieeffizienz und NutzerbehaglichkeitScheuring, Leonie 26 August 2022 (has links)
Es ist ein politisch erklärtes Ziel, den Ausstoß von klimaschädlichen Treibhausgasen weltweit zu verringern. Eine wesentliche Stellschraube im Gebiet des Bauwesens stellt hierbei die Einsparung von Energien zur Raumkonditionierung dar. Diese wird unter anderem über das Lüftungskonzept beeinflusst. Die Belüftung von Gebäuden ist zwingend notwendig, um die Emissionen der Baustoffe und die der Menschen, beispielsweise ihren CO2-Ausstoß über die Atmung, abzuführen und der Schimmelbildung vorzubeugen. Erfolgt die Belüftung über öffenbare Fenster – natürliche Lüftung – wird so allerdings energetisch aufwändig temperierte Raumluft mit untemperierter Außenluft ausgetauscht. Daraus können Wärmeverluste und thermisches Unbehagen resultieren. Energieeffiziente Technologien sind ventilatorgestützte Lüftungssysteme mit Wärmerückgewinnung. Doch nicht für alle Gebäudekonzepte und Nutzer stellen diese Lüftungskonzepte einen hohen Nutzerkomfort dar. Korrelationen zwischen Gebäuden mit ventilatorgestützten Lüftungsystemen und dem Sick-Building-Syndrom sind in der Literatur beschrieben, während hier für natürliche Lüftungskonzepte keine Korrelation besteht. Stattdessen wird in Nutzerbefragungen der natürlichen Lüftung eine hohe Akzeptanz zugeschrieben. Mit elektrisch angetriebenen Fenstern kann die natürliche Lüftung nutzerunabhängig gesteuert und so Wärmeverluste und thermisches Unbehagen kontrolliert werden. Bisher sind die Auslegungen solcher kontrollierten natürlichen Lüftungskonzepte noch sehr planungsintensiv.
Das Ziel der Arbeit ist es, für Büro- und Verwaltungsgebäude Öffnungs- und Schließsignale einer kontrollierten natürlichen Lüftung zu geben. Diese zeichnen sich darüber aus, dass sie ein gesundes Raumklima, eine hohe Nutzerbehaglichkeit und Energieeffizienz über den Jahresverlauf schaffen und auf ihre Robustheit gegenüber Änderungen von Gebäuderandbedingungen überprüft sind.
Für das Ziel wird ein über CO2- und Temperatursensoren gesteuertes Fenstersystem mittels dynamisch thermischer Gebäudesimulationen in vier Varianten von Schließsignalen auf thermische Behaglichkeit und Energiebedarf untersucht. Die Grundlage dazu stellt die bezüglich Entwurf, Konstruktion und Nutzung allgemeingültige Entwicklung eines Büroraums dar. Der Büroraum wird im Simulationsmodell abgebildet und in Realität errichtet. Die Kombination von Simulationsmodell und realem, als experimentellem Teststand ausgeführtem Büroraum ermöglicht verifizierte Ergebnisse.
So werden vier Berechnungsmodelle für Luftvolumenströme von Fenstern über den Teststand verifiziert. Dazu dienen Luftwechselmessungen nach der Konstantinjektionsmethode an 173 Fensteröffnungen für fünf Außentemperatur- und elf Windgeschwindigkeitsbereiche. Das Berechnungsmodell nach DIN EN 16798-7 zeigt sich als realitätsnah. Da dieses Berechnungsmodell nicht im Gebäudesimulationsprogramm implementiert ist, wird eine Methode zur Implementierung entwickelt. Über das entwickelte Simulationsmodell zeigt sich, dass eine kombinierte CO2- und temperaturgesteuerte kontrollierte natürliche Lüftung nur zweimal im Jahr ihre Grenzwerte zur Fensteröffnung und -schließung variieren muss, um ganzjährig eine hohe Energieeffizienz und Nutzerbehaglichkeit zu schaffen.
Die Schließsignale des sensorgesteuerten Fenstersystems werden in eine Zeitsteuerung überführt. Es zeigt sich, dass für die kühlen Monate jede Öffnung mit identischer Dauer angesetzt werden darf. In wärmeren Monaten muss die Öffnungsdauer in Abhängigkeit der Außentemperatur angepasst werden, so dass eine Zeitsteuerung mit einer Außentemperaturmessung gekoppelt werden muss.
Die Ergebnisse zeigen, dass über eine Variation der Schließsignale einer kontrollierten natürlichen Lüftung die Energieeffizienz und die thermische Behaglichkeit wesentlich gesteigert werden und dass selbst bei geringen Windgeschwindigkeiten und Temperaturdifferenzen die Raumluftqualität stets gewährleistet ist. Für nahezu alle Standorte in Deutschland kann die kontrollierte natürliche Lüftung so den Kühlbedarf der untersuchten Büroräume eliminieren, ohne in einer sommerlichen Überhitzung der Räume zu resultieren.
Die entwickelten und bezüglich Raumluftqualität und thermischer Behaglichkeit charakterisierten Sensor- und Zeitsteuerungen tragen dazu bei, die kontrollierte natürliche Lüftung als wartungsarme, technikreduzierte Alternative zu der ventilatorgestützten Lüftung zu etablieren.:1 Einleitung
2 Natürliche Lüftung
3 Kontrollmöglichkeiten der natürlichen Lüftung
4 Entwicklung der Untersuchungsmodelle
5 Voruntersuchungen
6 Sensorsteuerung für den Basisraum
7 Zeitsteuerung für den Basisraum
8 Übertragung auf unterschiedliche Gebäuderandbedingungen
9 Diskussion und Empfehlungen
10 Zusammenfassung und Ausblick
11 Literatur
12 Abbildungsnachweis
13 Bezeichnungen
14 Anhang / It is a politically declared goal to reduce the emission of climate-damaging greenhouse gases worldwide. To support this goal by the building industry a key driver is the saving of energy for room conditioning. Among other factors, this is influenced by the ventilation concept. Also the ventilation of buildings is absolutely necessary in order to remove the emissions of the building materials and those of the people, for example their CO2 emissions through breathing as well as to prevent mould. However, if ventilation is carried out via openable windows - natural ventilation - then energetically expensive tempered room air is exchanged with cold outside air. This could result in heat loss and thermal discomfort. Mechanical ventilation systems with heat recovery are energy-efficient technologies. However, these ventilation concepts do not represent a high level of user comfort for all building concepts and users. Correlations between buildings with mechanical ventilation systems and sick building syndrome are described in the literature, while there is no such correlation for natural ventilation concepts. Instead, a high level of acceptance is attributed to it in user surveys. With electrically driven and controlled windows, natural ventilation can be controlled independently from the user, thus minimizing heat loss and thermal discomfort. So far, the design of such controlled natural ventilation concepts is still very planning-intensive.
The aim of this work is to provide opening and closing signals for controlled natural ventilation in office buildings. These are characterized for their capability to create a high indoor air quality, high user comfort and high energy efficiency over the course of the year and are tested for their robustness against changes in building characteristics.
To achieve this goal, a window system controlled by CO2 and temperature sensors is examined for its impact on thermal comfort and energy demand by means of building simulation tools with four variants of closing signals. As a basis for this examination an office room is utilized that conforms to the current standards in terms of design, construction and use. The office space is transferred to a simulation model and constructed in reality. The combination of the simulation model and the real office space, which is designed as an experimental test rig, enables verified results.
Thus, four calculation models for air flow volumes of windows are verified via the test rig. Air exchange measurements according to the constant injection method on 173 window openings for five outdoor temperature and eleven wind speed ranges are used for this purpose. The calculation model according to DIN EN 16798-7 proves to be close to reality. Since this calculation model is not implemented in the building simulation program, a method for its implementation is developed. Using the developed simulation model, it is shown that a combined CO2- and temperature-controlled natural ventilation creates a high energy efficiency and user comfort throughout the year by varying its limit values for window opening and closing only twice a year.
The closing signals of the sensor controlled window system are transferred to a time control system. It turns out that for the cold months, each opening could be set to the same opening time. In warmer months, the opening time must be adjusted depending on the outside temperature. Thus, a time control should be coupled with an outside air temperature measurement.
The results show that by varying the closing signals of a controlled natural ventilation system, the energy efficiency and thermal comfort is significantly increased and that a high indoor air quality is always guaranteed even at low wind speeds and low temperature differences. For almost all locations in Germany, controlled natural ventilation can thus eliminate the cooling requirements in the office spaces studied without overheating in the summer.
The developed sensor and time control systems are characterized by high indoor air quality and good thermal comfort. Thus, these systems are a contribution to promote controlled natural ventilation as a low-maintenance and technically reduced alternative to mechanical ventilation.:1 Einleitung
2 Natürliche Lüftung
3 Kontrollmöglichkeiten der natürlichen Lüftung
4 Entwicklung der Untersuchungsmodelle
5 Voruntersuchungen
6 Sensorsteuerung für den Basisraum
7 Zeitsteuerung für den Basisraum
8 Übertragung auf unterschiedliche Gebäuderandbedingungen
9 Diskussion und Empfehlungen
10 Zusammenfassung und Ausblick
11 Literatur
12 Abbildungsnachweis
13 Bezeichnungen
14 Anhang
|
23 |
Collective radiative effects in nanofiber-coupled atomic ensembles / From timed Dicke states to full inversionLiedl, Christian 04 July 2023 (has links)
In dieser Arbeit untersuchen wir kollektive Strahlungseffekte in Nanofaser-gekoppelten atomaren Ensembles, die sich über Tausende von optischen Wellenlängen erstrecken.
Wir koppeln bis zu 1000 Atome optisch an die geführten Moden einer optischen Nanofaser, die langreichweitige Dipol-Dipol Wechselwirkungen zwischen den Atomen vermittelt. Wir realisieren eine unidirektionale Kopplung und damit ein kaskadiertes Quantensystem, in dem die Dynamik jedes Atoms ausschließlich durch die Dynamik der vorgelagerten Atome bestimmt wird.
Wir regen die Atome mit nanofasergeführten optischen Pulsen kohärent an, was uns ermöglicht, den gesamten Parameterbereich von schwacher Anregung bis hin zur voll-ständigen Inversion zu erforschen. Wir stellen fest, dass die kohärente Vorwärtsstreuung, die für die Superradianz im Regime der schwachen Anregung verantwortlich ist, auch nahe voller Inversion eine wichtige Rolle für die Dynamik spielt. Wir beobachten superradiante Puls-Dynamik, die in unserem System trotz des makroskopischen Abstands zwischen den Atomen und einer asymmetrischen Kopplung auftritt. Wir stellen fest, dass die emittierte Spitzenleistung noch schneller mit der Anzahl der Atome skaliert als im Fall der idealen Dicke Superradianz, was auf eine kollektiv erhöhte Sammeleffizienz der nanofasergeführten Mode zurückzuführen ist. Die Analyse der Kohärenz-Eigenschaften des superradianten Pulses erlaubt es uns, zwei Regime der Puls-Dynamik zu identifizieren. Wir entwickeln ein kaskadiertes Wechselwirkungsmodell und zeigen, dass es die kollektive Dynamik unseres Systems über den gesamten in dieser Arbeit untersuchten Parameterbereich akkurat beschreibt.
Schließlich untersuchen wir die getriebene Dynamik eines Nanofaser-gekoppelten Ensembles von Drei-Niveau-Atomen. Wir treiben Zwei-Photonen-Rabi-Oszillationen zwischen den beiden Grundzuständen eines $\Lambda$-Systems und beobachten die damit verbundene oszillatorische Raman-Verstärkung und -Absorption. / In this thesis, we study collective radiative effects in nanofiber-coupled atomic ensembles that extend over thousands of optical wavelengths.
We optically couple up to 1000 atoms to the guided modes of an optical nanofiber, which mediates long-range dipole-dipole interactions between the atoms. We engineer the coupling to be unidirectional, realizing a cascaded quantum system in which the dynamics of each atom is solely determined by the dynamics of upstream atoms.
We coherently excite the atoms using nanofiber-guided optical pulses, allowing us to explore the entire parameter regime from weak excitation to full inversion. We find that coherent forward scattering, which is responsible for superradiance in the weak excitation regime, plays an important role for the dynamics even close to full inversion. We observe superradiant burst dynamics, which occurs in our system despite the macroscopic separation between the atoms and an asymmetric coupling. We find that the peak-emitted power scales even faster with the number of atoms than in the case of ideal Dicke superradiance due to a collectively enhanced channeling efficiency into the nanofiber-guided mode. By analyzing the coherence properties of the superradiant burst, we directly identify two regimes of burst dynamics. In the second regime, there is no initial coherence, and the superradiant burst is seeded by vacuum fluctuations. We introduce a cascaded interaction model and find that it accurately describes the collective dynamics of our system over the entire parameter regime explored in this thesis.
Finally, we study the driven dynamics of a nanofiber-coupled ensemble of three-level atoms. We drive two-photon Rabi oscillations between the two ground states of a $\Lambda$ system and observe the associated oscillatory Raman gain and absorption.
|
24 |
Cooling of electrically insulated high voltage electrodes down to 30 mK / Kühlung von elektrisch isolierten Hochspannungselektroden bis 30 mKEisel, Thomas 07 November 2011 (has links) (PDF)
The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator.
Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the thermal contact. Four differently prepared test Sandwiches are investigated. They differ in the sapphire surface roughness and in the application method of the indium layers.
Measurements with static and sinusoidal heat loads are performed to uncover the behavior of the thermal boundary resistances. The thermal total resistance of the best Sandwich shows a temperature dependency of T-2,64 and is significantly lower, with roughly 30 cm2K4/W at 50 mK, than experimental data found in the literature. The estimated thermal boundary resistance between indium and sapphire agrees very well with the value of the acoustic mismatch theory at low temperatures.
In both designs, homemade heat exchangers are integrated to transfer the heat to the cold helium. These heat exchangers are based on sintered structures to increase the heat transferring surface and to overcome the significant influence of the thermal resistance (Kapitza resistance). The heat exchangers are optimized concerning the adherence of the sinter to the substrate and its sinter height, e.g. its thermal penetration length.
Ruthenium oxide metallic resistors (RuO2) are used as temperature sensors for the investigations. They consist of various materials, which affect the reproducibility. The sensor conditioning and the resulting good reproducibility is discussed as well.
|
25 |
Beitrag zur Entwicklung eines hochdynamischen variothermen Temperiersystems für SpritzgießwerkzeugeDeckert, Matthias H. 20 April 2012 (has links)
Für die Verarbeitung von thermoplastischen Polymeren im Spritzgießprozess ist die Wahl der Werkzeugwandtemperatur entscheidend für die Formteileigenschaften und die optimale Zykluszeit. Das Spritzgießwerkzeug wird standardmäßig bei einer konstanten Werkzeugwandtemperatur betrieben, die bei speziellen Anwendungen, wie zum Beispiel die Abformung von nanostrukturierten Oberflächen, kaum eingesetzt werden kann. Dafür muss die Werkzeugwandtemperatur aktiv über die Dauer eines Spritzgießzyklus variiert werden.
Für die variotherme Temperierung wird im Rahmen der vorliegenden Arbeit eine neue Technik auf Basis einer elektrischen Widerstandsheizung entwickelt und untersucht.
Ziel der Arbeit ist die Entwicklung eines hochdynamischen Temperaturwechsels auf einer formgebenden Werkzeugwand, unter Vorgabe der Temperaturverteilung und ohne die Maschinennebenzeit zu verlängern. Dazu werden verschiedene elektrische Heizelemente konzipiert und untersucht. / For the processing of thermoplastic polymers in an injection molding process is the choice of the cavity temperature a critical property and a shape of the optimum cycle time.
The standard injection molding process with a quasi constant mold wall temperature cannot be used in the case of special applications, such as the replication of nanostructured surfaces.
For this the mold wall temperature has to be varied actively over the duration of an injection molding cycle. These variothermal temperature process is within the scope of the present study especially using a new developed technique based on an electrical resistance heating device. The aim of this work is to develop a highly dynamic temperature change on an injection mold wall by a defined temperature destribution and without an extended machine idle time. Various electric heating elements are designed and tested.
|
26 |
Beitrag zur Entwicklung eines hochdynamischen variothermen Temperiersystems für SpritzgießwerkzeugeDeckert, Matthias H. 20 April 2012 (has links)
Für die Verarbeitung von thermoplastischen Polymeren im Spritzgießprozess ist die Wahl der Werkzeugwandtemperatur entscheidend für die Formteileigenschaften und die optimale Zykluszeit. Das Spritzgießwerkzeug wird standardmäßig bei einer konstanten Werkzeugwandtemperatur betrieben, die bei speziellen Anwendungen, wie zum Beispiel die Abformung von nanostrukturierten Oberflächen, kaum eingesetzt werden kann. Dafür muss die Werkzeugwandtemperatur aktiv über die Dauer eines Spritzgießzyklus variiert werden.
Für die variotherme Temperierung wird im Rahmen der vorliegenden Arbeit eine neue Technik auf Basis einer elektrischen Widerstandsheizung entwickelt und untersucht.
Ziel der Arbeit ist die Entwicklung eines hochdynamischen Temperaturwechsels auf einer formgebenden Werkzeugwand, unter Vorgabe der Temperaturverteilung und ohne die Maschinennebenzeit zu verlängern. Dazu werden verschiedene elektrische Heizelemente konzipiert und untersucht. / For the processing of thermoplastic polymers in an injection molding process is the choice of the cavity temperature a critical property and a shape of the optimum cycle time.
The standard injection molding process with a quasi constant mold wall temperature cannot be used in the case of special applications, such as the replication of nanostructured surfaces.
For this the mold wall temperature has to be varied actively over the duration of an injection molding cycle. These variothermal temperature process is within the scope of the present study especially using a new developed technique based on an electrical resistance heating device. The aim of this work is to develop a highly dynamic temperature change on an injection mold wall by a defined temperature destribution and without an extended machine idle time. Various electric heating elements are designed and tested.
|
27 |
Cooling of electrically insulated high voltage electrodes down to 30 mKEisel, Thomas 04 October 2011 (has links)
The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator.
Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the thermal contact. Four differently prepared test Sandwiches are investigated. They differ in the sapphire surface roughness and in the application method of the indium layers.
Measurements with static and sinusoidal heat loads are performed to uncover the behavior of the thermal boundary resistances. The thermal total resistance of the best Sandwich shows a temperature dependency of T-2,64 and is significantly lower, with roughly 30 cm2K4/W at 50 mK, than experimental data found in the literature. The estimated thermal boundary resistance between indium and sapphire agrees very well with the value of the acoustic mismatch theory at low temperatures.
In both designs, homemade heat exchangers are integrated to transfer the heat to the cold helium. These heat exchangers are based on sintered structures to increase the heat transferring surface and to overcome the significant influence of the thermal resistance (Kapitza resistance). The heat exchangers are optimized concerning the adherence of the sinter to the substrate and its sinter height, e.g. its thermal penetration length.
Ruthenium oxide metallic resistors (RuO2) are used as temperature sensors for the investigations. They consist of various materials, which affect the reproducibility. The sensor conditioning and the resulting good reproducibility is discussed as well.
|
Page generated in 0.0464 seconds