31 |
The role of bone morphogenetic protein signalling in the control of skin repair after wounding : cellular and molecular mechanisms of cutaneous wound healing mediated by bone morphogenetic proteins and their antagonist NogginLewis, Christopher John January 2013 (has links)
Bone morphogenetic proteins (BMPs) and their receptors (BMPRs) coordinate tissue development and postnatal remodelling by regulating proliferation, differentiation and apoptosis. However, their role in wound healing remains unclear. To study this, transgenic mice overexpressing Smad1 (K14-caSmad1) or the BMP antagonist Noggin (K14-Noggin) were utilised, together with human and mouse ex vivo wound healing models and in vitro keratinocyte culture. In wild-type mice, transcripts for Bmpr-1A, Bmpr-II, Bmp ligands and Smad proteins were decreased following tissue injury, whilst Bmpr-1B expression was up-regulated. Furthermore, immunohistochemistry revealed a down-regulation of BMPR-1A in hair follicles adjacent to the wound in murine skin, whilst in murine and human wounds, BMPR-1B and phospho-Smad-1/5/8 expression was pronounced in the wound epithelial tongue. K14-caSmad1 mice displayed retarded wound healing, associated with reduced keratinocyte proliferation and increased apoptosis, whilst K14-Noggin mice exhibited accelerated wound healing. Furthermore, microarray analysis of K14-caSmad1 epidermis revealed decreased expression of distinct cytoskeletal and cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myo5a versus controls. Human and mouse keratinocyte proliferation and migration were suppressed by BMP-4/7 both in vitro and ex vivo, whilst they were stimulated by Noggin. Additionally, K14-caSmad1 keratinocytes showed retarded migration compared to controls when studied in vitro. Furthermore, Bmpr-1B silencing accelerated migration and was associated with increased expression of Krt16, Krt17 and Myo5a versus controls. Thus, this study demonstrates that BMPs inhibit proliferation, migration and cytoskeletal re-organization in epidermal keratinocytes during wound healing, and raises a possibility that BMP antagonists may be used for the future management of chronic wounds.
|
32 |
Identification de nouveaux acteurs dans l’adaptation du kératinocyte humain aux changements mécaniques de son environnement / Identification of new actors in the adaptation of the human keratinocyte to the mechanical changes in its environmentYa, Choua 31 January 2019 (has links)
L'homéostasie épidermique repose sur différents paramètres dont les propriétés mécaniques du tissu de soutien, le derme, et les tensions intrinsèques dans le tissu épithélial. Lors de la cicatrisation, l'augmentation de la rigidité cutanée résultante peut perturber les conditions initiales de l'homéostasie. Afin de mieux comprendre les mécanismes cellulaires dans ce contexte physiopathologique, et l'incidence des propriétés mécaniques du derme sur le comportement du kératinocyte humain, des cellules primaires ont été cultivés à la surface d'hydrogels de polyacrylamide de différentes rigidités, et sur le plastique (> GPa), condition in vitro classiquement utilisée. Nos résultats ont mis en évidence que les substrats les plus mous favorisent un arrêt de prolifération et un profil phénotypique similaire à un kératinocyte différencié, alors que les substrats les plus rigides facilitent l'adhérence et la prolifération au détriment de la capacité de différenciation, et ce de façon graduelle. L'analyse transcriptomique par séquençage haut débit a permis d'identifier un récepteur membranaire orphelin couplé à la protéine G, GPRC5A (G Protein-Coupled Receptor Class C Group 5 Member A) et une protéine du cytosquelette, la spectrine beta III, dont les augmentations d'expression sont corrélées à l'augmentation de la rigidité. In vivo, GPRC5A est exclusivement localisé dans les berges de la plaie, lieu des kératinocytes en migration. Ces observations ont été confirmées par l'utilisation d'outils d'ARN interférence (siRNA et shRNA) dirigés contre GPRC5A dans les kératinocytes humains, montrant l'implication de ce récepteur dans l'adhérence et la migration cellulaire. De plus, les résultats montrent que la diminution de GPRC5A entraine un défaut de différenciation et d'organisation du feuillet épidermique, conduisant notamment à une mort cellulaire accrue, dans un modèle d'épiderme reconstruit. En parallèle, par des approches similaires d'ARN interférence dirigée contre le gène SPTBN2 (spectrin beta non-erythrocytic 2) codant pour la spectrine beta III, les résultats mettent en évidence un rôle fonctionnel de la spectrine beta III dans la prolifération cellulaire, l'étalement, la migration des kératinocytes et participe à la mécanotransduction en réponse à la rigidité en permettant la survie cellulaire. L'ensemble des résultats de la thèse montrent une adaptation phénotypique des kératinocytes dépendante de la rigidité du substrat sur lequel ils se trouvent et positionne GPRC5A et la spectrine beta III comme des acteurs clés dans la réponse du kératinocyte primaire humain aux changements mécaniques. Ces résultats permettent d'ouvrir de nouvelles voies stratégiques pour le traitement de la cicatrisation et plus largement dans les pathologies affectant la mécanique cutanée / Epidermal homeostasis is determined by several characteristics, including dermis mechanical properties. During skin wound healing, dermis mechanical properties are modified and can alter epidermal integrity. Accordingly, it is essential to understand how keratinocytes respond and adapt to mechanical changes; however, these mechanisms remain unclear. To investigate how mechanical properties of cell microenvironment affect the human keratinocyte, primary cells were seeded on polyacrylamide hydrogels of different compliances (soft: 4 kPa, medium: 14 kPa, rigid: 45 kPa) in comparison with glass coverslip (> GPa). The results showed that on the softer hydrogel, keratinocyte spreading and proliferation were strongly decreased, while a strong increase in the expression of late differentiation markers was observed. On the contrary, the stiffer substrates promote adhesion and proliferation. Moreover, a transcriptomic profiling analysis reveals G protein-coupled receptor, class C, group 5, member A (GPRC5A) and spectrin beta non-erythrocytic 2 (SPTBN2) as potential mechanosensors for substrate adaptation of the keratinocyte. Actually, GPRC5A and SPTBN2 gene expression levels are associated with stiffness increase. We have characterized a dynamic relocation of GPRC5A during keratinocyte adhesion. Furthermore, the knockdown of GPRC5A increased cell adhesion and reduced cell migration. These results were confirmed by GPRC5A immunostaining in healing wounds from mice skin, showing a transient and specific expression of GPRC5A at wound leading edges, a site of cell migration, thus strengthening a role of GPRC5A in the keratinocyte migration process. Concerning SPTBN2, the knockdown of SPTBN2 decreased cell proliferation, spreading and migration, indicating a functional role in keratinocyte processes. Moreover, SPTBN2 knockdown induced keratinocyte death on soft substrate. In conclusion, we demonstrated an adaptive response of keratinocytes depending on substrate stiffness. We also found a new function of GPRC5A in keratinocyte process during skin wound healing and a mechanosensor role of SPTBN2 in keratinocyte. All of these results place GPRC5A and SPTBN2 as key regulators in the response to mechanical changes. These results pave new strategic pathways in skin wound healing treatment, and more widely in the pathologies affecting cutaneous mechanics
|
33 |
Studies on Vitamin A Signaling in Psoriasis : A Comparison Between Normal and Lesional KeratinocytesKarlsson, Teresa January 2002 (has links)
<p>Vitamin A and metabolites (retinoids) are crucial for normal epidermal maturation. Physiological effects are mediated by retinoic acid (RA) that activates nuclear retinoic acid receptors (RARs) in complexes with retinoid X receptors (RXRs), resulting in altered gene transcription.</p><p>Psoriasis is a common disease with unknown etiology. Lesions display inflammation, hyperproliferation, and disturbed epidermal maturation. Treatments include topical or oral synthetic retinoids that allegedly bind to and activate the RARs.</p><p>The mRNA expression of retinoid receptors RARα/γ and RXRα was studied in normal and psoriatic skin samples. RARα and RXRα were significantly reduced in psoriatic plaques as compared to non-lesional and normal skin. <i>In situ</i> immunofluorescence detection revealed altered distribution patterns of the receptor proteins in lesional skin. All three receptor proteins were more intensely detected in the lower half of the epidermis but were significantly reduced in the superficial epidermis compared to both normal and non-lesional skin. </p><p>In order to evaluate the retinoid signaling system in psoriatic lesions, we compared the effect of topical RA on the expression of the cellular RA-binding protein II (CRABPII) in psoriatic and normal skin. CRABPII was induced by RA on mRNA and protein level in non-lesional and normal skin but not in lesional skin, where the basal expression of CRABPII was already up-regulated.</p><p>Changes in retinoid signaling during keratinocyte differentiation <i>in vitro </i>were studied by measuring retinoid receptor and RAR-ligand levels<i>.</i> Exposure to differentiation-inducing levels of calcium, phorbol myristate acetate (PMA) or interferon-γ (IFNγ) led to increased RAR-ligand levels but PMA and IFNγ caused receptor protein loss due to increased proteasomal degradation. Since an increased IFNγ level is a hallmark of psoriatic inflammation, this might be a cause of altered retinoid signaling in lesional epidermis.</p><p><i>Conclusion:</i> Keratinocyte differentiation is accompanied by alterations in the retinoid signaling system. In psoriatic lesions, this system appears to be dysfunctioning due to reduced retinoid receptor levels, which might be an important event in the pathogenesis of the disease.</p>
|
34 |
Regulation of Fibroblast Activity by Keratinocytes / Keratinocyters påverkan på fibroblasters aktivitetNowinski, Daniel January 2005 (has links)
<p>In the healing of cutaneous wounds, paracrine communication between keratinocytes and fibroblasts regulates cell differentiation, proliferation and synthesis of extracellular matrix. Deficient epidermal coverage, as seen in burn-wounds, frequently results in hypertrophic scars. Previous studies suggest that keratinocytes downregulate the production of collagen and profibrotic factors in fibroblasts. We hypothesized that keratinocytes downregulate the expression of the profibrotic factor connective tissue growth factor (CTGF) in fibroblasts, and regulate fibroblast expression of genes important to wound healing. In keratinocyte-fibroblast cocultures, keratinocytes downregulated CTGF mRNA and protein in fibroblasts, through the secretion of interleukin-1 (IL-1) α. Using Affymetrix DNA microarrays, it was demonstrated that factors from keratinocytes regulate the expression of 69 genes important to wound healing. The regulation of 16 of these genes was confirmed by Northern blotting, and IL-1α from keratinocytes regulated all the 16 genes examined. IL-1-mediated CTGF gene regulation was further investigated. Both IL-1 isoforms, α and β, suppressed CTGF expression through an inhibition of CTGF promoter activity. Interestingly, transforming growth factor-β-stimulated Smad phosphorylation was not affected by IL-1. Finally, we hypothesized that CTGF is downregulated in burn wound by split-thickness skin grafting and that the expression of CTGF is suppressed during reepithelialization. The expression of CTGF protein was decreased in successfully skin-grafted wound areas, and increased in open, granulating burn wounds. Moreover, CTGF protein expression was absent beneath the migrating edge of reepithelialization <i>ex vivo</i>. In conclusion, we demonstrate that, in <i>in vitro</i> models, keratinocyte-derived IL-1α regulates the expression of CTGF and other genes with importance to wound healing. Furthermore, it is shown that CTGF expression is suppressed by epidermal wound coverage i burn wounds. These findings may have implications for the understanding of keratinocyte-fibroblast interplay during wound healing and in hypertrophic scar pathogenesis.</p>
|
35 |
Studies on Vitamin A Signaling in Psoriasis : A Comparison Between Normal and Lesional KeratinocytesKarlsson, Teresa January 2002 (has links)
Vitamin A and metabolites (retinoids) are crucial for normal epidermal maturation. Physiological effects are mediated by retinoic acid (RA) that activates nuclear retinoic acid receptors (RARs) in complexes with retinoid X receptors (RXRs), resulting in altered gene transcription. Psoriasis is a common disease with unknown etiology. Lesions display inflammation, hyperproliferation, and disturbed epidermal maturation. Treatments include topical or oral synthetic retinoids that allegedly bind to and activate the RARs. The mRNA expression of retinoid receptors RARα/γ and RXRα was studied in normal and psoriatic skin samples. RARα and RXRα were significantly reduced in psoriatic plaques as compared to non-lesional and normal skin. In situ immunofluorescence detection revealed altered distribution patterns of the receptor proteins in lesional skin. All three receptor proteins were more intensely detected in the lower half of the epidermis but were significantly reduced in the superficial epidermis compared to both normal and non-lesional skin. In order to evaluate the retinoid signaling system in psoriatic lesions, we compared the effect of topical RA on the expression of the cellular RA-binding protein II (CRABPII) in psoriatic and normal skin. CRABPII was induced by RA on mRNA and protein level in non-lesional and normal skin but not in lesional skin, where the basal expression of CRABPII was already up-regulated. Changes in retinoid signaling during keratinocyte differentiation in vitro were studied by measuring retinoid receptor and RAR-ligand levels. Exposure to differentiation-inducing levels of calcium, phorbol myristate acetate (PMA) or interferon-γ (IFNγ) led to increased RAR-ligand levels but PMA and IFNγ caused receptor protein loss due to increased proteasomal degradation. Since an increased IFNγ level is a hallmark of psoriatic inflammation, this might be a cause of altered retinoid signaling in lesional epidermis. Conclusion: Keratinocyte differentiation is accompanied by alterations in the retinoid signaling system. In psoriatic lesions, this system appears to be dysfunctioning due to reduced retinoid receptor levels, which might be an important event in the pathogenesis of the disease.
|
36 |
Regulation of Fibroblast Activity by Keratinocytes / Keratinocyters påverkan på fibroblasters aktivitetNowinski, Daniel January 2005 (has links)
In the healing of cutaneous wounds, paracrine communication between keratinocytes and fibroblasts regulates cell differentiation, proliferation and synthesis of extracellular matrix. Deficient epidermal coverage, as seen in burn-wounds, frequently results in hypertrophic scars. Previous studies suggest that keratinocytes downregulate the production of collagen and profibrotic factors in fibroblasts. We hypothesized that keratinocytes downregulate the expression of the profibrotic factor connective tissue growth factor (CTGF) in fibroblasts, and regulate fibroblast expression of genes important to wound healing. In keratinocyte-fibroblast cocultures, keratinocytes downregulated CTGF mRNA and protein in fibroblasts, through the secretion of interleukin-1 (IL-1) α. Using Affymetrix DNA microarrays, it was demonstrated that factors from keratinocytes regulate the expression of 69 genes important to wound healing. The regulation of 16 of these genes was confirmed by Northern blotting, and IL-1α from keratinocytes regulated all the 16 genes examined. IL-1-mediated CTGF gene regulation was further investigated. Both IL-1 isoforms, α and β, suppressed CTGF expression through an inhibition of CTGF promoter activity. Interestingly, transforming growth factor-β-stimulated Smad phosphorylation was not affected by IL-1. Finally, we hypothesized that CTGF is downregulated in burn wound by split-thickness skin grafting and that the expression of CTGF is suppressed during reepithelialization. The expression of CTGF protein was decreased in successfully skin-grafted wound areas, and increased in open, granulating burn wounds. Moreover, CTGF protein expression was absent beneath the migrating edge of reepithelialization ex vivo. In conclusion, we demonstrate that, in in vitro models, keratinocyte-derived IL-1α regulates the expression of CTGF and other genes with importance to wound healing. Furthermore, it is shown that CTGF expression is suppressed by epidermal wound coverage i burn wounds. These findings may have implications for the understanding of keratinocyte-fibroblast interplay during wound healing and in hypertrophic scar pathogenesis.
|
37 |
Retinoic Acid Metabolism Blocking Agents and the Skin : In vivo and in vitro Studies of the Effects on Normal and Diseased Human EpidermisPavez Loriè, Elizabeth January 2008 (has links)
Retinoic Acid Metabolism Blocking Agents (RAMBAs) increase the endogenous levels of all-trans retinoic acid (RA) by inhibiting CYP26 enzymes. Thus they are believed to mimic the effects of retinoid treatment. Their mechanism of action and effects on vitamin A metabolism in keratinocytes are however uncertain. To explore this and the function of CYP26 in human skin was the main purpose of the project. The effects of two RAMBAs (talarozole and liarozole) on the expression of retinoid biomarkers in epidermis were studied in vivo and in vitro. Normal human skin (n=16) exposed to topical talarozole for 9 days showed similar response as previously reported for topical RA, even though no skin inflammation occurred. Lamellar ichthyosis patients (n=11) treated systemically with liarozole showed variable clinical improvement after 4 weeks with only mild effects on the retinoid biomarkers and the expression did not always correlate at the protein and mRNA levels. In these studies the proinflammatory transcripts IL-1α and TNFα were down-regulated by RAMBAs. In vitro, using an organotypic epidermis model we first studied how the RA metabolism was affected by adding RA and/or RAMBAs. We next examined the effects of the same agents on the expression of vitamin A metabolising enzymes in monolayer cultures of proliferating and differentiating keratinocytes. The results show among other things that CYP26 A1 and B1 are both involved in the catabolism of RA, and that talarozole potently increases the level of endogenous RA, primarily by inhibiting CYP26B1. However the drug´s biological effects cannot be solely attributed to increased RA levels. In conclusion, RAMBAs are promising new drugs for treatment of skin disorders, but further studies on their mechanism of action are needed.
|
38 |
The effects of plasminogen deficiency on the healing of tympanic membrane perforationsHansson, Annika January 2007 (has links)
The healing of tympanic membrane (TM) perforations is a complex wound healing process including inflammation, migration of keratinocytes and tissue remodelling. Most TM perforations in human heal spontaneously, however some perforations become chronic, and the reason to why is still largely unknown. In cutaneous wound healing plasminogen (plg) has been shown to play an important role. Plg is converted into the protease plasmin regulated by two plasminogen activators (PA), urokinase type PA (uPA) and tissue-type PA (tPA). The aim of the present thesis was to evaluate the role of plg in healing of TM perforations, both in vivo and in vitro. The main objectives were to determine the healing capacity of the TM, the involvement of keratinocytes, fibrin(ogen) and inflammatory cells in the healing process. The studies were performed in plg deficient and uPA deficient mice, with littermate wild type (wt) mice as controls It was shown that myringotomies of the TMs in plg deficient mice still remained open 143 days following a perforation. The wound area was characterized by an abundant recruitment and accumulation of inflammatory cells; mainly macrophages and neutrophils, an arrested keratinocyte migration and a fibrin deposition covering the surface of the TM. The TM perforations in the wt mice all healed within 11 days. Interestingly, the myringotomies of the plg deficient mice could be closed by reconstitution with systemic injections of plg, whereas injections of PBS had no affect on the healing. To characterize mechanisms involved in the development of persistent TM perforations in plg deficient mice after a myringotomy the early inflammatory response during the first 48 hours was studied. The recruitment and accumulation of inflammatory cells in the perforated TMs was found to be similar between the plg deficient and the wt mice. Myringotomized TMs in uPA deficient mice healed similar to perforations of wt controls. Neither did the keratinocyte migration nor the occurrence of inflammatory cells differ between these genotypes. In the in vitro experiments TMs from plg deficient and wt mice, were dissected out, perforated and cultured in absence or surplus of plg. A decrease in perforation size was seen in all groups regardless of genotype or amount of plg in the medium. In conclusion, the present studies show: • Plg is essential for the healing of TM perforations in mice. • The altered healing process after a myringotomy in plg deficient mice involves a disturbed keratinocyte migration, a massive deposition of fibrin and an abundant accumulation of inflammatory cells in the wound area. • Plasminogen deficiency does not alter the early inflammatory response, following a myringotomy. • Deficiency of uPA does not influence the healing of TM perforations. • During in vitro conditions healing of TM perforations is initiated irrespectively of genotype of the explant (plg deficient or wt) or supply of plg. The increased knowledge of the involvement of plg in the healing of TM perforations may open therapeutical possibilities in the treatment of chronic TM perforations in humans.
|
39 |
Étude de l'implication des cytokines dans l'inflammation cutanée et application à l'identification de cibles thérapeutiques pertinentes / Study of involvment of cytokines in skin inflammation and application to the identification of relevant therapeutic targetsRabeony, Hanitriniaina 13 May 2014 (has links)
Un réseau de cytokine complexe a été décrit dans le psoriasis mettant en évidence le rôle central des cytokines proinflammatoires dans la physiopathologie de cette maladie. Notre tentative de modéliser l'inflammation cutanée a montré que la combinaison de l'IL-17A, IL-22, IL-1α, oncostatine M (OSM) et le TNFα, augmente de manière synergique l'expression de chimiokines et de peptides antimicrobiens, reflétant certaines caractéristiques du psoriasis. D'autres caractéristiques de cette maladie sont l'acanthose et le blocage de la différenciation des kératinocytes. Notre premier objectif était d'étudier le rôle respectif de ces cytokines sur la différenciation des kératinocytes en comparaison avec les lésions de patients psoriasiques. Toutes ces cytokines inhibent l'expression des marqueurs de différentiation des kératinocytes, parmi lesquelles l’IL-22 et l’OSM sont les plus puissantes et le mélange M5 présente des effets synergiques. Si l'IL-22 et l'OSM déclenchent plus spécifiquement l'hyperplasie épidermique et le blocage de la différenciation, l’IL-1α, IL-17A et le TNFα sont plutôt impliqués dans l'activation de l'immunité innée. Le rôle fonctionnel de chacune de ces cytokines in vivo a été étudié dans un modèle d'inflammation cutanée de type psoriasique induit par l'imiquimod (IMQ), un agoniste TLR7, en utilisant des souris déficientes en cytokines. L'absence de l'OSM ou de l'OSMRβ n'a pas modifié le développement des lésions inflammatoires induites par l’IMQ. Une hypothèse est que d'autres cytokines peuvent avoir des effets redondants avec l'OSM. L'absence de l'IL-22 chez la souris diminue partiellement les lésions cutanées induites par l'IMQ, démontrant que son retrait du réseau cytokinique rompt une partie des effets synergiques des cytokines in vivo comme présenté dans le modèle M5. L'absence de l'IL-1α ou de l'IL-1β ne modifie pas l'inflammation cutanée induite par l'IMQ, ce qui n'est pas surprenant au vu des activités redondantes de ces deux cytokines. La diminution partielle de l'inflammation en absence d'IL-1α ET d'IL-1β OU de la chaine réceptrice commune IL-1RI confirme ces observations. A long terme ces études devraient permettre de proposer des stratégies anti-cytokine ciblées et combinées pour tenter de rompre la synergie et diminuer ainsi toutes les composantes de la réponse inflammatoire cutanée. / A complex cytokine network has been described in psoriasis and highlighted a central role of proinflammatory cytokines produced by infiltrated immune cells. Our attempt to model skin inflammation showed that the combination of IL-17A, IL-22, IL-1α, OSM and TNFα (Mix M5) synergistically increases chemokines and antimicrobial-peptides expression, recapitulating some features of psoriasis. Other characteristics of psoriasis are acanthosis and down-regulation of keratinocyte differentiation markers. Our aim was to characterize the specific roles of these cytokines on keratinocyte differentiation, and to compare with psoriatic lesion features. All cytokines decrease keratinocytes differentiation markers expression, but IL-22 and OSM were the most powerful, and the M5 strongly synergized the effects. If IL-22 and OSM more specifically drive epidermal hyperplasia and differentiation loss, IL-1α, IL-17A and TNFα were more involved in the activation of innate immunity. Functional role of these cytokines in vivo was studied in imiquimod-induced psoriasis-like skin inflammation by using knockout mice. Imiquimod (IMQ) is a TLR7 ligand. The absence of OSM or OSMRβ did not affect skin lesions after IMQ treatment. We supposed that other cytokines might be redundant with the OSM effects. The absence of IL-22 in mice partially reduced skin lesions induced by IMQ, demonstrating that removal of IL-22 in cytokine network break synergistic effects of cytokines in vivo as observed in in vitro with M5. The absence of IL-1α or IL-1β did not affect skin lesions after IMQ treatment, supporting the potential redundant activity of these cytokines, since the response is attenuated in mice deficient for both IL-1α and IL-1β or for IL-1RI. In the long term these studies should propose strategies targeted and combined anti-cytokine in order to break the synergy and thus reduce all components of the inflammatory skin response.
|
40 |
Fetal mesenchymal stem cells ameliorate acute lung injury in a rat cardiopulmonary bypass model / ラット人工心肺モデルにおける卵膜由来間葉系幹細胞の投与は急性肺障害を改善するTaki, Tomofumi 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20250号 / 医博第4209号 / 新制||医||1020(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 伊達 洋至, 教授 戸口田 淳也, 教授 開 祐司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
Page generated in 0.0197 seconds